JP2917948B2 - LSI short-circuit failure detection method - Google Patents

LSI short-circuit failure detection method

Info

Publication number
JP2917948B2
JP2917948B2 JP8335805A JP33580596A JP2917948B2 JP 2917948 B2 JP2917948 B2 JP 2917948B2 JP 8335805 A JP8335805 A JP 8335805A JP 33580596 A JP33580596 A JP 33580596A JP 2917948 B2 JP2917948 B2 JP 2917948B2
Authority
JP
Japan
Prior art keywords
lsi
short
charged particle
wiring
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8335805A
Other languages
Japanese (ja)
Other versions
JPH10178075A (en
Inventor
弘幸 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP8335805A priority Critical patent/JP2917948B2/en
Publication of JPH10178075A publication Critical patent/JPH10178075A/en
Application granted granted Critical
Publication of JP2917948B2 publication Critical patent/JP2917948B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】LSIの検査、特に配線の短
絡不良などの非接触電気検査方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an LSI inspection, and more particularly, to a non-contact electrical inspection method such as a short circuit of a wiring.

【0002】[0002]

【従来の技術】LSIの検査には、従来、被検査素子に
機械的にプローブを接触させて導通や電位などの電気検
査を行う方法や、光学的にLSIのパターンを検査して
形状欠陥を検出する方法があった。
2. Description of the Related Art Conventionally, LSI inspection is performed by a method in which a probe is mechanically brought into contact with a device to be inspected to conduct an electrical inspection such as continuity or electric potential, or an LSI pattern is optically inspected to detect a shape defect. There was a way to detect it.

【0003】しかし、LSIの製造工程途中にこの従来
の電気検査方法を用いると、LSIの微細化に伴ないプ
ローブの接触が困難になり、また接触により素子を破壊
するという問題があり、また、光学的な検査方法では、
検出された形状異常が必ずしもLSIの電気的な不良と
結びつかないため、形状異常の原因を除去したからとい
って、LSIの正常な電気的機能は保証されない。また
検出する解像度にも限界があるほか、平面的な検査であ
るので立体構造に起因した欠陥の検出は困難であり、ま
た薄膜のリーク不良などの検出も困難であった。
However, if this conventional electrical inspection method is used during the LSI manufacturing process, there is a problem that the contact of the probe becomes difficult with the miniaturization of the LSI and the element is destroyed by the contact. In the optical inspection method,
Since the detected shape abnormality does not always lead to the LSI electrical failure, the normal electrical function of the LSI is not guaranteed even if the cause of the shape abnormality is removed. In addition, there is a limit to the resolution to be detected, and it is difficult to detect a defect caused by a three-dimensional structure because it is a planar inspection, and it is also difficult to detect a leak failure of a thin film.

【0004】また、これらの他にEBテスタにより配線
電位を知る方法もあるが、この場合は配線に外部から電
気信号を与えなければならないため、製造途中での検査
には適用できなかった。
In addition to these methods, there is also a method of knowing the wiring potential using an EB tester. However, in this case, since an electric signal must be supplied from the outside to the wiring, it cannot be applied to the inspection during the manufacturing.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は上述の
ような点に鑑み、製造途中の工程においても電気的な検
査を非接触で行うことができるようなLSIの配線故障
の検査方法を提供することである。
SUMMARY OF THE INVENTION In view of the foregoing, an object of the present invention is to provide a method for inspecting an LSI wiring failure that enables an electrical inspection to be performed in a non-contact manner even during a manufacturing process. To provide.

