JP2919528B2 - Hydrogen storage alloy and method for producing the same - Google Patents

Hydrogen storage alloy and method for producing the same

Info

Publication number
JP2919528B2
JP2919528B2 JP2036750A JP3675090A JP2919528B2 JP 2919528 B2 JP2919528 B2 JP 2919528B2 JP 2036750 A JP2036750 A JP 2036750A JP 3675090 A JP3675090 A JP 3675090A JP 2919528 B2 JP2919528 B2 JP 2919528B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
hydrogen
storage material
heat treatment
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2036750A
Other languages
Japanese (ja)
Other versions
JPH03240933A (en
Inventor
和幸 吉本
徹 小笠原
真一 谷岡
博信 藤井
慎一 折茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsuda KK
Original Assignee
Matsuda KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuda KK filed Critical Matsuda KK
Priority to JP2036750A priority Critical patent/JP2919528B2/en
Publication of JPH03240933A publication Critical patent/JPH03240933A/en
Application granted granted Critical
Publication of JP2919528B2 publication Critical patent/JP2919528B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、水素吸蔵合金およびその製造方法に関する
ものである。
Description: TECHNICAL FIELD The present invention relates to a hydrogen storage alloy and a method for producing the same.

(従来の技術) 近年、地球温暖化などが環境問題として取り上げられ
るようになってきており、化石燃料に代わるエネルギー
源として水素が注目されるようになってきつつある。水
素は、資源的に制約がないこと、クリーンであること、
輸送、貯蔵が可能であること、自然の循環系を乱さない
こと、広汎な用途があることなど代替えエネルギー源と
して極めて有用なものであるところから、従来から気体
水素もしくは液体水素として使用されてきているが、最
近、金属水素化物として水素を貯蔵する水素吸蔵合金
が、特に関心をもたれるようになってきている。
(Prior Art) In recent years, global warming and the like have been taken up as an environmental problem, and hydrogen has been receiving attention as an energy source instead of fossil fuel. Hydrogen has no resource constraints, is clean,
Since it is extremely useful as an alternative energy source, such as being transportable and storable, not disturbing the natural circulatory system, and having a wide range of uses, it has been used as gaseous hydrogen or liquid hydrogen. However, recently, hydrogen storage alloys that store hydrogen as metal hydrides have been of particular interest.

該水素吸蔵合金は、金属の水素化・解離の現象を応用
して水素の貯蔵、運搬、エネルギー変換を行うものであ
り、Zr、Ti等の遷移金属の水素化物が知られている(例
えば、特公昭59−50744号公報参照)。
The hydrogen storage alloy performs hydrogen storage, transport, and energy conversion by applying the phenomenon of metal hydrogenation and dissociation, and hydrides of transition metals such as Zr and Ti are known (for example, See JP-B-59-50744).

(発明が解決しようとする課題) 上記の如き水素吸蔵合金には、現状では (1)初期活性化が容易でないという問題。(Problems to be Solved by the Invention) At present, the hydrogen storage alloy as described above has a problem that (1) initial activation is not easy.

(2)水素吸蔵量および水素吸蔵速度の問題。(2) Problems of hydrogen storage amount and hydrogen storage speed.

(3)合金の耐久性、被毒、微粉化の問題。(3) Durability, poisoning, and pulverization of the alloy.

(4)熱伝導性の問題 (5)コスト的な問題 等があるが、これらのうち、耐微粉化性と吸蔵速度は、
水素吸蔵合金の実用化における重要な問題とされる。
(4) The problem of thermal conductivity (5) The problem of cost
This is an important problem in practical use of hydrogen storage alloys.

つまり、水素吸蔵合金は、水素の吸蔵・放出を行う際
に膨張・収縮を繰り返すが、その際に生ずる歪エネルギ
ーによってクラックが発生し、従来例の場合、10回程度
の水素吸蔵・放出で、約15μmの微粉末になってしまう
という微粉化現象が生じていた。このようにして水素吸
蔵合金の微粉化が生ずると、ひどい場合には高々数サイ
クルの吸蔵・放出でフィルターを通して合金粉末が飛散
したり、熱伝導性が悪化して吸蔵効率が悪くなるという
問題がある。また、水素吸蔵速度は、水素の充填や使用
時の吸蔵・放出に実用上大きな影響を及ぼすこととな
る。
In other words, the hydrogen storage alloy repeats expansion and contraction when storing and releasing hydrogen, but cracks are generated by the strain energy generated at that time, and in the conventional example, about 10 times of hydrogen storage and release, A pulverization phenomenon that the powder becomes about 15 μm was generated. When the hydrogen storage alloy is pulverized in this way, in severe cases, there is a problem in that the alloy powder is scattered through a filter in at most several cycles of occlusion and release, and the heat conductivity is deteriorated, thereby deteriorating the occlusion efficiency. is there. In addition, the hydrogen storage rate has a large practical effect on the storage and release of hydrogen during filling and use.

