JP2916886B2 - Method for the determination of carbonyl chloride - Google Patents

Method for the determination of carbonyl chloride

Info

Publication number
JP2916886B2
JP2916886B2 JP27623995A JP27623995A JP2916886B2 JP 2916886 B2 JP2916886 B2 JP 2916886B2 JP 27623995 A JP27623995 A JP 27623995A JP 27623995 A JP27623995 A JP 27623995A JP 2916886 B2 JP2916886 B2 JP 2916886B2
Authority
JP
Japan
Prior art keywords
carbonyl chloride
phosgene
concentration
carbonyl
aniline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27623995A
Other languages
Japanese (ja)
Other versions
JPH08211040A (en
Inventor
吉田明浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP27623995A priority Critical patent/JP2916886B2/en
Publication of JPH08211040A publication Critical patent/JPH08211040A/en
Application granted granted Critical
Publication of JP2916886B2 publication Critical patent/JP2916886B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、塩化カルボニル
(ホスゲン)を定量することが可能な方法に関するもの
である。
[0001] The present invention relates to carbonyl chloride.
The present invention relates to a method capable of quantifying (phosgene) .

【0002】[0002]

【従来の技術】現在、化学工業製品の製造業にあって
は、新原体の承認及び許可の多様化と共に、化学物質等
による種々の健康障害が発生している。そこで、これら
の健康障害を予防するために特定化学物質等障害予防規
則(以下、特化則と略す)を適用しつつ、使用する原体
に関する空気中の濃度測定、測定結果の評価及び評価結
果に基づく処置を講じる必要がある。又、衛生管理の推
進に資するために、光電分光光度から高速液体クロマト
グラフィー(以下、HSLCと略す)まで適用しつつ、
測定結果の評価に関する作業環境測定及び個人暴露測定
の整合化を検討する必要もある。
2. Description of the Related Art At present, in the chemical industry manufacturing industry, various health problems due to chemical substances and the like have occurred along with the diversification of approval and permission of new substances. Therefore, while applying the Prevention Rules for Specific Chemical Substances (hereinafter abbreviated as specialization rules) in order to prevent these health disorders, the measurement of the concentration of air in the substance used, the evaluation of the measurement results, and the evaluation results It is necessary to take action based on In addition, in order to contribute to the promotion of hygiene management, while applying from photoelectric spectrophotometry to high-performance liquid chromatography (hereinafter abbreviated as HSLC),
It is also necessary to consider harmonization of work environment measurement and personal exposure measurement for evaluation of measurement results.

【0003】まず、日米両国における法体系のもとに、
日本の労働省から通達した管理濃度及び日本産業衛生学
会から勧告した許容濃度に基づいたA測定及びB測定に
よる管理区分の評価があり、一方では、米国の各州労働
局及びAmerican Conferenceof Governmental Industria
l Hygienists から勧告した Threshold Limit Value-Ti
me Weighted Average, TLV-Short Time Exposure Limit
及び TLV-Ceiling並びに Occupational Safety and He
alth Administrationから勧告したTWA及びCeilingに
基づいた個人暴露モニターの評価があり、又、フランス
の DirectionRegionale du Travail et de l'Emploiが
ある。
[0003] First, under the legal system in both the United States and Japan,
There are assessments of management categories based on A and B measurements based on the controlled concentrations notified by the Ministry of Labor of Japan and the allowable concentrations recommended by the Japan Society for Occupational Health, while the State Labor Bureau in the United States and the American Conference of Governmental Industria
l Threshold Limit Value-Ti recommended by Hygienists
me Weighted Average, TLV-Short Time Exposure Limit
And TLV-Ceiling and Occupational Safety and He
There is an assessment of personal exposure monitors based on TWA and Ceiling recommended by alth Administration, and there is DirectionRegionale du Travail et de l'Emploi in France.

【0004】又、前述の管理濃度及び許容濃度規則に対
応しつつ、測定や分析において精度及び正確さに関する
品質管理がある。具体的には、本発明者は、オルト−ト
リジン,3,3’−ジクロロ−4,4’−ジアミノジフ
ェニルメタン、ベンゼン、ベンジジン及び無水フタル酸
に関するHSLC測定法を既に確立し、衛生管理を実施
してきた。
In addition, there is a quality control concerning accuracy and precision in measurement and analysis while complying with the above-mentioned control density and allowable density rules. Specifically, the present inventor has already established HSLC measurement methods for ortho-tolidine, 3,3'-dichloro-4,4'-diaminodiphenylmethane, benzene, benzidine and phthalic anhydride, and has been implementing hygiene management. Was.

【0005】更に、多様な新原体に対する測定方法の研
究や、同時定量化及びマトリックスに起因した干渉等も
ある。詳細に述べると、電解脱脂浴、銅めっき浴及び亜
鉛めっき浴などに使用されたシアン化カリウム、シアン
化水素及びシアン化ナトリウムの測定法には、既存の蒸
留水吸収液を使用したピリジン・ピラゾロン法がある
が、p−ベンゾキノン吸収液を使用した2,3−ジシア
ノハイドロキノン誘導体のHSLC蛍光法による定量法
に改良されている。又、乾電池に関する混合及び成型等
で汎用されるマンガン及びその化合物の測定法には、既
存のガラス繊維フィルターを使用した原子吸光光度法が
あるが、1−(2,4−アゾリラゾ)−2−ナフトール
錯体吸収液を使用した「ストップ ド フロー光電分光
光度法」に改良されている。
[0005] Further, there is a study of a measuring method for various new drug substances, and simultaneous quantification and interference caused by a matrix. More specifically, the methods for measuring potassium cyanide, hydrogen cyanide, and sodium cyanide used in electrolytic degreasing baths, copper plating baths, and zinc plating baths include a pyridine-pyrazolone method using an existing distilled water absorbing solution. And a method for quantifying a 2,3-dicyanohydroquinone derivative by an HSLC fluorescence method using a p-benzoquinone absorbing solution. As a method for measuring manganese and its compounds commonly used in mixing and molding of dry batteries, there is an atomic absorption spectrophotometry using an existing glass fiber filter, but 1- (2,4-azorilazo) -2-. It has been improved to “stopped flow photoelectric spectrophotometry” using a naphthol complex absorbing solution.

【0006】更に、吹付け塗装等に使用されたホルムア
ルデヒド、アセトアルデヒド、ギ酸及び酢酸の測定法に
は、既存の蒸留水を使用したクロモトロプ酸法がある
が、同じ吸収液を使用した同時定量のイオンクロマトグ
ラフィー法に改良されている。この他、Siエピタキシ
ャル成長炉内で不純物ドープガスに使用されたジボラン
及び三酸化ホウ素の測定法には、クロモトロプ酸吸収液
を使用したHSLC法があり、前述の測定方法に関する
衛生管理技術は推進しつつある。
Further, as a method for measuring formaldehyde, acetaldehyde, formic acid and acetic acid used for spray coating and the like, there is an existing chromotropic acid method using distilled water. It has been improved to a chromatographic method. In addition, as a method for measuring diborane and boron trioxide used as an impurity doping gas in a Si epitaxial growth furnace, there is an HSLC method using a chromotropic acid absorbing solution, and hygiene management techniques related to the above-described measuring method are being promoted. .

【0007】例えば、塩素系有機溶剤の存在するロウ付
け及びアーク溶接などで発生するハロゲン化カルボニ
ル、例えば第三類に該当するホスゲン(COCl2 )を
定量する際には、フッ化カルボニルを共存させアニリン
吸収液で捕集し、ヘキサン−ペンタノール溶媒抽出−光
電分光光度法を用いて定量することが行われてきた。し
かしながら、このような方法では、ハロゲン化カルボニ
ル類の多様化に対応することができず、同時定量が困難
であった。
For example, when quantifying carbonyl halide, for example, phosgene (COCl 2 ) corresponding to the third category, generated by brazing or arc welding in the presence of a chlorine-based organic solvent, carbonyl fluoride is allowed to coexist. Collection with an aniline absorbing solution and quantification using hexane-pentanol solvent extraction-photoelectric spectrophotometry has been performed. However, such a method cannot cope with the diversification of carbonyl halides, making simultaneous quantification difficult.

【0008】上述の如く、これまでに提案されてきてい
る方法は、塩化カルボニルを定量するのに適した方法で
はなかった。
As described above, the methods proposed so far have not been suitable methods for quantifying carbonyl chloride .

【0009】[0009]

【発明が解決しようとする課題】本発明は、このような
従来の定量法における問題点を解決するものであり、同
時定量が困難であった塩化カルボニルを高い精度で
離、定量することが可能な分離定量法を提供することを
課題とする。
SUMMARY OF THE INVENTION The present invention solves such a problem in the conventional quantification method, and separates carbonyl chloride , which has been difficult to simultaneously quantify, with high accuracy . It is an object to provide a separation and quantification method capable of quantification.

【0010】本発明者は、ハロゲン系有機溶剤から発生
する塩化カルボニルを特定条件下で、アニリン水溶液と
反応させて尿素誘導体を生成させ、これを、高速液体ク
ロマトグラフを用いて分離することにより、高精度で同
時定量ができることを見い出し、本発明を完成した。
又、本発明者は、カーエアコン用冷媒、ウレタン発泡剤
及び精密部品用洗浄剤に使用される塩素系有機溶剤に関
する強熱燃焼ガス中の、ホスゲン及びフッ化カルボニル
を捕集する方法の諸条件についても検討した。
The present inventor has proposed that carbonyl chloride generated from a halogen-based organic solvent is reacted under specific conditions with an aqueous aniline solution to form a urea derivative, which is separated using a high performance liquid chromatograph. The inventors have found that simultaneous quantification can be performed with high accuracy, and completed the present invention.
Further, the present inventor has set forth various conditions for a method for collecting phosgene and carbonyl fluoride in an ignition combustion gas relating to a chlorine-based organic solvent used in a refrigerant for a car air conditioner, a urethane foaming agent and a cleaning agent for precision parts. Was also considered.

【0011】[0011]

【課題を解決するための手段】本発明の塩化カルボニル
を定量するための方法は、塩化カルボニルを含む試料
を、室温、pH5.7〜7.3の条件のもとにアニリン
水溶液と反応させ、上記反応により得られる生成物を高
速液体クロマトグラフを用いて分離し、上記生成物に対
応するピーク面積から検量線により上記塩化カルボニル
の濃度を定量することを特徴とする。即ち、本発明は、
直接分離、定量が困難である塩化カルボニルを、特定条
件下にてアニリン水溶液を用いて定量的に捕集し、塩化
カルボニルの濃度を、アニリンとの反応により得られる
生成物の濃度から算出するものであり、塩化カルボニル
の濃度を算出する際には、特別の算出式が用いられる。
尚、HSLCの条件及び、各物質の濃度の算出に使用さ
れる式については、後述の実施例において詳細に説明す
る。本発明の方法において、ホスゲン及びフッ化カルボ
ニルが、アニリンと反応する際の反応式を以下に示す。
DISCLOSURE OF THE INVENTION The carbonyl chloride of the present invention
The method for quantifying
Is converted to aniline under the conditions of room temperature and pH 5.7 to 7.3.
Reaction with an aqueous solution, and the product
Separation using a high performance liquid chromatograph
From the corresponding peak area,
Characterized in that the concentration of That is, the present invention
Carbonyl chloride , which is difficult to separate and quantify directly,
Quantitative collection using an aqueous aniline solution under the conditions
The concentration of carbonyl is obtained by reaction with aniline
It is calculated from the concentration of the product, and when calculating the concentration of carbonyl chloride , a special calculation formula is used.
The HSLC conditions and the formulas used for calculating the concentration of each substance will be described in detail in Examples below. In the method of the present invention, the reaction formula when phosgene and carbonyl fluoride react with aniline is shown below.