【0006】[0006]

【課題を解決するための手段】荷電粒子ビームの照射に
よって放出される二次電子量を観測すると観測する試料
の電位によって得られる観測値が異なることが知られて
いる。すなわち、電位の高い部分は二次電子観測値が少
なく、電位の低い部分は二次電子観測値が多くなる。本
発明は電位を与える手段として荷電粒子ビームによる電
荷注入を行い、短絡配線は短絡先の配線への注入により
電位が与えられるので電位の初期値が正常な配線と異な
ることを利用して、LSIの素子の正常箇所と短絡不良
箇所に異なる電位を与え、これを検出するものである。
It is known that when the amount of secondary electrons emitted by irradiation of a charged particle beam is observed, the observed value differs depending on the potential of the sample to be observed. That is, a portion with a high potential has a small number of observed secondary electrons, and a portion with a low potential has a large number of observed secondary electrons. According to the present invention, an electric charge is injected by a charged particle beam as a means for giving an electric potential, and a short circuit is given an electric potential by injection into a short circuit destination. In this case, different potentials are applied to a normal portion and a short-circuit failure portion of the element, and this is detected.

【0007】本発明のLSI短絡不良検出方法は、荷電
粒子ビームを複数の配線を横切るように連続照射しつ
つ、互に隣接する2つの配線の対向する縁の近傍におけ
る二次電子放出量の差が一定の値より小さい2つの配線
間に短絡があると判定する。
[0007] LSI short-circuit failure detection method of the present invention, charged
Continuous irradiation of the particle beam across multiple wires
Near the opposing edges of two adjacent wires
Two wirings whose difference in secondary electron emission amount is smaller than a certain value
It is determined that there is a short circuit between them.

【0008】[0008]

【0009】荷電粒子ビームの照射による電荷注入によ
って与えられる電位が異るような2種類の荷電粒子ビー
ムを、順次に、複数の配線を横切るように連続照射し、
互に隣接する2つの配線の対向する縁の近傍における二
次電子放出量の2種類の荷電粒子ビームを用いることに
よって生じる変化が一定の範囲内にある2つの配
線間に短絡があると判定する
[0009] Two kinds of charged particle beams having different potentials given by charge injection by irradiation of the charged particle beam are successively irradiated successively across a plurality of wirings.
There is a short circuit between two wirings in which the difference in the amount of change caused by using two types of charged particle beams in the amount of secondary electron emission near the opposite edges of two wirings adjacent to each other is within a certain range. it is determined that.

【0010】複数の配線を横切るように、かつ各配線に
1回以上の照射が行われるように第1の荷電粒子ビーム
をパルス照射し、パルス照射の各時間間隙に複数の配線
を横切るように第2の荷電粒子ビームを連続照射しつつ
二次電子放出量を観測し、前後する時間間隙に行われる
第2の荷電粒子ビームの照射時における二次電子放出量
の変動のピークが、直接または配線の欠除部分を飛び越
えて、互に隣接する配線の双方に観測される2つの配線
間に短絡があると判定する
A first charged particle beam is pulse-irradiated so as to traverse a plurality of wirings and to irradiate each wiring at least once, and to traverse the plurality of wirings at each time interval of the pulse irradiation. The secondary electron emission amount is observed while continuously irradiating the second charged particle beam, and the peak of the fluctuation of the secondary electron emission amount during the irradiation of the second charged particle beam performed before and after the time interval is directly or jumping over lacking portion of the wiring, it is determined that mutually has a short circuit between two wires observed in both of the adjacent wires.

【0011】[0011]

【発明の実施の形態】次に本発明の実施の形態について
図面を参照して説明する。 (第1の実施形態)図1は本発明の第1の実施形態の説
明図であり、LSI製造工程において、ゲート電極配線
を形成後、ゲート電極配線の短絡不良を検出する方法を
示している。
Embodiments of the present invention will now be described with reference to the drawings. (First Embodiment) FIG. 1 is an explanatory view of a first embodiment of the present invention, and shows a method of detecting a short circuit failure of a gate electrode wiring after forming a gate electrode wiring in an LSI manufacturing process. .

