JP2917276B2 - Encapsulated powder containing metal particles - Google Patents

Encapsulated powder containing metal particles

Info

Publication number
JP2917276B2
JP2917276B2 JP63272444A JP27244488A JP2917276B2 JP 2917276 B2 JP2917276 B2 JP 2917276B2 JP 63272444 A JP63272444 A JP 63272444A JP 27244488 A JP27244488 A JP 27244488A JP 2917276 B2 JP2917276 B2 JP 2917276B2
Authority
JP
Japan
Prior art keywords
powder
metal particles
parts
particle diameter
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63272444A
Other languages
Japanese (ja)
Other versions
JPH02119932A (en
Inventor
典宗 山崎
郁夫 高岸
真純 小石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentel Co Ltd
Original Assignee
Pentel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentel Co Ltd filed Critical Pentel Co Ltd
Priority to JP63272444A priority Critical patent/JP2917276B2/en
Publication of JPH02119932A publication Critical patent/JPH02119932A/en
Application granted granted Critical
Publication of JP2917276B2 publication Critical patent/JP2917276B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、粉体中で金属粒子の均一な分散状態が保た
れ、且つ、粉体表面への金属粒子の露出のない金属粒子
含有カプセル化粉体に関し、更に詳細には、特に、耐摩
耗性、機械的強度の要求される成形材料用のカプセル化
粉体として好適に用いられる金属粒子含有カプセル化粉
体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a metal particle-containing capsule in which a uniform dispersion state of metal particles in a powder is maintained and the metal particles are not exposed on the surface of the powder. More particularly, the present invention relates to a metal particle-containing encapsulated powder suitably used as an encapsulated powder for a molding material requiring abrasion resistance and mechanical strength.

[従来の技術] 従来、金属粒子を勧誘する粉体としては、溶融させた
樹脂に金属粒子を練り込み分散させた後粉砕した、いわ
ゆるペレットが成形用材料として知られている。
[Prior Art] Conventionally, as a powder for inviting metal particles, so-called pellets, which are obtained by kneading and dispersing metal particles in a molten resin and then pulverizing the same, are known as molding materials.

[発明が解決しようとする課題] しかし、上記従来の金属粒子を含有する粉体は、以下
の問題を有するものであった。
[Problems to be Solved by the Invention] However, the above-mentioned conventional powder containing metal particles has the following problems.

即ち、溶融させた樹脂に金属粒子を練り込み分散させ
た後破砕した、いわゆるペレットの場合、金属粒子が樹
脂中での分散が不均一となり、これにより得られる成形
品は、金属粒子が均一な分散状態である成形品に比較し
て、機械的強度及び耐摩耗性の低下が発生する。
In other words, in the case of so-called pellets, in which the metal particles are kneaded and dispersed in the melted resin and then crushed, the dispersion of the metal particles in the resin becomes non-uniform, and the resulting molded article has a uniform metal particle. The mechanical strength and the abrasion resistance are reduced as compared with the molded article in a dispersed state.

本発明はこのような金属粒子の分散の不均一性を解決
した成形材料用カプセル化粉体を提供することを目的と
するものである。
An object of the present invention is to provide an encapsulated powder for a molding material which has solved such non-uniform dispersion of metal particles.

[課題を解決するための手段] 本発明は、金属粒子を多孔性樹脂粉体の孔中に埋設
し、封孔することによりカプセル化したことを特徴とす
る成形材料用カプセル化粉体を要旨とするものである。
Means for Solving the Problems The present invention provides a encapsulated powder for a molding material, wherein metal particles are embedded in pores of a porous resin powder and encapsulated by sealing. It is assumed that.

以下本発明を詳述する。 Hereinafter, the present invention will be described in detail.