従って、水素吸蔵合金においては、その微粉化をいか
に抑制するか、水素吸蔵速度をいかに速めるかが、実用
化を図る上での重要な技術的解決課題となってきている
のである。
Therefore, in the hydrogen storage alloy, how to suppress the pulverization and how to increase the hydrogen storage speed are important technical solutions for practical use.

本発明は、上記の点に鑑みてなされたもので、水素吸
蔵合金の耐微粉化性および水素吸蔵速度の向上を図るこ
とを目的とするものである。
The present invention has been made in view of the above points, and has as its object to improve the pulverization resistance and hydrogen storage speed of a hydrogen storage alloy.

(課題を解決するための手段) 請求項1の発明では、上記課題を解決するための手段
として、Zr(Fe1-xCrx)2、TiMnx、TiFex、LaNi5のうちの
選ばれたものからなる水素吸蔵材中に、10〜45wt%のMg
が拡散接合している。Mgを使用した理由は、軽量、安価
で且つ軟化点が低く展性に富んでおり、バインダとして
優れた特性をもっていると考えられるからである。
(Means for Solving the Problems) According to the invention of claim 1, the means for solving the above problems is selected from Zr (Fe 1 -xCrx) 2 , TiMnx, TiFex, and LaNi 5. 10-45wt% Mg in hydrogen storage material
Are diffusion bonded. Mg is used because it is lightweight, inexpensive, has a low softening point, is highly malleable, and is considered to have excellent properties as a binder.

請求項2の発明では、上記課題を解決するための手段
として、Zr(Fe1-xCrx)2、TiMnx、TiFex、LaNi5のうちの
選ばれたものからなる水素吸蔵材中に10〜45wt%のMgを
添加したものに対して、200〜650℃の熱処理を施して前
記水素吸蔵材中にMgを拡散接合させるようにしている。
なお、Mgは、室温から300℃の温度範囲では水素吸蔵は
起こらず、バインダの役目のみをしている。
According to the second aspect of the present invention, as a means for solving the above-mentioned problem, 10 to 45 wt% is contained in a hydrogen storage material made of Zr (Fe 1 -xCrx) 2 , TiMnx, TiFex, or LaNi 5. The Mg-added material is subjected to a heat treatment at 200 to 650 ° C. so that Mg is diffusion-bonded into the hydrogen storage material.
In addition, Mg does not occlude hydrogen in a temperature range from room temperature to 300 ° C., and serves only as a binder.

(作用) 請求項1の発明では、上記手段によって次のような作
用が得られる。
(Operation) In the invention of claim 1, the following operation is obtained by the above means.

即ち、室温付近で水素の吸蔵・放出が可能で水素吸蔵
量も大きい水素吸蔵材[例えば、Zr(Fe1-xCrx)2、TiMn
x、TiFex、LaNi5]中に10〜45wt%のMgを拡散接合せし
めたことにより、水素吸蔵時において水素吸蔵材が膨張
する際に、該膨張による応力をMgが吸収緩和する如く作
用することとなる。しかも、水素吸蔵材中にバインダで
あるMgを原子間結合である拡散接合したことにより、両
者の結合力が向上せしめられることとなる。また、熱処
理工程においてMgが水素吸蔵材中の酸素を奪って還元す
るため、水素吸蔵材の水素吸蔵能が向上することとな
る。
That is, a hydrogen storage material capable of storing and releasing hydrogen near room temperature and having a large hydrogen storage amount [eg, Zr (Fe 1 -xCrx) 2 , TiMn
x, TiFex, by which allowed the diffusion bonding the 10~45Wt% of Mg in the LaNi 5], when the hydrogen storage material is expanded during hydrogen occlusion, to act as a stress due to the expansion Mg absorbs relaxation Becomes Moreover, by bonding Mg as a binder to the hydrogen storage material by diffusion bonding as an interatomic bond, the bonding strength between the two can be improved. Further, in the heat treatment step, Mg deprives oxygen in the hydrogen storage material and reduces it, so that the hydrogen storage capacity of the hydrogen storage material is improved.