【0012】ゲート電極配線としては、例えば厚さが1
ミクロン、幅が1ミクロン、間隔が2ミクロンとする。
ゲート電極配線1本の寄生容量は4ピコファラッドであ
る。図1(a)に示すように電子ビームをゲート電極配
線に直角に左から右へ走査するものとし、このとき、電
子ビームが突き抜けないように例えば3KVの加速電圧
で500ピコアンペアのビーム電流を照射する。
The gate electrode wiring has, for example, a thickness of 1
Microns, width 1 micron, spacing 2 microns.
The parasitic capacitance of one gate electrode wiring is 4 picofarads. As shown in FIG. 1A, the electron beam is scanned from left to right at right angles to the gate electrode wiring, and at this time, a beam current of 500 picoamps is applied at an acceleration voltage of 3 KV, for example, so that the electron beam does not penetrate. I do.

【0013】絶縁膜上を走査して照射しているときは電
子ビームの電荷注入量はどの場所でも同じであるので電
位はどの場所でも均一となり、二次電子観測量も均一と
なる。しかし、配線上を走査しているときは、注入電荷
が配線全体に拡散され、同一配線上を走査していると
き、配線内の左側から右側になるにしたがって電子ビー
ムの積算注入量が増えて電位変化が大きくなる。1Vの
電位変化を得るには、約8ミリ秒で1本のゲート電極配
線の走査を終わる走査速度で走査する。このとき二次電
子観測量は図1(b)のようになる。
[0013] When the insulating film is scanned and irradiated, the charge injection amount of the electron beam is the same at any place, so that the potential becomes uniform at any place and the observed amount of secondary electrons becomes uniform. However, when scanning over the wiring, the injected charge is diffused throughout the wiring, and when scanning over the same wiring, the integrated injection amount of the electron beam increases from left to right in the wiring. The potential change increases. To obtain a potential change of 1 V, scanning is performed at a scanning speed at which scanning of one gate electrode wiring is completed in about 8 milliseconds. At this time, the amount of observed secondary electrons is as shown in FIG.

【0014】すなわち、電子ビームを左から右に走査し
て照射すると、絶縁膜上では電子ビームの注入量がその
まま電位に反映されて二次電子観測量は均一であるが、
配線の左端では注入された電子ビームが拡散されて電位
変動は少なく、配線の初期電位を反映するので、この場
所での二次電子観測量は絶縁膜上に比べて急激に減少す
る。同一配線上では、右方向に走査が進むにつれてその
配線全体の積算注入電荷が増えるので電位が徐々に低く
なり二次電子測量は徐々に増加する。配線の右端を照
射しているときが積算注入電荷が最大となり、二次電子
測量は最大となる。
That is, when the electron beam is scanned from left to right and irradiated, the amount of injection of the electron beam is directly reflected on the potential on the insulating film and the observed amount of secondary electrons is uniform.
At the left end of the wiring, the injected electron beam is diffused and the fluctuation of the potential is small, and the initial potential of the wiring is reflected. Therefore, the observed amount of secondary electrons at this location decreases more rapidly than on the insulating film. On the same lines, the so integrated injection charge of the whole line is increased potential is gradually lowered secondary electrons view as scanning in the right direction proceeds surveying gradually increases. When the right end of the wiring is illuminated, the accumulated injected charge becomes maximum and the secondary electrons
Watched survey is maximized.

【0015】2本目の配線を照射した場合も左端を照射
しているときは配線の初期電位を反映するので二次電子
観測量は絶縁膜上に比べて急激に減少する。左隣である
1本目の配線右端を照射しているときの二次電子観測量
に比べれば2本目の配線の左端を照射しているときの二
次電子観測量の差は大きいものとなる。しかし3本目の
配線の左端を照射しているときの二次電子観測量は、2
本目の配線と3本目の配線が短絡しているので2本目の
配線の右端を照射しているときの電位が反映され、2本
目の配線の右端を照射しているときとほぼ同じ値とな
る。
Even when the second wiring is irradiated, when the left end is irradiated, the initial potential of the wiring is reflected, so that the observed amount of secondary electrons decreases more sharply than on the insulating film. The difference in the observed amount of secondary electrons when irradiating the left end of the second wiring is larger than the amount of observed secondary electrons when irradiating the right end of the first wiring on the left side. However, the amount of secondary electrons observed when the left end of the third wiring is illuminated is 2
Since the first wiring and the third wiring are short-circuited, the potential when the right end of the second wiring is irradiated is reflected, and is substantially the same value as when the right end of the second wiring is irradiated. .