本発明に係る金属粒子含有カプセル化粉体である成形
材料用カプセル化粉体の金属粒子は、樹脂粉体の機械的
強度や耐摩耗性を向上させるため、又は、金属自体の色
調、光沢を利用する着色剤として用いるものであって、
従来公知のものが種々使用可能であるが、具体的には、
金、銀、銅、鉄、白金、ニッケル、アルミニウム、タン
グステン、モリブデン、錫、鉛、亜鉛、ジルコニウム
や、合金である真蝓、洋白、銅−チタン、銀−金、鉄−
コバルト、鉄−ニッケル等の金属粉末の1種又は2種以
上の混合物を使用することが出来、使用量は、後述する
多孔性粉体100重量部に対して50〜900重量部が好まし
く、用いる多孔性粉体の種類によって異なるが、本金属
粒子含有カプセル化粉体において、金属粒子は多孔性粉
体の孔中に埋設されるものであるため、粉体の孔径より
小さいことが必要であり、多孔性粉体の粒子径の1/20以
下が好ましい。
The metal particles of the encapsulating powder for a molding material, which is the metal particle-containing encapsulating powder according to the present invention, improve the mechanical strength and abrasion resistance of the resin powder, or the color tone and gloss of the metal itself. Used as a colorant to be used,
Various conventionally known ones can be used, but specifically,
Gold, silver, copper, iron, platinum, nickel, aluminum, tungsten, molybdenum, tin, lead, zinc, zirconium and alloys, nickel silver, copper-titanium, silver-gold, iron-
One or a mixture of two or more kinds of metal powders such as cobalt and iron-nickel can be used, and the amount used is preferably 50 to 900 parts by weight based on 100 parts by weight of a porous powder described later. Although it depends on the type of the porous powder, in the present metal particle-containing encapsulated powder, since the metal particles are embedded in the pores of the porous powder, it is necessary to be smaller than the pore diameter of the powder. Preferably, the particle diameter is not more than 1/20 of the particle diameter of the porous powder.

多孔性粉体は、金属粒子をその孔中に埋設し、更に封
孔カプセル化することにより、金属粒子含有カプセル化
粉体となすものであって、具体的には、多孔性ナイロ
ン、多孔性ポリスチレン、多孔性セルロース、多孔性ポ
リアクリルアミド、多孔性スチレン−ジビニルベンゼン
等の多孔性樹脂粉体の1種又は2種以上の混合物を使用
できる。
The porous powder is a metal particle-containing encapsulated powder obtained by embedding metal particles in the pores and further sealing and encapsulating the metal particles. One or a mixture of two or more porous resin powders such as polystyrene, porous cellulose, porous polyacrylamide, and porous styrene-divinylbenzene can be used.

尚、多孔性粉体の粒子径は、特に限定はないが、成形
用材料として使用するので、金属粒子の分散均一性に関
しては、粒子径が小さい方が良好であるので、30μm以
下が好ましい。
The particle size of the porous powder is not particularly limited. However, since it is used as a molding material, the smaller the particle size, the better the dispersion uniformity of the metal particles.

本発明の成形材料用カプセル化粉体を得るには、上
記、金属粒子及び多孔性粉体を混合し、混合磨砕力及び
/又は機械的衝撃力を加えることにより金属粒子を多孔
性粉体の孔中に埋めこみ(即ち、埋設する)、更に、多
孔性粉体表面近傍で孔を閉じる(即ち、カプセル化す
る)事によって得ることができるが、カプセル化する方
法としては混合磨砕力及び/又は機械的衝撃力を加える
ことにより多孔性粉体の表面を溶融又は軟化させ封孔カ
プセル化する方法。
In order to obtain the encapsulated powder for a molding material of the present invention, the metal particles and the porous powder are mixed, and the metal particles are mixed with the porous powder by applying a grinding force and / or a mechanical impact force. Can be obtained by embedding (i.e., burying) in the pores and further closing (i.e., encapsulating) the pores near the surface of the porous powder. And / or applying a mechanical impact force to melt or soften the surface of the porous powder to encapsulate the pores.

多孔性粉体の表面にポリスチレン、ナイロン、ポリエ
チレン、ポリメチルメタアクリレート等の溶融又は軟化
しやすい樹脂粉体を付着させた後、混合磨砕力及び/又
は機械的衝撃力を加え、前記樹脂粉体で多孔性粉体の表
面に皮膜を形成し、封孔カプセル化する方法などが採用
できる。
After adhering a resin powder such as polystyrene, nylon, polyethylene, polymethyl methacrylate or the like which is easy to melt or soften to the surface of the porous powder, a mixing attrition force and / or a mechanical impact force are applied to the resin powder. A method of forming a film on the surface of a porous powder with a body and encapsulating in a sealed state can be adopted.