なお、Mgの添加量が少なすぎると(即ち、10wt%未満
となると)、Mgが水素吸蔵材の周囲に均一に分散せしめ
られなくなるところから、膨張による応力を吸収緩和す
る作用が十分に得られなくなる。また、Mgの添加量が多
すぎると(即ち、45wt%超えると)、水素吸蔵材による
水素の吸蔵・放出が遅くなる。従って、Mgの添加量は、
10〜45wt%とするのが望ましい。
If the added amount of Mg is too small (that is, less than 10 wt%), Mg cannot be uniformly dispersed around the hydrogen storage material, so that the effect of absorbing and relaxing the stress due to expansion is sufficiently obtained. Disappears. On the other hand, if the added amount of Mg is too large (that is, if it exceeds 45 wt%), the storage and release of hydrogen by the hydrogen storage material will be delayed. Therefore, the amount of Mg added is
It is desirable that the content be 10 to 45 wt%.

請求項2の発明では、上記手段によって次のような作
用が得られる。
According to the second aspect of the present invention, the following effects can be obtained by the above means.

即ち、室温付近で水素の吸蔵・放出が可能で吸蔵量も
大きい水素吸蔵材[例えば、Zr(Fe1-xCrx)2、TiMnx、Ti
Fex、LaNi5]に対して10〜45wt%のMgをバインダとして
添加した後、200〜650℃で熱処理して前記水素吸蔵材中
にMgを拡散接合するようにしたことにより、水素吸蔵材
とバインダであるMgとの間に原子間結合である有効な拡
散接合が生じることとなって両者の結合力が向上せしめ
られることとなるとともに、熱処理工程においてMgが水
素吸蔵材中の酸素を奪って還元することで、水素吸蔵材
の水素吸蔵能が向上することとなる。
That is, a hydrogen storage material capable of storing and releasing hydrogen near room temperature and having a large storage amount [eg, Zr (Fe 1 -xCrx) 2 , TiMnx, Ti
Fex, LaNi 5 ] to the hydrogen storage material by adding 10 to 45 wt% of Mg as a binder, and then performing a heat treatment at 200 to 650 ° C. so that the Mg is diffused and bonded into the hydrogen storage material. Effective diffusion bonding, which is an interatomic bond, is generated between Mg and the binder, so that the bonding force between the two is improved.In the heat treatment step, Mg deprives oxygen in the hydrogen storage material. By reducing, the hydrogen storage capacity of the hydrogen storage material is improved.

なお、熱処理温度が200℃未満の場合には、水素吸蔵
材とバインダであるMgとの間に充分な拡散が生じず、前
述の効果が期待できない。また、熱処理温度が650℃を
超えると、Mgの融点を超えることとなるため、形状維持
が困難となり、実用的でない。従って、熱処理温度は、
200〜650℃の範囲とするのが望ましい。
If the heat treatment temperature is lower than 200 ° C., sufficient diffusion does not occur between the hydrogen storage material and Mg serving as the binder, and the above-described effects cannot be expected. On the other hand, if the heat treatment temperature exceeds 650 ° C., the melting point of Mg will be exceeded, making it difficult to maintain the shape, which is not practical. Therefore, the heat treatment temperature is
It is desirable to be in the range of 200 to 650 ° C.