【0016】これを利用して、電子ビームを左から右の
方向に走査して、配線の右端を照射しているときの二次
電子観測量とその右隣の配線の左端を照射しているとき
の二次電子観測量を比較して、その差の絶対値が一定値
以下のとき配線は短絡していると判定する。図1(c)
に二次電子観測量の差を示す。4本の配線のうち3本目
の配線のところで差が小さくなっているので、2本目と
3本目の配線間で短絡があることが検出できる。 (第2の実施形態例)図2は本発明の第2の実施形態の
説明図である。LSI上の各配線の電位の初期値がかな
らずしも均一でない場合にも有効である。
Utilizing this, the electron beam is scanned from left to right to illuminate the right end of the wiring and illuminate the secondary electron observation amount and the left end of the wiring adjacent to the right. When the absolute value of the difference is equal to or less than a certain value, it is determined that the wiring is short-circuited. FIG. 1 (c)
Figure 2 shows the difference in the amount of observed secondary electrons. Since the difference is smaller at the third wiring among the four wirings, it can be detected that there is a short circuit between the second and third wirings. (Second Embodiment) FIG. 2 is an explanatory diagram of a second embodiment of the present invention. This is also effective when the initial value of the potential of each wiring on the LSI is not always uniform.

【0017】第1の実施形態と同様に、電子ビームをゲ
ート電極配線に直角に左から右へ走査するが、第1回目
の走査では例えば100ピコアンペアの比較的少ないビ
ーム電流で走査しながら二次電子放出量を観測する
(a)。第2回目の走査では例えば500ピコアンペア
の比較的大きいビーム電流で走査しながら二次電子放出
量を観測する(b)。第1回目の二次電子量観測値と第
2回目の二次電子量観測値の変化量を(c)に示す。配
線の右端における変化量と、その右隣の配線の左端にお
ける変化量を比較して、その差の絶対値が一定値以下の
とき配線は短絡していると判定する。4本の配線のうち
3本目の配線のところで差が小さくなっているので、2
本目と3本目の配線間で短絡があることが検出できる。
As in the first embodiment, the electron beam is scanned from left to right at right angles to the gate electrode wiring. In the first scan, the secondary beam is scanned with a relatively small beam current of, for example, 100 picoamps. The amount of electron emission is observed (a). In the second scan, the amount of secondary electron emission is observed while scanning with a relatively large beam current of, for example, 500 picoamps (b). (C) shows the amount of change between the first observed secondary electron quantity and the second observed secondary electron quantity. The amount of change at the right end of the wiring and the amount of change at the left end of the wiring on the right are compared, and when the absolute value of the difference is equal to or less than a certain value, it is determined that the wiring is short-circuited. Since the difference is smaller at the third wiring among the four wirings,
It can be detected that there is a short circuit between the third and third wires.

【0018】本実施形態では、配線電位の初期値が均一
でない場合でも補正することが可能である。 (第3の実施形態)図3および図4(a)、(b)は本
発明の第3の実施形態の説明図であり、図3は電子ビー
ム照射方法を、図4(a)、(b)はフロー説明図であ
る。
In this embodiment, correction can be made even when the initial value of the wiring potential is not uniform. (Third Embodiment) FIGS. 3 and 4A and 4B are explanatory views of a third embodiment of the present invention. FIG. 3 shows an electron beam irradiation method, and FIGS. (b) is a flow explanatory diagram.