上記、混合磨砕力及び/又は機械的衝撃力を加えるた
めには、従来知られている各種の機器が使用できるが、
混合磨砕力を加える機器としては、自動乳鉢、ボールミ
ル、ジェットミル等が好適に使用でき、機械的な衝撃力
を加える機器としては、アトマイザー、ハンマーミル、
ハイブリダイザー(商品名(株)奈良機械製作所製)等
が好適に使用できる。
In order to apply the above-mentioned mixing attrition force and / or mechanical impact force, various conventionally known devices can be used.
Automatic mortar, ball mill, jet mill and the like can be suitably used as the device for applying the mixing and grinding power, and devices for applying the mechanical impact force include atomizers, hammer mills,
A hybridizer (trade name, manufactured by Nara Machinery Co., Ltd.) or the like can be preferably used.

[作用] 本発明の成形材料用カプセル化粉体に係る金属粒子含
有カプセル化粉体は、金属粒子を多孔性粉体中に埋設
し、封孔することによりカプセル化しているので、多孔
性粉体中に金属粒子が均一な分散状態となっている。こ
れにより、成形用材料として、成形時に金属粒子の分散
が均一となり、分散が不均一のものによる成形品に比較
して、機械的強度及び耐摩耗性の低下が発生し難い。更
に、金属粒子の粉体からの脱離が発生しないことによっ
ても、分散の不均一が防止できる。
[Operation] The metal particle-containing encapsulated powder according to the encapsulated powder for a molding material of the present invention encapsulates the metal particles by burying the metal particles in the porous powder and sealing it. The metal particles are uniformly dispersed in the body. As a result, as a molding material, the metal particles are uniformly dispersed at the time of molding, and the mechanical strength and abrasion resistance are less likely to be reduced as compared with a molded article having a non-uniform dispersion. Further, the non-uniformity of the dispersion can be prevented by preventing the metal particles from being detached from the powder.

[実施例] 以下製造例並びに成形材料に用いた実施例及び比較例
について更に詳細に説明するが、各例中「部」とあるの
は「重量部」を示すものとする。
[Examples] Hereinafter, examples and comparative examples used for production examples and molding materials will be described in more detail. In each example, “parts” indicates “parts by weight”.

実施例1 多孔性ナイロン(平均粒子径13.9μm) 20部 銅粉末(平均粒子径0.05μm) 80部 上記成分をハイブリダイザーで5分間機械的衝撃力を
加え処理し、金属粒子含有カプセル化粉体を得た。
Example 1 Porous nylon (average particle diameter: 13.9 μm) 20 parts Copper powder (average particle diameter: 0.05 μm) 80 parts The above components were treated with a mechanical impact for 5 minutes using a hybridizer, and the encapsulated powder containing metal particles was treated. I got

実施例2 多孔性ポリスチレン(平均粒子径30μm) 60部 ニッケル粉末(平均粒子径0.02μm) 15部 アルミニウム粉末(平均粒子径0.1μm) 25部 上記成分を自動乳鉢にて1時間混合磨砕し、その後、
ハイブリダイザーで5分間機械的衝撃力を加え処理し、
金属粒子含有カプセル化粉体を得た。
Example 2 Porous polystyrene (average particle diameter 30 μm) 60 parts Nickel powder (average particle diameter 0.02 μm) 15 parts Aluminum powder (average particle diameter 0.1 μm) 25 parts The above components were mixed and ground in an automatic mortar for 1 hour. afterwards,
Apply mechanical shock for 5 minutes with a hybridizer and process.
An encapsulated powder containing metal particles was obtained.

実施例3 多孔性ナイロン(平均粒子径13.9μm) 30部 鉄粉末(平均粒子径0.02μm) 70部 上記成分をハイブリダイザーにて5分間機械的衝撃力
を加え処理し、更に5分間より強い機械的衝撃力を加え
処理し、金属粒子含有カプセル化粉体を得た。
Example 3 Porous nylon (average particle size: 13.9 μm) 30 parts Iron powder (average particle size: 0.02 μm) 70 parts The above components were treated with a mechanical impact by a hybridizer for 5 minutes, and further processed for 5 minutes. A mechanical impact force was applied to obtain an encapsulated powder containing metal particles.