(発明の効果) 請求項1の発明によれば、Zr(Fe1-xCrx)2、TiMnx、Ti
Fex、LaNi5のうちの選ばれたものからなる水素吸蔵材中
に、10〜45wt%のMgを原子間結合である拡散接合して、
水素吸蔵材とバインダであるMgとの間の拡散接合によ
り、両者の結合力が向上せしめられるようにしたので、
室温付近で水素の吸蔵・放出が可能で吸蔵量も大きい水
素吸蔵材が水素吸蔵時に膨張する際に、該膨張による応
力をMgが吸収緩和する如く作用することとなり、水素の
吸蔵・放出を繰り返した場合におけるクラック発生が大
幅に抑制され、耐微粉化性が著しく(即ち、従来の10〜
100倍に)向上するという優れた効果がある。
(Effect of the Invention) According to the invention of claim 1, Zr (Fe 1 -xCrx) 2 , TiMnx, Ti
Fex, the hydrogen storage material in consisting of selected ones of the LaNi 5, and diffusion bonding is an atomic bond the 10~45Wt% of Mg,
By the diffusion bonding between the hydrogen storage material and Mg as the binder, the bonding force between them was improved,
When the hydrogen storage material that can store and release hydrogen near room temperature and has a large storage capacity expands during hydrogen storage, it acts as Mg absorbs and relaxes the stress caused by the expansion, and the storage and release of hydrogen are repeated. Cracking is greatly suppressed in the case of
There is an excellent effect of improving (by 100 times).

また、熱処理工程においてMgが水素吸蔵材中の酸素を
奪って還元するため、水素吸蔵材の水素吸蔵能が向上す
るという効果もある。
Further, since Mg takes away oxygen in the hydrogen storage material and reduces it in the heat treatment step, there is also an effect that the hydrogen storage capacity of the hydrogen storage material is improved.

請求項2の発明によれば、Zr(Fe1-xCrx)2、TiMnx、Ti
Fex、LaNi5のうちの選ばれたものからなる水素吸蔵材粉
末中に10〜45wt%のMgを添加したものに対して、200〜6
50℃の熱処理を施して前記水素吸蔵材中にMgを拡散接合
すようにして、室温付近で水素の吸蔵・放出が可能で水
素吸蔵量も大きい水素吸蔵材とバインダであるMgとの間
に原子間結合である有効な拡散が生じることとなって両
者の結合力が向上せしめられるようにしたので、かくし
て得られた水素吸蔵合金では、水素の吸蔵・放出を繰り
返した場合におけるクラック発生が大幅に抑制されるこ
ととなり、耐微粉化性が著しく(即ち、従来の10〜100
倍に)向上するという優れた効果がある。
According to the invention of claim 2, Zr (Fe 1 -xCrx) 2 , TiMnx, Ti
Fex, LaNi 5 is selected from hydrogen storage material powder of 10-45 wt% Mg added to 200-6
By performing a heat treatment at 50 ° C. so that Mg is diffused and bonded in the hydrogen storage material, between the hydrogen storage material and the binder, which is capable of storing and releasing hydrogen and having a large hydrogen storage amount near room temperature, and having a large hydrogen storage amount. Effective diffusion, which is an interatomic bond, occurs, and the bonding force between the two is improved.Therefore, in the hydrogen storage alloy thus obtained, cracks occur when hydrogen is repeatedly absorbed and released. And the pulverization resistance is remarkably high (that is, the conventional 10 to 100
There is an excellent effect of improving by a factor of two.

また、上記熱処理工程においては、Mgが水素吸蔵材中
の酸素を奪って還元することとなっているので、得られ
た水素吸蔵材の水素吸蔵能が著しく向上するという効果
もある。
Further, in the heat treatment step, Mg is supposed to deprive the oxygen in the hydrogen storage material and reduce it, so that there is an effect that the hydrogen storage capacity of the obtained hydrogen storage material is significantly improved.

(実施例) 以下、具体的実施例に基づいて本発明を説明する。(Examples) Hereinafter, the present invention will be described based on specific examples.

実施例1 Zr(Fe0.7Cr0.3)2の化学式が表され、粒度20μm以下
に調整された水素吸蔵材粉末と、23.1wt%のMg粉末と
を、非酸化性雰囲気のArガス中で混合し、8.5t/cm2の圧
力で圧粉成形し、得られた圧粉成形体に対してArなどの
非酸化性雰囲気中、2〜3気圧で500℃×20hrの熱処理
を行ったところ、Zr(Fe0.7Cr0.3)2の化学式で表される
水素吸蔵材中に23.1wt%のMgが拡散接合されたMg複合水
素吸蔵合金が得られた。該拡散接合は、原子間結合なの
で両者の結合力は強固となる。
Example 1 A hydrogen storage material powder represented by a chemical formula of Zr (Fe 0.7 Cr 0.3 ) 2 and adjusted to a particle size of 20 μm or less, and a 23.1 wt% Mg powder were mixed in a non-oxidizing atmosphere of Ar gas. The powder compact was pressed at 8.5 ton / cm 2 and heat-treated at 500 ° C. for 20 hours at 2-3 atm in a non-oxidizing atmosphere such as Ar. A Mg composite hydrogen storage alloy in which 23.1 wt% Mg was diffusion bonded to a hydrogen storage material represented by the chemical formula (Fe 0.7 Cr 0.3 ) 2 was obtained. Since the diffusion bonding is an interatomic bond, the bonding strength between the two is strong.