【0019】配線の形成されたLSIチップ上を図3に
示すように、第1の荷電粒子ビームを離散点にパルス照
射する。これらのパルス照射の時間間隙に第2の荷電粒
子ビームを照射しながら二次電子放出量を観測する。す
なわち、チップ上の仮想線上に、まず第1の荷電粒子ビ
ームを1箇所の点に照射した後、第2の荷電粒子ビーム
を線状に走査しながら二次電子を観測する。次に第1の
荷電粒子ビームを仮想線上の次の1点に照射した後、再
び第2の荷電粒子ビームを線状に走査しながら二次電子
を観測する。このように第1の荷電粒子ビームの照射点
をずらしながら離散点にパルス照射する時間間隙に第2
の荷電粒子ビームを照射しながら二次電子放出量を観測
する。第1の荷電粒子ビーム照射による配線電位変動量
のほうが、第2の荷電粒子ビーム照射による配線電位変
動量よりも十分大きくなるように照射時間あるいはビー
ム電流を選ぶ。このときの第1ビームの各離散点のパル
ス照射と、第2ビーム照射のフローと、それぞれの第2
ビームによる二次電子量観測値をプロットした図4
(a)を参照しながら説明する。
As shown in FIG. 3, a first charged particle beam is radiated to discrete points on the LSI chip on which the wiring is formed. The secondary electron emission amount is observed while irradiating the second charged particle beam in the time interval of these pulse irradiations. That is, first, a first charged particle beam is applied to one point on a virtual line on the chip, and then secondary electrons are observed while scanning the second charged particle beam linearly. Next, after irradiating the next point on the virtual line with the first charged particle beam, secondary electrons are observed while scanning the second charged particle beam linearly again. In this way, the pulsed irradiation at discrete points is performed while shifting the irradiation point of the first charged particle beam,
The secondary electron emission is observed while irradiating the charged particle beam. The irradiation time or the beam current is selected so that the wiring potential fluctuation caused by the first charged particle beam irradiation is sufficiently larger than the wiring potential fluctuation caused by the second charged particle beam irradiation. At this time, the pulse irradiation of each discrete point of the first beam, the flow of the second beam irradiation, and the second
Fig. 4 which plots the secondary electron quantity observed value by the beam
This will be described with reference to FIG.