実施例4 多孔性ポリスチレン(平均粒子径30μm) 35部 コバルト粉末(平均粒子径0.02μm) 30部 鉄−ニッケル合金粉末(平均粒子径0.02μm) 20部 ポリエチレン(平均粒子径5μm) 20部 ポリメチルメタアクリレート(平均粒子径0.3μm)
5部 上記成分中、多孔性オリスチレンと、コバルト粉末及
び鉄−ニッケル合金粉末とを自動乳鉢にて1時間混合磨
砕し、その後、上記ポリエチレン及びポリメチルメタア
クリレートを加え鎖合にハイブリダイザーで5分間機械
的衝撃力を加え処理し、金属粒子含有カプセル化粉体を
得た。
Example 4 Porous polystyrene (average particle diameter 30 μm) 35 parts Cobalt powder (average particle diameter 0.02 μm) 30 parts Iron-nickel alloy powder (average particle diameter 0.02 μm) 20 parts Polyethylene (average particle diameter 5 μm) 20 parts Polymethyl Methacrylate (average particle size 0.3μm)
5 parts Among the above components, porous orystyrene, cobalt powder and iron-nickel alloy powder were mixed and ground in an automatic mortar for 1 hour, and then the above polyethylene and polymethyl methacrylate were added, and the mixture was mixed with a hybridizer to obtain 5 parts. A mechanical impact force was applied for 5 minutes to obtain an encapsulated powder containing metal particles.

実施例5 多孔性セルロース(平均粒子径10μm) 50部 銅粉末(平均粒子径0.05μm) 40部 ポリメチルメタアクリレート(平均粒子径0.3μm)1
0部 上記成分中、多孔性セルロースと銅粉末とを自動乳鉢
にて1時間混合磨砕し、その後、上記ポリメチルメタア
クリレートを加え更に自動乳鉢にて1時間混合磨砕し、
金属粒子含有カプセル化粉体を得た。
Example 5 Porous cellulose (average particle diameter: 10 μm) 50 parts Copper powder (average particle diameter: 0.05 μm) 40 parts Polymethyl methacrylate (average particle diameter: 0.3 μm) 1
0 parts In the above components, the porous cellulose and copper powder were mixed and ground in an automatic mortar for 1 hour, and then the polymethyl methacrylate was added and further mixed and ground in an automatic mortar for 1 hour.
An encapsulated powder containing metal particles was obtained.

応用例1 製造例1により得た金属粒子含有カプセル化粉体を用
い、射出成形機(西ドイツ、アーブルグ社製)により、
縦5cm、横4cm、厚さ0.5mmのプレートを得た。
Application Example 1 Using an encapsulated powder containing metal particles obtained in Production Example 1, using an injection molding machine (manufactured by Ahburg, West Germany)
A plate having a length of 5 cm, a width of 4 cm and a thickness of 0.5 mm was obtained.

応用例2 製造例2により得た金属粒子含有カプセル化粉体を、
実施例1と同様になしてプレートを得た。
Application Example 2 The encapsulated powder containing metal particles obtained in Production Example 2 was
A plate was obtained in the same manner as in Example 1.

応用例3 製造例3により得た金属粒子含有カプセル化粉体を、
実施例1と同様になしてプレートを得た。
Application Example 3 The encapsulated powder containing metal particles obtained in Production Example 3 was
A plate was obtained in the same manner as in Example 1.

応用例4 製造例4により得た金属粒子含有カプセル化粉体を、
実施例1と同様になしてプレートを得た。
Application Example 4 The encapsulated powder containing metal particles obtained in Production Example 4 was
A plate was obtained in the same manner as in Example 1.

比較例1 球状ナイロン(粒子径6μm)20部を、2軸押出成形
機(池貝鉄工(株)製)にて溶融させながら、最良分散
状態の得られるベント孔より、銅粉末(平均粒子径0.05
μm)80部を投入し混合分散した後破砕してペレット化
した。このペレットを、実施例1と同様になしてプレー
トを得た。
COMPARATIVE EXAMPLE 1 While melting 20 parts of spherical nylon (particle diameter 6 μm) with a twin screw extruder (manufactured by Ikegai Iron Works Co., Ltd.), copper powder (average particle diameter 0.05
After mixing and dispersing 80 parts, the mixture was crushed and pelletized. The pellet was obtained in the same manner as in Example 1 to obtain a plate.

比較例2 球状ポリスチレン(粒子径30μm)60部と、ニッケル
粉末(粒子径0.02μm)15部及びアルミニウム粉末(粒
子径0.1μm)25部とを比較例1と同様になしてプレー
トを得た。
Comparative Example 2 A plate was obtained in the same manner as in Comparative Example 1, except that 60 parts of spherical polystyrene (particle diameter 30 μm), 15 parts of nickel powder (particle diameter 0.02 μm) and 25 parts of aluminum powder (particle diameter 0.1 μm) were used.

比較例3 破砕型ナイロン30部と、鉄粉末(粒子径0.02μm)70
部とを比較例1と同様になしてプレートを得た。
Comparative Example 3 Crushed nylon 30 parts and iron powder (particle size 0.02 μm) 70
And a plate in the same manner as in Comparative Example 1 to obtain a plate.

比較例4 球状ポリスチレン(粒子径30μm)35部、ポリエチレ
ン(粒子径5μm)20部及びポリメチルメタアクリレー
ト(粒子径0.3μm)5部と、コバルト粉末(粒子径0.0
2μm)30部、鉄−ニッケル合金粉末(粒子径0.02μ
m)20部とを比較例1と同様になしてプレートを得た。
Comparative Example 4 35 parts of spherical polystyrene (particle diameter 30 μm), 20 parts of polyethylene (particle diameter 5 μm), 5 parts of polymethyl methacrylate (particle diameter 0.3 μm), and cobalt powder (particle diameter 0.0
30 parts, iron-nickel alloy powder (particle size 0.02μ)
m) 20 parts were prepared in the same manner as in Comparative Example 1 to obtain a plate.

比較例5 球状ポリスチレン(平均粒子径30μm) 35部 コバルト粉末(平均粒子径0.02μm) 30部 鉄−ニッケル合金粉末(平均粒子径0.02μm) 20部 上記成分を自動乳鉢にて1時間混合し、球状ポリエチ
レン表面にコバルト粒子及び鉄−ニッケル合金粒子を打
ち込んだ複合化粉体を得た。この複合化粉体を、実施例
1と同様になしてプレートを得た。
Comparative Example 5 Spherical polystyrene (average particle diameter 30 μm) 35 parts Cobalt powder (average particle diameter 0.02 μm) 30 parts Iron-nickel alloy powder (average particle diameter 0.02 μm) 20 parts The above components were mixed in an automatic mortar for 1 hour, A composite powder in which cobalt particles and iron-nickel alloy particles were implanted on the spherical polyethylene surface was obtained. This composite powder was made in the same manner as in Example 1 to obtain a plate.

〔発明の効果〕〔The invention's effect〕

上記製造例1で得た金属粒子含有カプセル化粉体を電
子顕微鏡で観察したところ、粉体表面に開口部は見られ
ず、完全に封孔されていることが確認できた。
When the metal particle-containing encapsulated powder obtained in Production Example 1 was observed with an electron microscope, no opening was found on the surface of the powder, and it was confirmed that the powder was completely sealed.

金属粒子もまた粉体の周辺及び表面に見られないこと
から多孔性粉体の孔中に埋設されていることが確認でき
た。
Since no metal particles were found around or on the surface of the powder, it was confirmed that the metal particles were embedded in the pores of the porous powder.

効果の確認(分散性) 実施例1〜4並びに比較例1〜5によって得られたプ
レートについて金属粒子の分散状態の評価を行った。
Confirmation of Effect (Dispersibility) The plates obtained in Examples 1 to 4 and Comparative Examples 1 to 5 were evaluated for the dispersion state of the metal particles.

結果を表1に示す。 Table 1 shows the results.

評価方法 I.プレートを日光で透かし金属粒子の分散状態を目視判
定した。
Evaluation method I. The dispersion state of the watermark metal particles was visually judged on the plate with sunlight.

II.プレートの電子顕微鏡写真(20000倍)により金属粒
子の分散状態を判定した。
II. The dispersion state of the metal particles was determined from an electron micrograph (× 20,000) of the plate.