上記の如くして得られたMg複合水素吸蔵合金において
は、第1図の組織写真に示すように、水素吸蔵材(写真
における灰色部分)間にMg(写真における黒色部分)が
拡散接合されており、該Mgがバインダとしての作用をし
ていることがわかる。
In the Mg composite hydrogen storage alloy obtained as described above, as shown in the structure photograph of FIG. 1, Mg (black part in the photograph) is diffusion-bonded between the hydrogen storage materials (gray part in the photograph). This indicates that the Mg acts as a binder.

このような構成の水素吸蔵合金の場合、水素吸蔵材が
水素吸蔵時に膨張する際に、該膨張による応力をバイン
ダとしての作用を有するMgが吸収緩和する如く作用する
こととなり、水素の吸蔵・放出を繰り返した場合におけ
るクラック発生が大幅に抑制されることとなり、耐微粉
化性が著しく向上する。ちなみに、Mgを添加していない
ものの場合、10回程度の水素吸蔵・放出で微粉化してし
まうのに対して、本実施例の水素吸蔵合金の場合、1000
回の水素の吸蔵・放出でも微粉化が起こらなかった。
In the case of the hydrogen storage alloy having such a configuration, when the hydrogen storage material expands during the storage of hydrogen, Mg acting as a binder acts to absorb and relax the stress due to the expansion, and hydrogen is absorbed and released. When cracks are repeated, the occurrence of cracks is greatly suppressed, and the pulverization resistance is significantly improved. By the way, in the case where Mg was not added, the powder was pulverized by hydrogen storage and release about 10 times, whereas in the case of the hydrogen storage alloy of this example, 1000
Micronization did not occur even after hydrogen storage and release.

さて、水素吸蔵材に対するMgの添加量の変化による微
粉化および水素移動量への影響を調べるため、Mg添加量
を種々変えてテストしたところ、第2図示の特性が得ら
れた。
By the way, in order to examine the influence on the pulverization and the amount of hydrogen transfer due to the change in the amount of Mg added to the hydrogen storage material, tests were carried out with various amounts of Mg added, and the characteristics shown in FIG.

第2図には、Mg添加量(wt%)に対する耐微粉化性
(即ち、微粉化に至る水素吸蔵・放出回数)および水素
移動量(H/m)の変化が実線および点線でそれぞれ示さ
れている。ここで、H/mは、水素吸蔵合金1モル当たり
の水素原子数を表す。
FIG. 2 shows changes in the pulverization resistance (that is, the number of times of hydrogen absorption and desorption leading to pulverization) and the hydrogen transfer rate (H / m) with respect to the amount of Mg added (wt%) by a solid line and a dotted line, respectively. ing. Here, H / m represents the number of hydrogen atoms per mole of the hydrogen storage alloy.

これによれば、Mg添加量が10wt%未満になると耐微粉
化性が急激に低下し、Mg添加量が45wt%を超えると水素
移動量が低下してくることがわかる。このことは、Mgの
バインダとしての作用が添加量の減少により低下するこ
と、反対に多量のMgの存在によって水素吸蔵能が低下す
ることを表している。従って、Mg添加量は、10〜45wt%
の範囲とするのが望ましいとされる。
According to this, it is found that when the added amount of Mg is less than 10 wt%, the pulverization resistance is sharply reduced, and when the added amount of Mg exceeds 45 wt%, the hydrogen transfer amount is reduced. This indicates that the effect of Mg as a binder decreases with a decrease in the amount of addition, and conversely, the presence of a large amount of Mg lowers the hydrogen storage capacity. Therefore, the added amount of Mg is 10-45wt%
It is considered desirable to set the range.