【0020】まず、4本の配線のうち2本目と3本目が
短絡しているサンプル上を横切るように1回目の第2ビ
ームを走査しながら放出二次電子を観測する。二次電子
観測量は初期電位を反映して、均一である。(第2ビー
ムの電流は第1ビームの電流に比して十分小さく選んで
いるので、第2ビームによる配線の電位変化は無視して
いる。) 次に、1本目の配線上に第1ビームのパルス照射を行
う。これにより1本目の配線の電位が変化する。次に2
回目の第2ビームを走査しながら二次電子を観測する。
このときは1本目の配線のみ二次電子観測量が大きくな
る。次に、2本目の配線上に第1ビームのパルス照射を
行う。これにより2本目と短絡している3本目の配線の
電位が変化する。配線容量が1本目の2倍になるので電
位変化は1本目の半分となる。次に3回目の第2ビーム
を走査しながら二次電子を観測する。このときは1本目
および、2本目と3本目の配線の二次電子観測量が大き
くなる。次に、3本目の配線上に第1ビームのパルス照
射を行う。これにより3本目とそれに短絡している2本
目の配線の電位がさらに変化する。次に4回目の第2ビ
ームを走査しながら二次電子を観測すると、1本目と2
本目と3本目の配線の二次電子観測量が大きいものとな
る。次に、4本目の配線上に第1ビームのパルス照射を
行う。これにより4本目の配線の電位が変化する。次に
5回目の第2ビームを走査しながら二次電子を観測する
と、1本目と2本目と3本目と4本目の配線の二次電子
観測量が大きいものとなる。図4(b)にそれぞれの第
2ビーム走査による二次電子観測値の変動量を示す。2
回目の第2ビーム走査時における観測値の1回目の第2
ビーム走査時における観測値からの変動は、1本目の配
線のみピークをもつ。3回目の第2ビーム走査時におけ
る観測値の2回目の観測値からの変動は、2本目と3本
目の配線の2箇所にピークが出る。4回目の第2ビーム
走査時における観測値の3回目の観測値からの変動も、
2本目と3本目の配線の2箇所にピークが出る。5回目
の第2ビーム走査時における観測値の4回目の観測値か
らの変動は、4本目の配線のみピークをもつ。このよう
に、短絡している配線があると、短絡している配線の双
方にピークが出るが、正常な配線は1本しかピークが出
ない。この例では2本目と3本目の配線の双方にピーク
が出ているので2本目の配線と3本目の配線が短絡して
いることが検出できる。また、この例では、第1ビーム
のパルス照射を1本の配線について1箇所行った例を示
したが、特に配線毎に1箇所である必要はなく、例え
ば、配線幅よりも小さいパルス照射間隔で照射すれば、
全ての配線について他の配線との短絡を検出することが
可能である。
First, the emitted secondary electrons are observed while scanning the second beam for the first time so as to cross over the sample in which the second and third wires of the four wires are short-circuited. The observed amount of secondary electrons is uniform, reflecting the initial potential. (Since the current of the second beam is selected to be sufficiently smaller than the current of the first beam, the potential change of the wiring due to the second beam is ignored.) Next, the first beam is placed on the first wiring. Pulse irradiation. Thus, the potential of the first wiring changes. Then 2
Secondary electrons are observed while scanning the second beam for the second time.
In this case, the amount of observed secondary electrons increases only in the first wiring. Next, pulse irradiation of the first beam is performed on the second wiring. Thus, the potential of the third wiring short-circuited with the second wiring changes. Since the wiring capacitance becomes twice as large as that of the first line, the potential change becomes half of that of the first line. Next, secondary electrons are observed while scanning the second beam for the third time. In this case, the amount of secondary electrons observed in the first wiring, the second wiring, and the third wiring becomes large. Next, pulse irradiation of the first beam is performed on the third wiring. As a result, the potentials of the third wire and the second wire short-circuited therewith further change. Next, secondary electrons were observed while scanning the second beam for the fourth time.
The observed amount of secondary electrons of the third and third wirings is large. Next, pulse irradiation of the first beam is performed on the fourth wiring. Thus, the potential of the fourth wiring changes. Next, when the secondary electrons are observed while scanning the second beam for the fifth time, the amount of secondary electrons observed for the first, second, third, and fourth wirings is large. FIG. 4B shows the amount of change in the secondary electron observation value due to each second beam scanning. 2
The first and second observations at the time of the second beam scanning
The fluctuation from the observed value during beam scanning has a peak only in the first wire. The fluctuation of the observed value from the second observed value at the time of the third second beam scanning has two peaks at the second and third wirings. The fluctuation of the observation value at the time of the fourth second beam scanning from the third observation value is also
Peaks appear at two locations of the second and third wires. The fluctuation of the observed value from the fourth observed value at the time of the fifth second beam scanning has a peak only in the fourth wiring. As described above, if there is a short-circuited wire, peaks appear in both of the short-circuited wires, but only one normal wire has a peak. In this example, both the second and third wires have peaks, so that it is possible to detect that the second and third wires are short-circuited. Further, in this example, the example in which the pulse irradiation of the first beam is performed at one place for one wiring is shown. However, it is not particularly necessary to provide one place for each wiring. For example, the pulse irradiation interval smaller than the wiring width is used. If you irradiate with
It is possible to detect a short circuit between all wirings and other wirings.