評価基準 ○:均一に分散している △:金属粒子の凝集が多く認められ、分散
が不均一である 以上詳述したように、本発明に係る金属粒子含有カプ
セル化粉体は、金属粒子の分散が均一であるので、例え
ば成形用材料として用いた場合、金属粒子の分散が不均
一な成型品に比較して、機械的強度及び耐摩耗性の低下
が発生し難くい、実用上優れたものである。
Evaluation Criteria 分散: Uniformly dispersed △: Many aggregations of metal particles are observed and dispersion is non-uniform As described above in detail, the encapsulated powder containing metal particles according to the present invention has a Since the dispersion is uniform, for example, when used as a molding material, compared to a molded product in which the dispersion of metal particles is not uniform, a decrease in mechanical strength and abrasion resistance is unlikely to occur, which is practically excellent. Things.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭64−83571(JP,A) 特開 平2−97579(JP,A) 特開 昭55−18654(JP,A) 実開 昭63−135387(JP,U) (58)調査した分野(Int.Cl.6,DB名) B01J 13/02 C08J 3/20 B22F 1/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-64-83571 (JP, A) JP-A-2-97579 (JP, A) JP-A-55-18654 (JP, A) 135387 (JP, U) (58) Fields investigated (Int. Cl. 6 , DB name) B01J 13/02 C08J 3/20 B22F 1/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属粒子を多孔性樹脂粉体の孔中に埋設
し、封孔することによりカプセル化したことを特徴とす
る成形材料用カプセル化粉体。
1. An encapsulated powder for a molding material, wherein metal particles are embedded in pores of a porous resin powder and encapsulated by sealing.
JP63272444A 1988-10-28 1988-10-28 Encapsulated powder containing metal particles Expired - Lifetime JP2917276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63272444A JP2917276B2 (en) 1988-10-28 1988-10-28 Encapsulated powder containing metal particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63272444A JP2917276B2 (en) 1988-10-28 1988-10-28 Encapsulated powder containing metal particles

Publications (2)

Publication Number Publication Date
JPH02119932A JPH02119932A (en) 1990-05-08
JP2917276B2 true JP2917276B2 (en) 1999-07-12

Family

ID=17514001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63272444A Expired - Lifetime JP2917276B2 (en) 1988-10-28 1988-10-28 Encapsulated powder containing metal particles

Country Status (1)

Country Link
JP (1) JP2917276B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5262112B2 (en) * 2005-12-14 2013-08-14 宇部興産株式会社 Cosmetic composition in which powder comprising inorganic compound-supported polyamide porous particles is dispersed
KR100784410B1 (en) * 2006-12-13 2007-12-11 김동명 Refining method of au using powderization

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6313587U (en) * 1986-07-11 1988-01-28
JPS63135387U (en) * 1987-02-26 1988-09-06

Also Published As

Publication number Publication date
JPH02119932A (en) 1990-05-08

Similar Documents

Publication Publication Date Title
Ye et al. Effect of Ag particle size on electrical conductivity of isotropically conductive adhesives
EP1744326B1 (en) Conductive filler and use thereof
KR20020029946A (en) Powder composition comprising aggregates of iron powder and additives and a flow agent and a process for its preparation
JP2917276B2 (en) Encapsulated powder containing metal particles
JPS61210101A (en) Raw material composition for sintering and production of sintered body
CA2155841C (en) Sponge-iron powder
US5897962A (en) Method of making flowable tungsten/copper composite powder
CA1233679A (en) Wrought p/m processing for prealloyed powder
JPS63238230A (en) Conducting composite material and its production
JP2007077512A5 (en)
JPH0645802B2 (en) High strength alloy steel powder for powder metallurgy
CN109136573A (en) The method that ferrotianium powder is prepared using iron vitriol slag and v-ti magnetite tailing
JPH09295122A (en) Production of metal base composite material
CN108393483A (en) A kind of metal powder injection molding feeding and preparation method thereof
JPH0440842B2 (en)
JP3640432B2 (en) Method for producing fluid tungsten / copper composite powder
US4174211A (en) Process for manufacturing composite powder for powder metallurgy
JP2910579B2 (en) Metallic pigment and synthetic resin composition containing the same
Satoh et al. Application of a powder coating method to dispersion of fine Ni powders into Ag Ni alloy matrix
US3019210A (en) Polyamide oxidation inhibiting processes and resulting products
EP2070095B1 (en) Microvaristor-based powder overvoltage protection devices and a method for producing a powder therefor
JPH01180901A (en) Silver nickel composite powder for electric contact material and manufacture thereof
JPH02180005A (en) Soft magnetic alloy powder and manufacture thereof, amorphous alloy soft magnetic powder, and magnetic shielding material
JPH04107232A (en) Contact material and its manufacture
JPH049123B2 (en)