また、Zr(Fe0.7Cr0.3)2の化学式で表される原料水素
吸蔵材粉末の粒度の変化によるMg複合水素吸蔵合金(例
えば、23.1wt%Mg添加水素吸蔵合金)の耐微粉化性を調
べるため、原料水素吸蔵材の粒度(μm)を種々変えて
テストしたところ第3図図示の特性が得られた。
In addition, the micro-pulverization resistance of a Mg composite hydrogen storage alloy (for example, a hydrogen storage alloy containing 23.1 wt% Mg) is investigated by changing the particle size of the raw material hydrogen storage material powder represented by the chemical formula of Zr (Fe 0.7 Cr 0.3 ) 2. For this reason, a test was conducted by changing the particle size (μm) of the raw material hydrogen storage material in various ways, and the characteristics shown in FIG. 3 were obtained.

これによれば、水素吸蔵材の粒度のいかんに拘わら
ず、従来のものに比べて10倍以上の高い耐久性(即ち、
耐微粉化性)を示すが、水素吸蔵材の粒度を20μm以下
に調整した場合、著しい耐微粉化性(即ち、従来の100
倍以上)を示すことがわかる。このことは、水素吸蔵材
の粒度を小さくすることにより、接触面積の増大が図ら
れる結果、水素吸蔵材の拡散性が容易となって相互の結
合力が向上することに起因しているものと思われる。な
お、水素吸蔵材の粒度が20μmを超えた場合、接触面積
が減少して相互の結合力が若干低下するところから、耐
微粉化性の低下を招くこととなっているものと思われ
る。従って、水素吸蔵材の粒度は20μm以下とするのが
望ましいとされる。
According to this, irrespective of the size of the hydrogen storage material, the durability is more than 10 times higher than that of the conventional hydrogen storage material (ie,
However, when the particle size of the hydrogen storage material is adjusted to 20 μm or less, remarkable pulverization resistance (that is, the conventional 100 μm resistance) is obtained.
More than double). This is due to the fact that by reducing the particle size of the hydrogen storage material, the contact area is increased, and as a result, the diffusivity of the hydrogen storage material is facilitated and the mutual bonding force is improved. Seem. When the particle size of the hydrogen storage material exceeds 20 μm, the contact area is reduced and the mutual bonding force is slightly reduced, so that it is considered that the pulverization resistance is reduced. Therefore, the particle size of the hydrogen storage material is desirably set to 20 μm or less.

さらに、水素吸蔵合金製造過程における熱処理の耐久
性(即ち、耐微粉化性)および水素吸蔵速度に与える影
響を調べるため、熱処理条件を種々変えてテストしたと
ころ第4図および第5図図示の特性が得られた。
Further, in order to examine the durability of the heat treatment in the hydrogen storage alloy production process (that is, the resistance to pulverization) and the effect on the hydrogen storage rate, tests were conducted under various heat treatment conditions. The characteristics shown in FIGS. was gotten.

これによれば、熱処理を行わないもの、あるいは150
℃×20hrの熱処理を行ったものに比べて、本実施例にお
ける如く500℃×20hrの熱処理を行ったものが極めて優
れた耐微粉化性および水素吸蔵速度を示すことがわか
る。このことは、熱処理により水素吸蔵材とバインダで
あるMgとの間に原子間結合である有効な拡散が生じるこ
ととなって両者の結合力が向上せしめられること、熱処
理工程においてMgが水素吸蔵材中の酸素を奪って還元す
ることで、水素吸蔵材の水素吸蔵能が向上することに起
因しているものと思われる。
According to this, one without heat treatment, or 150
It can be seen that, as compared with the case where the heat treatment was performed at 500 ° C. × 20 hr, the case where the heat treatment was performed at 500 ° C. × 20 hr as shown in this example exhibited extremely excellent pulverization resistance and a hydrogen storage rate. This means that the heat treatment causes effective diffusion, which is an interatomic bond, between the hydrogen storage material and Mg as the binder, thereby improving the bonding force between the two. It is thought that this is because the hydrogen storage capacity of the hydrogen storage material is improved by depriving the oxygen inside and reducing it.

なお、熱処理温度が200℃未満の場合には、水素吸蔵
材とバインダであるMgとの間に充分な拡散が生じず、前
述の効果が期待できない。また、熱処理温度が650℃を
超えると、Mgの融点を超えることとなるため、形状維持
が困難となり、実用的でない。従って、熱処理温度は、
200〜650℃の範囲とするのが望ましいとされる。
If the heat treatment temperature is lower than 200 ° C., sufficient diffusion does not occur between the hydrogen storage material and Mg serving as the binder, and the above-described effects cannot be expected. On the other hand, if the heat treatment temperature exceeds 650 ° C., the melting point of Mg will be exceeded, making it difficult to maintain the shape, which is not practical. Therefore, the heat treatment temperature is
It is desirable that the temperature be in the range of 200 to 650 ° C.