【0021】[0021]

【発明の効果】以上説明したように本発明は、外部より
電源その他の電気信号をLSIに接続することなくLS
I表面に荷電粒子ビームを照射し、それにより放出され
る二次電子を観測することにより、LSI内の配線短絡
箇所を検出することができるので、LSIの製造途中工
程でも非接触で電気的な短絡不良を検出することができ
る効果がある。
As described above, according to the present invention, the LS can be realized without connecting a power supply or other electric signals from the outside to the LSI.
By irradiating the charged particle beam to the I surface and observing the secondary electrons emitted thereby, a short-circuited portion of the wiring in the LSI can be detected. There is an effect that a short circuit defect can be detected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態の説明図である。FIG. 1 is an explanatory diagram of a first embodiment of the present invention.

【図2】本発明の第2の実施形態の説明図である。FIG. 2 is an explanatory diagram of a second embodiment of the present invention.

【図3】本発明の第3の実施形態の電子ビーム照射方法
説明図である。
FIG. 3 is an explanatory view of an electron beam irradiation method according to a third embodiment of the present invention.

【図4】本発明の第3の実施形態のフロー説明図であ
る。
FIG. 4 is an explanatory diagram of a flow according to a third embodiment of the present invention.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 荷電粒子ビームをLSI表面に照射しつ
つ、荷電粒子ビームの照射による電荷注入によって与え
られる電位に応じてLSI表面から放出される二次電子
放出量を観測することにより、LSI内の配線相互間の
短絡を検出するLSI短絡不良検出方法において、荷電粒子ビームを複数の配線を横切るように連続照射し
つつ、互に隣接する2つの配線の対向する縁の近傍にお
ける二次電子放出量の差が一定の値より小さい2つの配
線間に短絡があると判定することを 特徴とするLSI短
絡不良検出方法。
1. A method of irradiating a charged particle beam onto an LSI surface and applying a charge by irradiating the charged particle beam.
In an LSI short-circuit failure detection method for detecting a short-circuit between wirings in an LSI by observing the amount of secondary electrons emitted from the LSI surface in accordance with the applied potential , a charged particle beam is caused to cross a plurality of wirings. Irradiate continuously
While near the opposing edges of two adjacent wires.
The difference in the amount of secondary electron emission in the two arrangements is smaller than a certain value.
An LSI short-circuit failure detection method, comprising determining that there is a short circuit between lines .
【請求項2】 荷電粒子ビームをLSI表面に照射しつ
つ、荷電粒子ビームの照射による電荷注入によって与え
られる電位に応じてLSI表面から放出される二次電子
放出量を観測することにより、LSI内の配線相互間の
短絡を検出するLSI短絡不良検出方法において、 荷電粒子ビームの照射による電荷注入によって与えられ
る電位が異るような2種類の荷電粒子ビームを、順次
に、複数の配線を横切るように連続照射し、 互に隣接する2つの配線の対向する縁の近傍において観
測される二次電子放出量の前記2種類の荷電粒子ビーム
を用いることによって生じる変化量の差が一定の範囲内
にある2つの配線間に短絡があると判定することを特徴
とするLSI短絡不良検出方法。
2. A method for irradiating a charged particle beam onto an LSI surface.
And given by charge injection by irradiation of a charged particle beam.
Secondary electrons emitted from the LSI surface according to the applied potential
By observing the amount of emission, the amount of wiring between LSI
In the LSI short-circuit failure detection method for detecting short-circuits, the short-circuit is given by charge injection by irradiation of a charged particle beam.
Two types of charged particle beams with different potentials
Irradiates continuously across a plurality of wirings, and observes near the opposing edges of two wirings adjacent to each other.
The two types of charged particle beams of secondary electron emission measured
The difference in the amount of change caused by using
That there is a short circuit between the two wirings
LSI short-circuit failure detection method.
【請求項3】 荷電粒子ビームをLSI表面に照射しつ
つ、荷電粒子ビームの照射による電荷注入によって与え
られる電位に応じてLSI表面から放出される二次電子
放出量を観測することにより、LSI内の配線相互間の
短絡を検出するLSI短絡不良検出方法において、 複数の配線を横切るように、かつ各配線に1回以上の照
射が行われるように第1の荷電粒子ビームをパルス照射
し、 前記パルス照射の各時間間隙に前記複数の配線を横切る
ように第2の荷電粒子ビームを連続照射しつつ二次電子
放出量を観測し、 前後する前記時間間隙に行われる前記第2の荷電粒子ビ
ームの照射時における二次電子放出量の変動のピーク
が、直接または配線の欠除部分を飛び越えて、互 に隣接
する配線の双方に観測される2つの配線間に短絡がある
と判定することを特徴とするLSI短絡不良検出方法。
3. A method of irradiating a charged particle beam onto an LSI surface.
And given by charge injection by irradiation of a charged particle beam.
Secondary electrons emitted from the LSI surface according to the applied potential
By observing the amount of emission, the amount of wiring between LSI
In an LSI short-circuit failure detection method for detecting a short circuit, one or more illuminations are performed across a plurality of wirings and on each wiring.
Pulse irradiation of the first charged particle beam so that irradiation is performed
And traverses the plurality of wirings at each time interval of the pulse irradiation.
As shown in the figure, the secondary electron beam
Observing the release amount, the second charged particle beam performed in the preceding and following time gaps
Of fluctuation of secondary electron emission during irradiation
It is a jump over lacking part of the direct or wiring, adjacent to each other
There is a short circuit between the two wires observed on both of the wires
A short circuit detection method for an LSI.
JP8335805A 1996-12-16 1996-12-16 LSI short-circuit failure detection method Expired - Lifetime JP2917948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8335805A JP2917948B2 (en) 1996-12-16 1996-12-16 LSI short-circuit failure detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8335805A JP2917948B2 (en) 1996-12-16 1996-12-16 LSI short-circuit failure detection method

Publications (2)

Publication Number Publication Date
JPH10178075A JPH10178075A (en) 1998-06-30
JP2917948B2 true JP2917948B2 (en) 1999-07-12

Family

ID=18292630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8335805A Expired - Lifetime JP2917948B2 (en) 1996-12-16 1996-12-16 LSI short-circuit failure detection method

Country Status (1)

Country Link
JP (1) JP2917948B2 (en)

Also Published As

Publication number Publication date
JPH10178075A (en) 1998-06-30

Similar Documents

Publication Publication Date Title
US6373258B2 (en) Non-contact board inspection probe
US5017863A (en) Electro-emissive laser stimulated test
JPS63115071A (en) Method of testing conductive path
US5874309A (en) Method for monitoring metal corrosion on integrated circuit wafers
JP3356056B2 (en) Wiring fault detecting circuit, wiring fault detecting semiconductor wafer, and wiring fault detecting method using the same
US5602489A (en) Switch potential electron beam substrate tester
US4870344A (en) Method for inspecting integrated circuits or other objects
US4841242A (en) Method for testing conductor networks
JP2917948B2 (en) LSI short-circuit failure detection method
JPH0325384A (en) Printed circuit board testing method
JP2959529B2 (en) Semiconductor wafer inspection apparatus and inspection method using charged particle beam
JP3708763B2 (en) Defect detection method
US6900065B2 (en) Apparatus and method for enhanced voltage contrast analysis
US4733075A (en) Stroboscopic scanning electron microscope
CA1271849A (en) Electron beam testing of semiconductor wafers
JP2000150599A (en) Wiring structure for semiconductor device
JPS592181B2 (en) Pattern inspection method
JP3080158B2 (en) Inspection method and inspection device for printed circuit board
JP2000304827A (en) Non-contact continuity testing method device
JP2000306965A (en) Method of estimating lower layer structure using charge-up phenomenon
KR100217336B1 (en) Charge protecting method
JPS6164135A (en) Semiconductor analyzer
JPH02185054A (en) Substrate inspection device using electron beam
JP2001165876A (en) Inspection device and inspection method
JPS62278466A (en) Continuity inspection