【0012】[0012]

【化1】 Embedded image

【0013】このように、本発明では、塩化カルボニル
がアニリンと反応することにより生成する尿素誘導体を
分離定量する際、移動相に水−アルコール系溶媒を使用
することが好ましく、これにより、高分解能で塩化カル
ボニルを分離定量することが可能となる。本発明では、
生成する尿素誘導体が同じ場合、生成する無機陰イオン
(ハロゲン化水素)を測定しても良く、あるいは2つの
吸光度比法にて測定しても良い。以下に、本発明の実施
の形態を示す。
As described above, in the present invention, when separating and quantifying the urea derivative formed by the reaction of carbonyl chloride with aniline, it is preferable to use a water-alcohol solvent for the mobile phase. Calcium chloride with high resolution
Bonyl can be separated and quantified. In the present invention,
When the generated urea derivatives are the same, the generated inorganic anion (hydrogen halide) may be measured, or may be measured by two absorbance ratio methods. Hereinafter, embodiments of the present invention will be described.

【0014】[0014]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

ハロゲン化カルボニル類の定量方法 試薬の調製方法 アニリンアンプルは、1N塩酸中に溶解した後、所定濃
度のアニリン水溶液に調製した。それから、0.1N水
酸化ナトリウムでpH8に調整し、更に、蒸留水で所定
濃度に調製した。又、sym−ジフェニル尿素〔以下、
DPUと略す〕は、メタノールで標準溶液を希釈調製
し、o−,p−クロロアニリン、2,4−ジクロロアニ
リンは、定性のためにメタノールで希釈調製した。そし
て、移動相は、メタノール及び0.02N塩酸(9:
1)に調製した。ホスゲンは、冷却器付き蒸気反応器に
四塩化炭素を入れ、水浴上で加熱した。沸騰後すぐに、
発煙硫酸(SO3 約30%含有)を反応器上部から滴下
し、自動的に導出管から1リットルのテトラバックにホ
スゲンを採取した。既知量のホスゲンを100mlのガ
ラス注射筒を用いて、5リットルのテトラバックに採取
し、乾燥空気で正確に10倍希釈し、標準ガスとした。
尚、試薬には、全て和光純薬工業製のものを使用した。
Method for Quantifying Halogenated Carbonyls Method for Preparing Reagents An aniline ampoule was dissolved in 1N hydrochloric acid and then prepared as an aqueous aniline solution having a predetermined concentration. Then, the pH was adjusted to 8 with 0.1 N sodium hydroxide, and further adjusted to a predetermined concentration with distilled water. Also, sym-diphenyl urea [hereinafter, referred to as
DPU] was prepared by diluting a standard solution with methanol, and o-, p-chloroaniline and 2,4-dichloroaniline were diluted with methanol for qualitative purposes. The mobile phase was methanol and 0.02N hydrochloric acid (9:
Prepared in 1). Phosgene was heated in a water bath with carbon tetrachloride in a steam reactor with a condenser. Immediately after boiling,
Fuming sulfuric acid (containing about 30% of SO 3 ) was dropped from the top of the reactor, and phosgene was automatically collected from the outlet pipe into a 1-liter tetrabac. A known amount of phosgene was collected in a 5-liter tetrabag using a 100-ml glass syringe, and diluted exactly 10-fold with dry air to obtain a standard gas.
The reagents used were all manufactured by Wako Pure Chemical Industries.

【0015】測定装置 高速液体クロマトグラフには日立638−50型を使用
した。紫外検出器は日立635−0900型多波長UV
モニタであり、250nmにて測定した。分離カラムに
は、スチレン−ジビニルベンゼン球状共重合体(日立ゲ
ル3013、粒径5μm)をスラリー法で150mm×
4.0mmφのカラムに自家充填し、溶媒流速は0.7
ml/minに調整した。そして、ミゼットインピンジ
ャー(液量30ml、178mm×28mmφ)を使用
した。
Measuring Apparatus Hitachi 638-50 was used for the high-performance liquid chromatograph. UV detector is Hitachi 635-0900 type multi-wavelength UV
It was a monitor and measured at 250 nm. In the separation column, a styrene-divinylbenzene spherical copolymer (Hitachi Gel 3013, particle size 5 μm) was subjected to a slurry method at 150 mm ×
The column was self-packed in a 4.0 mmφ column, and the solvent flow rate was 0.7
It was adjusted to ml / min. Then, a midget impinger (liquid volume 30 ml, 178 mm × 28 mmφ) was used.

【0016】ホスゲンの濃度測定 上記ミゼットインピンジャーに0.3%以上のアニリン
水溶液を10mlずつ入れ、2段直列に接続し、1.0
リットル/min以下の流量で試料ガスを採取した。た
だし、高温の試料ガスではミゼットインピンジャーを水
冷しながら採取した。採取後、メタノール約5mlでミ
ゼットインピンジャーを共洗いし、吸収液と合わせて1
5mlに定容量とした。これを、上記高速液体クロマト
グラフに注入し、DPUのピーク面積を測定した。対応
するブランク値で補正しながら、検量線から吸収液中の
DPU濃度を求めた。尚、試料ガス中のホスゲン濃度
(C,ppm)は、フッ化カルボニルを含有する場合も
あるが、次式から算出した。
Measurement of phosgene concentration Into the above-mentioned midget impinger, 10 ml of an aqueous aniline solution of 0.3% or more was put, and connected in series in two stages.
A sample gas was collected at a flow rate of 1 liter / min or less. However, in the case of a high-temperature sample gas, the midget impinger was sampled while being cooled with water. After collection, wash the midget impinger with about 5 ml of methanol and combine with
The volume was adjusted to 5 ml. This was injected into the high performance liquid chromatograph, and the peak area of DPU was measured. The DPU concentration in the absorbing solution was determined from the calibration curve while correcting with the corresponding blank value. In addition, the phosgene concentration (C, ppm) in the sample gas was calculated from the following equation, although it may contain carbonyl fluoride.

【0017】C=T(0.5 又は 0.2・15n/99)(
24.5/V){(273+t)/273 }(760/P) ただし、T:吸収液中のDPU濃度(μg/ml)、
0.5又は0.2:DPUの分子量(212) をホスゲンの
分子量(99)及びフッ化カルボニルの分子量(46)に変換す
る際の変換値〔0.5はホスゲンで、0.2はフッ化カ
ルボニルで使用する〕、n:吸収液の希釈率、V:採取
した空気の体積(リットル)、t:作業場所の温度
(℃)、P:作業場所の気圧(mmHg)である。
C = T (0.5 or 0.2 · 15n / 99) (
24.5 / V) {(273 + t) / 273} (760 / P) where T: DPU concentration in absorption solution (μg / ml),
0.5 or 0.2: A conversion value when converting the molecular weight (212) of DPU into the molecular weight (99) of phosgene and the molecular weight (46) of carbonyl fluoride (0.5 is phosgene, 0.2 is fluorine). Used in carbonyl chloride], n: dilution rate of absorption solution, V: volume of collected air (liter), t: temperature of working place (° C.), P: atmospheric pressure of working place (mmHg).

【0018】DPUの分離実験結果 固定相に広いpH領域のスチレン−ジビニルベンゼン共
重合体を使用し、移動相が蒸留水−メタノール系である
逆相クロマトグラフィーにより分離を行った。試料中の
アニリンは、極性が大きく、アルコールや蒸留水に対し
て大きな溶解度を示した。一方、DPUはアルコールに
溶解するが、水に対しては難溶である。そこで、移動相
溶媒として0.02N塩酸酸性の90%メタノールを選
択した。図1は、DPUの分離実験におけるクロマトグ
ラムである。
DPU Separation Experiment Results Separation was performed by reversed-phase chromatography using a styrene-divinylbenzene copolymer having a wide pH range as a stationary phase and a mobile phase of distilled water-methanol. The aniline in the sample had high polarity and showed high solubility in alcohol and distilled water. On the other hand, DPU is soluble in alcohol, but hardly soluble in water. Therefore, 0.02N hydrochloric acid 90% methanol was selected as a mobile phase solvent. FIG. 1 is a chromatogram in a DPU separation experiment.

【0019】図1に示されるように、本発明を用いた場
合には、各種のクロロアニリン(o−,p−異性体)及
びアニリンを相互に分離できることができた。尚、検量
線は、DPU−メタノール標準液を使用し、ピーク面積
により作成した。その直線性は0〜10μg/mlまで
確認された。検出限界は、S/N比5としてDPUにつ
いては0.04μg/mlであり、試料ガスを10リッ
トル採気した場合、ホスゲン7ppbとなり、又、フッ
化カルボニル4ppbに相当する。
As shown in FIG. 1, when the present invention was used, various chloroanilines (o- and p-isomers) and aniline could be separated from each other. The calibration curve was prepared based on the peak area using a DPU-methanol standard solution. The linearity was confirmed from 0 to 10 μg / ml. The detection limit is 0.04 μg / ml for DPU with an S / N ratio of 5, and when 10 L of sample gas is sampled, it becomes 7 ppb of phosgene and also corresponds to 4 ppb of carbonyl fluoride.

【0020】ホスゲン及びフッ化カルボニルの捕集率 所定濃度のテトラバックを使用して、吸収液のアニリン
濃度に関するホスゲンの捕集率について検討した。その
結果、室温、pH5.7〜7.3の条件のもとに0.3
%以上の濃度で99〜100%と、良好な回収率が得ら
れた。pHの影響は、pH4以下では回収率の低下が認
められ、pH9以上では水酸基イオン濃度により反応が
不完全であった。そして、吸収液中のDPU濃度の保存
安定性を検討した結果、冷所保存後、21日間何ら干渉
も起こさなかった。又、前述の方法により、捕集速度に
関するホスゲンの捕集率についても測定した。その結
果、室温、pH5.7〜7.3の条件で、0.3%濃度
では最大1.0リットル/minまで定量的にホスゲン
を捕集できた。しかし、1.8リットル/minでは定
量的に捕集することができなかった。
The collection rate of phosgene and carbonyl fluoride The trapping rate of phosgene with respect to the aniline concentration of the absorbing solution was examined using a tetrabac having a predetermined concentration. As a result, 0.3 at room temperature and pH 5.7-7.3.
%, A good recovery rate of 99 to 100% was obtained. Regarding the influence of pH, a decrease in the recovery rate was observed at pH 4 or lower, and the reaction was incomplete at pH 9 or higher due to the hydroxyl ion concentration. As a result of examining the storage stability of the DPU concentration in the absorbing solution, no interference occurred for 21 days after storage in a cold place. Further, the phosgene collection rate with respect to the collection rate was also measured by the method described above. As a result, under conditions of room temperature and pH 5.7 to 7.3, phosgene could be quantitatively collected up to 1.0 liter / min at a concentration of 0.3%. However, it could not be quantitatively collected at 1.8 liter / min.

【0021】塩素系有機溶剤の燃焼ガス中のホスゲン
及びフッ化カルボニルの捕集率 次に、塩素系有機溶剤として、1,2,2−トリクロロ
−1,2,2−トリフルオロエタン(即ち、フロン11
3)、1,1,1−トリクロロエタン、テトラクロロエ
チレン及びトリクロロエチレンを使用し、強熱燃焼ガス
中のホスゲン及びフッ化カルボニルの定量及び捕集率の
検討を行った。具体的には1m3 のガスチャンバーに上
記の塩素系有機溶剤を日立製ガスクロマトグラフィーで
モニターしながら、ガスチャンバーを気化平衡状態に
し、所定ガス濃度とした。この平衡ガスをマッフル炉内
にある恒温石英ガラス管を通過させ、その時燃焼ガス中
に生成したホスゲン及びフッ化カルボニルを前述の方法
で測定した。これらの燃焼条件にて得られたホスゲン及
びフッ化カルボニルの濃度測定値を表1に示す。
Collection rate of phosgene and carbonyl fluoride in combustion gas of chlorine-based organic solvent Next, 1,2,2-trichloro-1,2,2-trifluoroethane (ie, Freon 11
3) Using 1,1,1-trichloroethane, tetrachloroethylene and trichloroethylene, the determination of phosgene and carbonyl fluoride in the ignition combustion gas and the study of the collection rate were performed. Specifically, while monitoring the above-mentioned chlorinated organic solvent in a gas chamber of 1 m 3 by gas chromatography manufactured by Hitachi, the gas chamber was brought into a vaporized equilibrium state, and a predetermined gas concentration was obtained. This equilibrium gas was passed through a constant temperature quartz glass tube in a muffle furnace, and phosgene and carbonyl fluoride generated in the combustion gas at that time were measured by the method described above. Table 1 shows the measured values of the concentrations of phosgene and carbonyl fluoride obtained under these combustion conditions.

【0022】[0022]

【表1】 [Table 1]

【0023】但し、トリクロロエタン特級品中の安定剤
濃度の影響およびフロン113中のホスゲン及びフッ化
カルボニルに関する混合濃度が考えられる。又、アニリ
ンと化学反応を起こす塩素ガス共存条件では、吸収液に
関して何ら干渉も示さず、捕集率の低下は認められなか
った。更に、吸収液中には、メタノール可溶のo,p−
クロロアニリン、2,4−ジクロロアニリン等の生成は
認められなかった。
However, the effect of the stabilizer concentration in the special grade of trichloroethane and the mixed concentration of phosgene and carbonyl fluoride in Freon 113 are considered. In addition, under the condition of the presence of chlorine gas that causes a chemical reaction with aniline, no interference was exhibited with respect to the absorbing solution, and no reduction in the collection rate was observed. Furthermore, in the absorbing solution, methanol-soluble o, p-
No formation of chloroaniline, 2,4-dichloroaniline or the like was observed.

【0024】[0024]

【発明の効果】本発明の塩化カルボニル定量法を用いる
ことにより、事業者が施行する有害物質取扱作業に係わ
る作業環境管理において、既存法に比べ、有意により高
感度かつ高精度なサンプリング及び分析を達成すること
ができる。
By using the carbonyl chloride determination method of the present invention, it is possible to significantly increase the sensitivity and accuracy of sampling and analysis in the work environment management related to hazardous substance handling work carried out by the business operator, compared with the existing method. Can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】DPUの分離実験におけるクロマトグラムであ
る。
FIG. 1 is a chromatogram in a separation experiment of DPU.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 塩化カルボニルを含む試料を、室温、p
H5.7〜7.3の条件のもとにアニリン水溶液と反応
させ、上記反応により得られる生成物を高速液体クロマ
トグラフを用いて分離し、上記生成物に対応するピーク
面積から検量線により上記塩化カルボニルの濃度を定量
することを特徴とする、塩化カルボニルを定量するため
の方法
1. A sample containing carbonyl chloride at room temperature, p
Reaction with aqueous aniline solution under the conditions of H5.7-7.3
And the product obtained by the above reaction is subjected to high performance liquid chromatography.
The peaks corresponding to the above products were separated by chromatography.
Quantitative determination of carbonyl chloride concentration using calibration curve from area
For quantifying carbonyl chloride
Way .
JP27623995A 1995-09-29 1995-09-29 Method for the determination of carbonyl chloride Expired - Lifetime JP2916886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27623995A JP2916886B2 (en) 1995-09-29 1995-09-29 Method for the determination of carbonyl chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27623995A JP2916886B2 (en) 1995-09-29 1995-09-29 Method for the determination of carbonyl chloride

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP4351757A Division JP2700986B2 (en) 1992-12-07 1992-12-07 Method for simultaneous determination of multiple inorganic acids

Publications (2)

Publication Number Publication Date
JPH08211040A JPH08211040A (en) 1996-08-20
JP2916886B2 true JP2916886B2 (en) 1999-07-05

Family

ID=17566643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27623995A Expired - Lifetime JP2916886B2 (en) 1995-09-29 1995-09-29 Method for the determination of carbonyl chloride

Country Status (1)

Country Link
JP (1) JP2916886B2 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
分析化学,34[4](1985),p.211−214

Also Published As

Publication number Publication date
JPH08211040A (en) 1996-08-20

Similar Documents

Publication Publication Date Title
Hauser et al. Increasing Sensitivity of 3-Methyl-2-Benzothiazolone Hydrozone Test for Analysis of Aliphatic Aldehydes in Air.
Waritz et al. The inhalation toxicity of pyrolysis products of polytetrafluoroethylene heated below 500 degrees centigrade
JP2916886B2 (en) Method for the determination of carbonyl chloride
Yang et al. Quantification of aqueous cyanogen chloride and cyanogen bromide in environmental samples by MIMS
CN101210907A (en) Wheat flour benzoyl peroxide highly effective liquid phase chromatography detection method
Kim et al. Prediction of N-nitrosodimethylamine (NDMA) formation as a disinfection by-product
Kang et al. Determination of trace chlorine dioxide based on the plasmon resonance scattering of silver nanoparticles
Geme et al. Measuring the concentrations of drinking water disinfection by-products using capillary membrane sampling-flow injection analysis
CN112697943A (en) Method for analyzing content of 2- (2-methylphenoxymethyl) benzoyl chloride
Wei et al. Green detection of trace cyanuric acid and free chlorine together via ion chromatography
JPH06174710A (en) Simultaneously quantitating method for a plurality of types of specific chemical substances
Simonsen et al. Spectrophotometric determination of copper with salicylaldoxime
JP2005134274A (en) Quantitative analytical method for aldehyde in solid sample
CN101470103B (en) Sterides compound analysis method
Farhadi et al. A new spectrophotometric method for the determination of ketoconazole based on the oxidation reactions
JP3879279B2 (en) Size exclusion chromatography
Poovey et al. Determination of chlorine and chlorine dioxide by non-suppressed ion chromatography and application to exposure assessment in the paper industry
Jin et al. Determination of chlorine dioxide using capillary on-line concentration coupled with flow injection analysis
Tan Microdetermination of nitrate by gas chromatography-mass spectrometry technique with multiple ion detector
Amraei et al. Wavelength region selection and spectrophotometric simultaneous determination of naphthol isomers based on net analyte signal
Li et al. Highly sensitive spectrofluorometric determination of trace amounts of mercury with a new fluorescent reagent, 2-hydroxy-1-naphthaldehydene-8-aminoquinoline
Geeta et al. Microtitrimetric determination of salbutamol sulfate using N-bromosuccinimide
Chen et al. Advances in the analysis of odorous substances derived from drinking water disinfection
Cassinelli Development of a solid sorbent monitoring method for chlorine and bromine in air with determination by ion chromatography
Asgari et al. Development of a New Method for Analysis of Oil Mists

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080423

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110423

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20130423