実施例2 TiMn1.5、TiFe、LaNi5の化学式でそれぞれ表される水
素吸蔵材についても、前記実施例1の場合と同様な方法
によりMgを添加し且つ熱処理を行って、それぞれTiMn
1.5、TiFe、LaNi5主成分とするMg複合水素吸蔵合金を製
造したところ、これらのMg複合水素吸蔵合金も、前記実
施例1のものと同様な特性を示した。即ち、高い耐微粉
化性と高い水素吸蔵速度とを示すものとなっている。
Example 2 Mg was added to the hydrogen storage materials represented by the chemical formulas of TiMn 1.5 , TiFe, and LaNi 5 in the same manner as in Example 1, and heat treatment was performed.
When Mg composite hydrogen storage alloys containing 1.5 , TiFe, and LaNi 5 as main components were manufactured, these Mg composite hydrogen storage alloys also showed the same characteristics as those of the first embodiment. That is, it shows high pulverization resistance and a high hydrogen storage rate.

なお、上記実施例では、Zr(Fe1-xCrx)2においてはx
=0.3、TiMnxにおいてはx=1.5、TiFexにおいてはx=
1としているが、本発明はその他の数値のものにも適用
可能である。
Note that, in the above embodiment, in Zr (Fe 1 -xCrx) 2 , x
= 0.3, x = 1.5 for TiMnx, x = for TiFex
Although set to 1, the present invention can be applied to other numerical values.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例1にかかる水素吸蔵合金の内部
組織を示す顕微鏡写真、第2図は水素吸蔵合金における
Mg添加量(wt%)に対する耐微粉化性(回)の変化を示
す特性図、第3図は水素吸蔵材の粒度(μm)の変化に
対する耐微粉化性(回)の変化を示す特性図、第4図は
熱処理条件の変化に対する耐微粉化性(回)の変化を示
す特性図、第5図は熱処理条件の変化による水素吸蔵速
度の変化を示す特性図である。
FIG. 1 is a micrograph showing the internal structure of the hydrogen storage alloy according to Example 1 of the present invention, and FIG.
FIG. 3 is a characteristic diagram showing a change in pulverization resistance (times) with respect to the amount of Mg added (wt%). FIG. FIG. 4 is a characteristic diagram showing a change in pulverization resistance (times) with a change in heat treatment conditions, and FIG. 5 is a characteristic diagram showing a change in a hydrogen storage rate with a change in heat treatment conditions.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/10 C22F 1/10 A 1/16 1/16 C 1/18 1/18 H // B22F 1/00 B22F 1/00 R C22F 1/00 621 C22F 1/00 621 627 627 641 641A 687 687 691 691B (72)発明者 藤井 博信 広島県広島市東区牛田早稲田3丁目11番 21―501 (72)発明者 折茂 慎一 広島県安芸郡海田町三迫3丁目6番5号 (56)参考文献 特開 昭55−167101(JP,A) 特開 平1−119501(JP,A) 特開 昭63−310936(JP,A) (58)調査した分野(Int.Cl.6,DB名) C22C 1/00,14/00,19/00,22/00 C22C 27/06,38/00 C22F 1/00 C01B 3/00 H01M 4/24,4/26,4/38 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C22F 1/10 C22F 1/10 A 1/16 1/16 C 1/18 1/18 H // B22F 1/00 B22F 1 / 00R C22F 1/00 621 C22F 1/00 621 627 627 641 641A 687 687 691 691B (72) Inventor Hironobu Fujii 3-11-21 Ushida Waseda, Higashi-ku, Hiroshima City, Hiroshima Prefecture 21-501 (72) Inventor Shinichi Orimo Hiroshima Prefecture 3-6-5, Sansako, Kaita-cho, Aki-gun (56) References JP-A-55-167101 (JP, A) JP-A-1-119501 (JP, A) JP-A-63-310936 (JP, A) (58) Field surveyed (Int.Cl. 6 , DB name) C22C 1 / 00,14 / 00,19 / 00,22 / 00 C22C 27 / 06,38 / 00 C22F 1/00 C01B 3/00 H01M 4 / 24,4 / 26,4 / 38

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Zr(Fe1-xCrx)2、TiMnx、TiFex、LaNi5のう
ちの選ばれたものからなる水素吸蔵材中に、10〜45wt%
のMgが拡散接合されていることを特徴とする水素吸蔵合
金。
1. A hydrogen storage material comprising a selected one of Zr (Fe 1 -xCrx) 2 , TiMnx, TiFex and LaNi 5 in an amount of 10 to 45 wt%.
A hydrogen storage alloy, characterized in that Mg is diffusion bonded.
【請求項2】Zr(Fe1-xCrx)2、TiMnx、TiFex、LaNi5のう
ちの選ばれたものからなる水素吸蔵材粉末中に10〜45wt
%のMgを添加したものに対して、200〜650℃の熱処理を
施して前記水素吸蔵材中にMgを拡散接合させることを特
徴とする水素吸蔵合金の製造方法。
2. A hydrogen storage material powder comprising a selected one of Zr (Fe 1 -xCrx) 2 , TiMnx, TiFex and LaNi 5 in an amount of 10 to 45 wt.
% Of Mg added to the hydrogen storage material by heat treatment at 200 to 650 [deg.] C. to diffuse the Mg into the hydrogen storage material.
JP2036750A 1990-02-16 1990-02-16 Hydrogen storage alloy and method for producing the same Expired - Fee Related JP2919528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2036750A JP2919528B2 (en) 1990-02-16 1990-02-16 Hydrogen storage alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2036750A JP2919528B2 (en) 1990-02-16 1990-02-16 Hydrogen storage alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03240933A JPH03240933A (en) 1991-10-28
JP2919528B2 true JP2919528B2 (en) 1999-07-12

Family

ID=12478410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2036750A Expired - Fee Related JP2919528B2 (en) 1990-02-16 1990-02-16 Hydrogen storage alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP2919528B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6682609B1 (en) * 1994-07-22 2004-01-27 Kabushiki Kaisha Toshiba Hydrogen absorbing alloy, method of surface modification of the alloy, negative electrode for battery and alkaline secondary battery

Also Published As

Publication number Publication date
JPH03240933A (en) 1991-10-28

Similar Documents

Publication Publication Date Title
US4507263A (en) Method for preparing improved porous metal-hydride compacts
JP2001520316A (en) Nanocomposites with activated interfaces created by mechanical grinding of magnesium hydride and applications for storing hydrogen
US6342198B1 (en) Hydrogen storage composition
US4292265A (en) Method for preparing porous metal hydride compacts
JP2002526255A (en) Reversible hydrogen storage composition
JPH059504B2 (en)
Mandal et al. Hydrogenation behaviour of the new composite storage material Mg-x% FeTi
Varin et al. Overview of processing of nanocrystalline hydrogen storage intermetallics by mechanical alloying/milling
JP2919528B2 (en) Hydrogen storage alloy and method for producing the same
Suzuki et al. Degradation of LaNi5 and LaNi4. 7Al0. 3 hydrogen-absorbing alloys by cycling
JP4689420B2 (en) Method for producing hydrogen storage alloy
JPS6159241B2 (en)
JPH055137A (en) Hydrogen storing alloy member and its production
Martínez-Amariz et al. Effect of adding ZrM (M= Fe, Ni) intermetallic compounds on the hydrogen absorption/desorption properties of TiCr1. 1V0. 9 alloy
Hsu et al. Hydrogenation of multicomponent Zr-base C15 type alloys
Esayed Metal hydrides
US4832913A (en) Hydrogen storage materials useful for heat pump applications
JPS6187840A (en) Calcium-nickel-misch metal-aluminum type quaternary hydrogen storage alloy
JP2527578B2 (en) Method for producing hydrogen storage alloy
Dutta et al. Synthesis and hydrogen storage characteristics of the composite alloy La2Mg17-x wt% MmNi4. 5Al0. 5
JPS581040A (en) Quaternary alloy of rare earth metals for occlusion of hydrogen
JPS6141741A (en) Hydrogen occluding alloy
JPS5947022B2 (en) Alloy for hydrogen storage
JPH06108186A (en) Hydrogen storage alloy member
JPS5848481B2 (en) Hydrogen storage materials

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees