JP2916172B2 - Method for recovering valuable components from inorganic powder - Google Patents

Method for recovering valuable components from inorganic powder

Info

Publication number
JP2916172B2
JP2916172B2 JP22654689A JP22654689A JP2916172B2 JP 2916172 B2 JP2916172 B2 JP 2916172B2 JP 22654689 A JP22654689 A JP 22654689A JP 22654689 A JP22654689 A JP 22654689A JP 2916172 B2 JP2916172 B2 JP 2916172B2
Authority
JP
Japan
Prior art keywords
component
dissolution
concentration
coal ash
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22654689A
Other languages
Japanese (ja)
Other versions
JPH0390523A (en
Inventor
守 小野田
純二 隈元
義文 亀岡
源一郎 釜谷
忠繁 中元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKITAN RYO SOGO SENTAA
Kobe Steel Ltd
Original Assignee
SEKITAN RYO SOGO SENTAA
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKITAN RYO SOGO SENTAA, Kobe Steel Ltd filed Critical SEKITAN RYO SOGO SENTAA
Priority to JP22654689A priority Critical patent/JP2916172B2/en
Publication of JPH0390523A publication Critical patent/JPH0390523A/en
Application granted granted Critical
Publication of JP2916172B2 publication Critical patent/JP2916172B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Silicon Compounds (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、Al2O3やSiO2などを主成分として含む石炭
灰、各種鉱物質、粘土等からSi,Al,Fe,Ti等の有価成分
を効率良く分離し、資源の有効利用を図る方法の改良に
関するものである。以下、本明細書では石炭灰からの有
価成分回収法を代表的に取り上げて説明するが、本発明
はもとよりこれに限定されるものではない。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application field] The present invention relates to a method for producing Si, Al, Fe, Ti, etc. from coal ash, various mineral substances, clay, etc. containing Al 2 O 3 or SiO 2 as a main component. The present invention relates to an improvement in a method for efficiently separating valuable components and effectively using resources. Hereinafter, in this specification, a method for recovering valuable components from coal ash will be described as a representative example, but the present invention is not limited to this.

[従来の技術] 石油危機以降のエネルギー資源の多様化に伴い、原子
力、天然ガス、太陽エネルギーなどと共に石炭の占める
役割は著しく増大してきている。それに伴って石炭火力
発電所等から排出される石炭灰の量は急増し、1986年度
の約380万トン/年から1990年代には1000万トン/年乃
至それ以上に達するものと予想されている。この様に莫
大に排出される石炭灰は土木・建築用の細骨材やセメン
ト原料等として有効利用が試みられているが、その有効
利用率はせいぜい45%程度にすぎず、大部分は陸上埋立
や海上埋立等に向けられているに過ぎない。しかし飛散
等による環境汚染の問題の他、埋立地の不足、投棄費の
高騰などの問題が年々深刻になっており、石炭灰を2次
資源として活用しなければならない必然性が次第に高ま
ってきている。
[Prior Art] With the diversification of energy resources after the oil crisis, the role of coal along with nuclear power, natural gas, solar energy and the like has been significantly increased. As a result, the amount of coal ash emitted from coal-fired power plants, etc., is expected to increase sharply, from about 3.8 million tons / year in 1986 to 10 million tons / year or more in the 1990s. . Attempts have been made to effectively use the coal ash discharged in such an enormous manner as fine aggregate for civil engineering and construction, as a raw material for cement, etc., but the effective utilization rate is only about 45% at most, and most of it is on land. It is only used for landfill and sea reclamation. However, in addition to the problem of environmental pollution due to scattering and the like, problems such as shortage of landfills and soaring disposal costs are increasing year by year, and the necessity of utilizing coal ash as a secondary resource is gradually increasing. .

即ち石炭灰はSiやAlの他、有価金属成分としてFe,Ti,
Ba,Sr,アルカリ金属等を含んでおり、これらの金属を単
体として分離・回収することができれば、2次資源とし
ての価値は著しく高まるものと期待される。
That is, coal ash is not only Si and Al, but also Fe, Ti,
It contains Ba, Sr, alkali metals, etc., and if these metals can be separated and recovered as a single substance, the value as a secondary resource is expected to be significantly increased.

こうした期待の下で石炭灰から有価元素を化学的に回
収する代表的な方法として、直接溶解法(酸もしくは
アルカリ使用)シンター(焼結)溶解法、塩化・ふ
っ化揮発法があり、中でも上記に分類されるHNO3法、
HCl法、HF−HSiF5法は、以下に詳述する如くかなり有効
な方法と思われる。しかし欠点も幾つか指摘されてい
る。
Typical methods for chemically recovering valuable elements from coal ash under these expectations include the direct dissolution method (using acid or alkali), the sinter (sintering) dissolution method, and the chloride / fluoride volatilization method. HNO 3 method, which is classified as
The HCl method and the HF-HSiF 5 method seem to be quite effective methods as described in detail below. However, some disadvantages have been pointed out.

(i)HNO3法(たとえば米国特許第4,243,640号) HNO3により有価成分を溶出させて回収する方法である
が、このときのHNO3使用量を節約するため、石炭灰を予
め脱炭処理してC含有量を2%以下に低減すると共に、
脱鉄処理してFe含有量を4%以下に低減しておき、その
後HNO3で段階的に洗浄・溶解を行なう。
(I) HNO 3 method is (e.g. U.S. Pat. No. 4,243,640. No.) is a method of recovering by eluting the valuable components by HNO 3, to conserve HNO 3 The amount of the time, and decarburization advance coal ash To reduce the C content to 2% or less,
The Fe content is reduced to 4% or less by a deironing treatment, and then washing and dissolving are performed stepwise with HNO 3 .

即ち脱炭・脱鉄処理された石炭灰をまず70℃程度の低
温でHNO3溶液により洗浄し、次いでHNO3を除去した後、
多段階に亘って30〜65%程度の濃度のHNO3を用いて100
〜220℃の温度で溶解処理を行なう。この処理により50
%程度の溶解率で高純度のAl2O3が得られる。
That is, the coal ash that has been decarburized and deironed is first washed with a HNO 3 solution at a low temperature of about 70 ° C., and then HNO 3 is removed.
Using HNO 3 at a concentration of about 30 to 65% over multiple stages, 100
The dissolution treatment is performed at a temperature of 220 ° C. By this process 50
% And high purity Al 2 O 3 can be obtained.

しかしながらこの方法ではAl2O3が回収されるだけで
あって他の元素は回収できず、また溶解処理工程が複雑
である割にはAl2O3の溶解率が低く、満足のいく回収率
が得られない。
However, this method only recovers Al 2 O 3 and cannot recover other elements.Although the dissolution process is complicated, the dissolution rate of Al 2 O 3 is low, and a satisfactory recovery rate is obtained. Can not be obtained.

(ii)HCl法 石炭灰をHCl水溶液に加えて105℃程度に加熱し、溶解
液からイオン交換樹脂によって鉄分(塩化鉄)を分離し
た後、分離液にHClガスを吹込んでAlCl3・6H2Oの結晶を
析出させる。残液に硫酸を加えてCa分を石膏に代えると
共に、他のアルカリ成分はアルカリ硫酸塩として分離す
る。AlCl3・6H2Oの結晶は仮焼しAl2O3として回収され
る。この方法によってAl成分の溶解率は約50%、Feの溶
解率は約80%が夫々得られている。
(Ii) HCl method of coal ash in addition to the aqueous HCl solution was heated to about 105 ° C., after separation of the iron (iron chloride) by ion-exchange resin from the solution, by blowing the HCl gas separated liquid AlCl 3 · 6H 2 O crystals are deposited. Sulfuric acid is added to the remaining liquid to replace Ca with gypsum, and other alkali components are separated as alkali sulfate. AlCl 3 · 6H 2 O crystals are recovered as calcined Al 2 O 3. According to this method, the dissolution rate of the Al component is about 50%, and the dissolution rate of Fe is about 80%.

この方法は操作が簡単で且つ経済的にも有利な方法で
あるが、回収目的とするAl成分の回収率が低いという欠
点がある。本発明者らが確認したところでは、8N−HC
l、溶解温度100℃、溶解時間6hr、バルブ濃度10%の溶
解条件において確保される溶解率はAl成分が5〜58%、
Fe成分が45〜81%、Ti成分が6〜55%であって、Al成分
とTi成分の溶解率が低く、しかも石炭灰の種類によって
溶解率は著しく変わってくる。
This method is simple in operation and economically advantageous, but has the disadvantage that the recovery rate of the Al component to be recovered is low. The present inventors have confirmed that 8N-HC
l, the dissolution rate is 100% C, the dissolution time is 6 hours, and the dissolution rate is 10% for the bulb concentration.
The Fe component is 45 to 81% and the Ti component is 6 to 55%. The dissolution rates of the Al component and the Ti component are low, and the dissolution rate varies significantly depending on the type of coal ash.

(iii)HF−HSiF5法(たとえば米国特許第4,539,187
号) 石炭灰を十分量のふっ酸および珪ふっ酸と十分に反応
させてFe,Al,Siのふっ化物および珪ふっ化物を生成せし
め、混合物を90〜110℃で蒸留し、AlとFeのふっ化物お
よび珪ふっ化物から水溶性のSiF4蒸気を分離する。蒸発
したSiF4は水に吸収させた後、加水分解して高純度のSi
O2とHFに代え、Al成分ゃFe成分等を実質的に含まないSi
O2を回収する一方、HFは溶解用の酸として巡回使用す
る。そしてAlとFeのふっ化物および珪ふっ化物は、遠心
分離器によって他の不純成分から分離する。
(Iii) HF-HSiF 5 method (for example, US Pat. No. 4,539,187)
No.) Coal ash is sufficiently reacted with a sufficient amount of hydrofluoric acid and silicic hydrofluoric acid to produce fluorides and silicic fluorides of Fe, Al and Si, and the mixture is distilled at 90 to 110 ° C. to form a mixture of Al and Fe. Separate water-soluble SiF 4 vapor from fluoride and silicon fluoride. The evaporated SiF 4 is absorbed in water and then hydrolyzed to produce high-purity SiF.
Instead of O 2 and HF, Al component ゃ Si substantially free of Fe component etc.
While recovering O 2 , HF is used cyclically as the dissolving acid. The fluorides of Al and Fe and the silicon fluorides are separated from other impurity components by a centrifugal separator.

この方法は、Si,Al,Fe等の溶解率が高く、しかもHFや
HSiF5を溶解剤として循環使用し得るところから、かな
り有効な方法と考えられる。しかしこの方法は操作が複
雑であるばかりでなく、Al,Feのふっ化物と珪ふっ化物
の分離が困難であり、回収品の純度を十分に高めること
ができないと考えられる。
This method has a high dissolution rate of Si, Al, Fe, etc.
Since HSiF 5 can be recycled as a dissolving agent, it is considered to be a very effective method. However, this method is not only complicated in operation, but also difficult to separate the fluorides of Al and Fe from the silicon fluoride, and it is considered that the purity of the recovered product cannot be sufficiently increased.

[発明が解決しようとする課題] 本発明は上記の様な事情に着目してなされたものであ
って、その目的は、石炭灰等の無機質粉末からSi,Al,F
e,Ti等の有価成分を簡単な操作で効率良く分離回収する
ことのできる技術を提供しようとするものである。
[Problems to be Solved by the Invention] The present invention has been made in view of the above-mentioned circumstances, and its object is to convert Si, Al, F from inorganic powder such as coal ash.
An object of the present invention is to provide a technology capable of efficiently separating and recovering valuable components such as e and Ti by a simple operation.

[課題を解決するための手段] 上記課題を解決することのできた本発明に係る有価成
分回収法の構成は、SiO2とAl2O3を主成分として含む無
機質粉末にふっ酸と塩酸のの混酸を加えて加熱し、揮発
してくるSi含有成分を水またはアルカリ水溶液に吸収さ
せて回収する一方、残留液から不溶物を濾去し、ここに
得られた溶液より溶媒抽出法によってAlその他の金属化
合物を抽出・分離するところに要旨を有するものであ
る。
[Means for Solving the Problems] The constitution of the valuable component recovery method according to the present invention, which has solved the above problems, is based on the use of hydrofluoric acid and hydrochloric acid in an inorganic powder containing SiO 2 and Al 2 O 3 as main components. Add a mixed acid and heat to absorb the volatile Si-containing components into water or an aqueous alkali solution and collect them.On the other hand, remove the insoluble matter from the remaining liquid by filtration and extract Al and other components from the resulting solution by solvent extraction. The point is that the metal compound is extracted and separated.

[作用] 本発明者らは前記従来法で指摘される問題を解するた
め、石炭灰等に対して高い溶解力を持ったHF/HCl混酸を
溶解剤として使用し、石炭灰の主成分であるSi,Al,Fe,T
i等を含む各化合物の溶解率を高め、またその溶解液か
ら各成分を簡単にしかも高純度で分離回収すべく研究を
行なった。その結果、 HF/HCl混酸を加えた後適度に加温してやれば、石炭灰
中の有価成分を高い溶解率で溶解させることができるこ
と、 溶解剤のHF濃度を適正にコントロールしてやれば、不
溶性のβ−Al2O3・3H2Oを生成することがなく、Al成分
の溶解率を最大限に高め得ること、 溶解液中に生成するSiF4は蒸留によって揮発し、これ
を水やアルカリに吸収させると珪酸コロイドとして純度
良く回収し得ること、 一方、SiF4を蒸発除去した後の残液から不溶物(主と
してSi成分とC)を濾去すると、その溶液からAl,Fe,Ti
等の有価成分を溶媒抽出法によって容易にしかも高純度
で分離回収し得ること、 を知り、本発明に想到したものである。
[Action] In order to solve the problems pointed out by the above-mentioned conventional method, the present inventors used HF / HCl mixed acid having high dissolving power for coal ash and the like as a dissolving agent, Some Si, Al, Fe, T
Research was conducted to increase the dissolution rate of each compound including i and the like, and to separate and recover each component easily and with high purity from the solution. As a result, it is possible to dissolve valuable components in coal ash at a high dissolution rate if the HF / HCl mixed acid is added and then appropriately heated, and if the HF concentration of the dissolving agent is properly controlled, the insoluble β -Al 2 O 3 · 3H without generating the 2 O, it may maximize the dissolution of the Al component, SiF 4 to produce the lysate is volatilized by distillation, absorbing it in water or an alkali Insoluble matter (mainly Si component and C) is filtered off from the residual liquid after evaporating and removing SiF 4 to obtain Al, Fe, Ti from the solution.
It has been found that valuable components such as can be easily separated and recovered at a high purity by a solvent extraction method, and have arrived at the present invention.

以下、実験の経緯を追って本発明の構成及び作用効果
を詳細に説明する。
Hereinafter, the configuration, operation, and effect of the present invention will be described in detail, following the history of the experiment.

まず第1表は国内の火力発電所から入手した種々の石
炭灰の化学成分を示したもの(平均粒径7.0〜13.5μ
m)であり、これらの石炭灰中に含まれるSiO2系鉱物
は、X線回折結果によると主に石英、ムライトおよびガ
ラス質(Al2O3との固溶体)からなっている。またAl2O3
系鉱物は、主としてムライト、コランダムおよびガラス
質(SiO2との固溶体)からなっている。これら5種類の
石炭灰中に含まれるAl2O3成分のうち酸溶解成分の割合
を奥田らの方法[「名工試報」4(11),510〜514(195
5)]によって調べた結果を第1図に示す。
Table 1 shows the chemical composition of various coal ash obtained from domestic thermal power plants (average particle size of 7.0 to 13.5 μm).
m), and the SiO 2 -based minerals contained in these coal ashes are mainly composed of quartz, mullite, and vitreous (solid solution with Al 2 O 3 ) according to the result of X-ray diffraction. Al 2 O 3
The minerals are mainly composed of mullite, corundum and vitreous (solid solution with SiO 2 ). The ratio of the acid-soluble component among the Al 2 O 3 components contained in these five types of coal ash was determined by the method of Okuda et al. [“Meiko Takuho”, 4 (11), 510-514 (195)
5)] shows the results of the examination shown in FIG.

また第2表は石炭灰のHClに対する溶解性[パルプ濃
度:10wt/v%(試料重量g/混酸溶液量mlを意味する…以
下同じ)、溶解温度:100℃、HCl濃度:8N、溶解時間:6時
間]を示したものであり、HClに対するSi成分の溶解性
は極めて小さい。一方、Al成分のうちコランダムやムラ
イトは殆んど溶解しないが、ガラス質の一部と酸溶解成
分が溶解していると考えられ、第1図の結果とよく対応
している。
Table 2 shows the solubility of coal ash in HCl [pulp concentration: 10 wt / v% (meaning sample weight g / mixed acid solution ml ... the same applies hereinafter), dissolution temperature: 100 ° C, HCl concentration: 8N, dissolution time : 6 hours], and the solubility of the Si component in HCl is extremely low. On the other hand, among the Al components, corundum and mullite hardly dissolve, but it is considered that an acid-soluble component and a part of the vitreous are dissolved, which corresponds well to the results in FIG.

これらの結果からも明らかである様に、ムライト含有
量の多いブレアソール炭灰やワークワース炭灰に含まれ
るAl成分を、HCl法によって溶出・分離することは容易
でないことが分かる。
As is evident from these results, it is not easy to elute and separate the Al component contained in the mullite content of Blairsol coal ash or Warkworth coal ash by the HCl method.

上記HCl法に対し、HF−HCl混酸を溶解剤として使用す
ると、石炭灰中のSiO2やAl2O3は良く溶解する。ここでH
ClとHFの双方を考慮しつつ溶解反応を考えると反応が非
常に複雑になるので、HFとの反応だけについて考えると
次の様になる。
When HF-HCl mixed acid is used as a dissolving agent in the above-mentioned HCl method, SiO 2 and Al 2 O 3 in coal ash dissolve well. Where H
Considering the dissolution reaction in consideration of both Cl and HF, the reaction becomes very complicated. Therefore, considering only the reaction with HF, the following is obtained.

即ち60℃程度以上の温度において石炭灰中のSiO2は、 SiO2(solid)+4HF(aq)→SiF4(sol)+2H2O(liq) …(1) SiF4(sol)→SiF4(gas) …(2) SiO2(solid)+6HF(aq)→H2SiF6(sol)+2H2O(li
q) …(3) 上記(1),(3)式に従って溶解反応が進行する。
溶解反応が(1)式に従って進行するとすれば、溶解し
たSiO2と使用したHFの量論比はHF/SiO2=4となるはず
であり、一方(3)式に従って進行するとすればHF/SiO
2=6となるはずである。ところが実際の上記量論比はH
F/SiO2=5〜6(第2図参照:但し70〜90℃の実験デー
タ)の範囲となり、(1)式の反応よりも(3)式の反
応の方が優先し、SiO2はSiF4となって直接ガス化するよ
りも、主としてH2SiF6に変化するものと考えられる。
That is, at a temperature of about 60 ° C. or higher, the SiO 2 in the coal ash is SiO 2 (solid) + 4HF (aq) → SiF 4 (sol) + 2H 2 O (liq) (1) SiF 4 (sol) → SiF 4 ( gas)… (2) SiO 2 (solid) + 6HF (aq) → H 2 SiF 6 (sol) + 2H 2 O (li)
q) (3) The dissolution reaction proceeds according to the above equations (1) and (3).
If the dissolution reaction proceeds according to equation (1), the stoichiometric ratio between the dissolved SiO 2 and the HF used should be HF / SiO 2 = 4, while if it proceeds according to equation (3), HF / SiO
2 = 6. However, the actual stoichiometric ratio is H
F / SiO 2 = 5-6 (refer to FIG. 2; however, experimental data at 70-90 ° C.), the reaction of formula (3) has priority over the reaction of formula (1), and SiO 2 It is considered that the gas is mainly changed to H 2 SiF 6 rather than being directly gasified as SiF 4 .

次に第3図は、溶解液中のSi成分の(SiF4,H2SiF6
の蒸発率を示したものであり、70℃と80℃の場合、Si成
分の蒸発率はHF濃度が高くなるにつれて低下するが、90
℃の場合は、HF濃度に依存することなく95%以上が蒸発
する。
Next, FIG. 3 shows that the Si component in the solution (SiF 4 , H 2 SiF 6 )
In the case of 70 ° C. and 80 ° C., the evaporation rate of the Si component decreases as the HF concentration increases.
In the case of ° C., 95% or more evaporates independently of the HF concentration.

但し、Si成分の蒸発率及び後述するSi成分の分配率は
次式によって求めた値を言う。
However, the evaporation rate of the Si component and the distribution rate of the Si component described below are values determined by the following formula.

A:残渣中のSi含有量 B:溶解液中のSi含有量 C:吸収液中で析出した析出物中のSi含有量 D:吸収液中に溶解したSi含有量 尚、Si成分のうちH2SiF6は60℃以上の高温下で下記
(4)式に示す分解反応を起こし、SiF4(gas)とHF(g
as)を生成する。
A: Si content in the residue B: Si content in the solution C: Si content in the precipitate deposited in the absorbing solution D: Si content dissolved in the absorbing solution H among the Si components 2 SiF 6 undergoes a decomposition reaction shown in the following formula (4) at a high temperature of 60 ° C. or more, and SiF 4 (gas) and HF (g
as).

H2SiF6(sol)→SiF4(gas)+2HF(gas) …(4) H2SiF6の沸点は108.5℃/720mmHgであって、SiF4の−9
5℃に比べると著しく高いので、Si成分を蒸発させるに
は処理温度を高めて上記(4)式の反応を進めるのが有
利であり、好ましい溶解温度は60〜110℃程度と思われ
る。
H 2 SiF 6 (sol) → SiF 4 (gas) + 2HF (gas) (4) The boiling point of H 2 SiF 6 is 108.5 ° C./720 mmHg, which is −9 of SiF 4
Since it is significantly higher than 5 ° C., it is advantageous to evaporate the Si component by increasing the processing temperature and proceeding with the reaction of the above formula (4), and the preferable dissolution temperature seems to be about 60 to 110 ° C.

かくして蒸発したSiF4を水に吸収すると、下記(5)
式に示す如く珪酸コロイド(SiO2・2H2O:珪酸コロイド
は一般にSiO2・nH2Oで表わされるが、ここではSiO2・2H
2Oとして表わした)とH2SiF6(sol)が生成するので、 3SiF4(gas)+4H2O(liq)→2H2SiF6(sol) +SiO2・2H2O(solid) …(5) この反応によって析出する珪酸コロイドを吸収液から濾
過・分離すると共に、濾液はアンモニア等で中和して下
記(6)式により珪酸コロイドを生成せしめ、沈殿物と
して回収すれば、高純度のSi成分を高収率で回収するこ
とができる。
When the evaporated SiF 4 is absorbed in water, the following (5)
As shown in the formula, silicate colloid (SiO 2 · 2H 2 O: silicate colloid is generally represented by SiO 2 · nH 2 O, but here SiO 2 · 2H
(Expressed as 2 O) and H 2 SiF 6 (sol) are generated, so 3SiF 4 (gas) + 4H 2 O (liq) → 2H 2 SiF 6 (sol) + SiO 2 2H 2 O (solid)… (5 The silicate colloid precipitated by this reaction is filtered and separated from the absorbing solution, and the filtrate is neutralized with ammonia or the like to form the silicate colloid according to the following formula (6). The components can be recovered in high yield.

H2SiF6(sol)+6NH4OH(sol)→SiO2・2H2O(solid) +6NH4F(sol)+2H2O(liq) …(6) 第4図は溶解液、残渣、吸収液及び析出物中へのSi成
分の分配率並びに蒸発率と混酸濃度の関係を示したグラ
フ(但しパルプ濃度:15wt/v%、溶解温度:90℃、溶解時
間:4.5時間、HF濃度:3.8N)であり、Si成分の溶解性及
び蒸発率共に、HCl濃度が1.0〜2.0Nの範囲で急増し、そ
れ以上では殆んど増大していない。従ってHF/HCl混酸に
おける好ましいHCl濃度は1N以上、より好ましくは2N以
上が適当であると考えられる。
H 2 SiF 6 (sol) + 6NH 4 OH (sol) → SiO 2 · 2H 2 O (solid) + 6NH 4 F (sol) + 2H 2 O (liq) ... (6) Fig. 4 shows the solution, residue and absorption solution And a graph showing the relationship between the Si component distribution rate in the precipitate and the evaporation rate and the mixed acid concentration (however, pulp concentration: 15 wt / v%, dissolution temperature: 90 ° C, dissolution time: 4.5 hours, HF concentration: 3.8 N) ), Both the solubility and the evaporation rate of the Si component increase sharply when the HCl concentration is in the range of 1.0 to 2.0 N, and hardly increase at higher values. Therefore, it is considered that the preferable HCl concentration in the HF / HCl mixed acid is 1N or more, more preferably 2N or more.

次に第5図は、石炭灰中のAl成分の溶解率とHF濃度の
関係を示したグラフ(但し、パルプ濃度:10wt/v%、HCl
濃度:6N、溶解温度:60〜90℃、溶解時間:6時間)であ
り、HF濃度を適正に調整してやればAl成分の溶解率は10
0%に達し、アルミノ珪酸(ガラス質やムライト)のほ
かコランダム中のAl成分も完全に溶解し得ることが分か
る。またAl溶解率が100%となるHF濃度は60℃では5.8N
であるのに対し、それ以上の温度の場合は3.8Nと低HF濃
度側へ移行するが、いずれの場合もそれ以上のHF濃度に
なるとAl溶解率は急激に低下する。この理由は次の様に
考えることができる。即ち石炭灰中のAl2O3のHFによる
溶解反応は下記(7)式、 Al2O3(solid)+6HF(sol)+3H2O(sol) →2AlF3・3H2O(α型) …(7) あるいは前記(3)式により生成したH2SiF6(sol)
との下記(8)式の反応 Al2O3(solid)+H2SiF6(sol)+3H2O(liq)→2AlF3
・ 3H2O(α型)+SiO2・2H2O(solid) …(8) によって進行するものと考えられるが、これらの反応に
より生成した可溶性のα型AlF3・3H2Oは時間の経過と共
に下記(9)式の反応を起こして不溶性のβ型AlF3・3H
2Oに変化する。
Next, FIG. 5 is a graph showing the relationship between the dissolution rate of the Al component in the coal ash and the HF concentration (however, pulp concentration: 10 wt / v%, HCl
Concentration: 6N, dissolution temperature: 60-90 ° C, dissolution time: 6 hours), and if the HF concentration is properly adjusted, the dissolution rate of the Al component is 10
It reaches 0%, indicating that the Al component in corundum as well as aluminosilicate (glassy or mullite) can be completely dissolved. The HF concentration at which the Al dissolution rate becomes 100% is 5.8N at 60 ° C.
On the other hand, when the temperature is higher than that, the concentration shifts to the low HF concentration side of 3.8 N, but in any case, when the HF concentration becomes higher than that, the Al dissolution rate rapidly decreases. The reason can be considered as follows. That is, the dissolution reaction of Al 2 O 3 in coal ash by HF is represented by the following equation (7): Al 2 O 3 (solid) + 6HF (sol) + 3H 2 O (sol) → 2AlF 3 · 3H 2 O (α type) (7) Alternatively, H 2 SiF 6 (sol) generated by the above equation (3)
Reaction of the following formula (8) with Al 2 O 3 (solid) + H 2 SiF 6 (sol) + 3H 2 O (liq) → 2AlF 3
・ 3H 2 O (α type) + SiO 2・ 2H 2 O (solid)… (8) It is thought that the reaction proceeds by soluble α-type AlF 3 .3H 2 O generated by these reactions. Together with the reaction of the following formula (9) to produce insoluble β-type AlF 3 .3H
Changes to 2 O.

AlF3・3H2O(α型)→AlF3・3H2O(β型) …(9) この(9)式の反応は、第5図の傾向から考えると、
HF濃度が高いほど、または溶解温度が高いほど促進され
るものと判断される。従ってAl成分の溶解率を高めるに
は、上記溶解反応工程で不溶性のβ型AlF3・3H2Oが生成
しない様に、混酸のHF濃度を低めに抑えると共に、溶解
温度を低めにすることが望まれる。
AlF 3 .3H 2 O (α type) → AlF 3 .3H 2 O (β type) (9) The reaction of equation (9) can be considered from the tendency shown in FIG.
It is determined that the higher the HF concentration or the higher the dissolution temperature, the more accelerated. Therefore, increasing the dissolution rate of the Al component, so as not to generate is β-type AlF 3 · 3H 2 O is insoluble in the dissolution reaction step, while suppressing the lowering the HF concentration of the mixed acid, is possible to the melting temperature to be lower desired.

また第6図は石炭灰中のAl,FeおよびTiの各成分の溶
解率とHF濃度の関係を示したグラフ(但し、パルプ濃
度:10wt/v%、HCl濃度:6N、溶解温度:90℃、溶解時間:6
時間)であり、HF濃度が4NでAl成分はほぼ100%溶解す
るが、それ以上のHF濃度では不溶性のβ型AlF3・3H2Oが
生成するため溶解率は低下してくる。これに対しFe成分
の溶解率はHF濃度にあまり影響されることなくいずれも
高い値を示している。またTi成分はHF濃度が3〜6Nの領
域で高い溶解率を示している。
FIG. 6 is a graph showing the relationship between the dissolution rate of each component of Al, Fe and Ti in coal ash and the HF concentration (however, pulp concentration: 10 wt / v%, HCl concentration: 6N, dissolution temperature: 90 ° C.) , Dissolution time: 6
Al) is dissolved almost 100% when the HF concentration is 4N, but at higher HF concentrations, the insoluble β-type AlF 3 .3H 2 O is generated, and the dissolution rate decreases. On the other hand, the dissolution rate of the Fe component shows a high value regardless of the HF concentration. The Ti component has a high dissolution rate in the HF concentration range of 3 to 6N.

これらの結果より、Al,Ti,Feの各成分の溶解率をいず
れも高めるための好ましいHF濃度は2.5〜5N,より好まし
くは3〜4Nであると考えられる。
From these results, it is considered that the preferable HF concentration for increasing the dissolution rate of each component of Al, Ti, and Fe is 2.5 to 5N, more preferably 3 to 4N.

いずれにしても適正濃度のHF/HCl混酸を使用し、適当
な溶解条件を設定すれば、Al,Ti,Feの各成分についても
高い溶解率を得ることができる。従って溶解液中のSi成
分を蒸発分離し且つ不溶残渣を除去し、次いでこの溶液
からAl成分、Ti成分およびFe成分を逐次抽出分離する
と、それらの成分を単体として収率良く回収することが
できる。尚この工程で採用される抽出方法としては、た
とえば抽出剤(リン酸ジ−2−エチルヘキシル、リン酸
−n−トリブチル、メチルイソブチルケトン等)のケロ
シン希釈液(有機相)と溶解液(水相)を用いてAl成分
を水相へ移行させて抽出し、次いで有機相中のFe成分お
よびTi成分を蓚酸濃度を変えた逆抽出によって分離す
る、といった方法が採用されるが、抽出剤の種類や抽出
手順等はもとより上記方法に限定される訳ではない。
In any case, if an appropriate concentration of HF / HCl mixed acid is used and an appropriate dissolution condition is set, a high dissolution rate can be obtained for each component of Al, Ti, and Fe. Therefore, the Si component in the solution is separated by evaporation and the insoluble residue is removed, and then the Al component, the Ti component and the Fe component are successively extracted and separated from the solution. . The extraction method used in this step includes, for example, a kerosene diluent (organic phase) and a dissolving solution (aqueous phase) of an extractant (di-2-ethylhexyl phosphate, -n-tributyl phosphate, methyl isobutyl ketone, etc.). ), The Al component is transferred to the aqueous phase and extracted, and then the Fe and Ti components in the organic phase are separated by back-extraction with varying oxalic acid concentrations. The extraction method and the like are not limited to the above method.

第7図は本発明の実施例を示す概略フロー図であり、
このプロセスは、主として石炭灰等の混酸溶解工程I、
Si成分の回収工程II、Al,Fe,Ti成分の溶剤抽出工程III,
および酸化物製造工程IVによって構成される。
FIG. 7 is a schematic flow chart showing an embodiment of the present invention.
This process is mainly a mixed acid dissolving step I such as coal ash,
Si component recovery step II, Al, Fe, Ti component solvent extraction step III,
And an oxide production step IV.

まず混酸溶解工程Iでは、所定量の水をタンク1から
液送ポンプ4を通して酸溶解槽7に入れ、撹拌機8によ
り撹拌しながら、石炭灰ホッパー9より供給機10を経て
石炭灰を投入する。その後、所定量の塩酸とふっ酸をタ
ンク2,3から液送ポンプ5,6を通して溶解槽7へ供給す
る。このとき相当の発熱が見られるが、所定の溶解温度
に達しない場合はスチーム等により加熱して温度を調整
する。所定温度で所定時間反応した後溶解槽7を水冷す
るが、溶解反応工程で発生するSlF4,HF等の蒸気はエア
ポンプ11による吸引によって抜き出して吸収塔12へ導
き、Si成分を珪酸コロイドとして析出させた後濾過器14
で濾過・分離し、次いで乾燥炉もしくは焼成炉16で乾燥
もしくは焼成してSiO2を得る。
First, in the mixed acid dissolving step I, a predetermined amount of water is put into the acid dissolving tank 7 from the tank 1 through the liquid feed pump 4, and the coal ash is fed from the coal ash hopper 9 through the feeder 10 while being stirred by the stirrer 8. . Thereafter, predetermined amounts of hydrochloric acid and hydrofluoric acid are supplied from tanks 2 and 3 to dissolution tank 7 through liquid feed pumps 5 and 6. At this time, a considerable amount of heat is generated, but when the temperature does not reach a predetermined melting temperature, the temperature is adjusted by heating with steam or the like. After reacting at a predetermined temperature for a predetermined time, the dissolving tank 7 is cooled with water. Vapors such as SlF 4 and HF generated in the dissolving reaction step are extracted by suction by an air pump 11 and guided to an absorption tower 12 to precipitate Si components as silicate colloid. After filtration 14
And then dried or fired in a drying furnace or firing furnace 16 to obtain SiO 2 .

一方Si成分の蒸発除去された溶解液(Al,Fe,Ti成分を
含む)は、濾過器18により未溶解残渣を濾別し、液送ポ
ンプ19によって溶媒抽出器20へ送る。ここで抽出剤の有
機溶媒希釈液(有機相)と溶解液(水相)を用いてまず
Fe,Ti成分を有機側へ抽出する。次いで有機相は液送ポ
ンプ21により逆抽出器22へ送り、更に液送ポンプ23によ
って逆抽出器24へ送り、有機相中に溶解しているFe成分
およびTi成分をたとえば濃度の異なる修酸溶液等を用い
た逆抽出によって順次分離する。上記溶媒抽出工程で分
離されたAl,Fe,Ti成分の各含有溶液は、液送ポンプ26,2
7,28によって中和槽29,30,31へ送り、アンモニア水等に
より中和し水酸化物として沈殿させ、スラリーポンプ3
2,33,34により濾過器35,36,37へ送って濾過・分離した
後焼成炉41,42,43で焼成し、夫々の酸化物(Al2O3,Fe2O
3,TiO2)として回収する。この場合焼成炉に代えて乾燥
炉を使用し、各成分を水酸化物として回収することもで
きる。
On the other hand, the solution (including Al, Fe, and Ti components) from which the Si component has been removed by evaporation is filtered to remove undissolved residues by a filter 18 and sent to a solvent extractor 20 by a liquid feed pump 19. Here, first, an organic solvent diluted solution (organic phase) and a solution (aqueous phase) of the extractant are used.
Fe and Ti components are extracted to the organic side. Next, the organic phase is sent to a back extractor 22 by a liquid feed pump 21, and further sent to a back extractor 24 by a liquid feed pump 23 to remove the Fe component and the Ti component dissolved in the organic phase by, for example, oxalic acid solutions having different concentrations. Etc. are sequentially separated by back extraction. Each of the solutions containing the Al, Fe, and Ti components separated in the solvent extraction step is a liquid feed pump 26, 2
The mixture is sent to neutralization tanks 29, 30, 31 by 7, 28, neutralized with ammonia water, etc., and precipitated as hydroxide.
After being sent to the filters 35, 36, 37 by the filters 33, 34 and filtered and separated, they are fired in the firing furnaces 41, 42, 43, and the respective oxides (Al 2 O 3 , Fe 2 O
3 , TiO 2 ). In this case, a drying furnace may be used in place of the firing furnace, and each component may be recovered as a hydroxide.

尚第7図のフロー図は、本発明を実施するときの代表
的な手順を示したものであってもとより本発明を限定す
る性質のものではなく、前・後記の趣旨に適合し得る範
囲で設備の構成を変更し、あるいは処理手順を変更する
ことはいずれも本発明の技術的範囲に含まれる。
Note that the flow chart of FIG. 7 shows a typical procedure for carrying out the present invention, but does not originally limit the present invention, and is within a range that can conform to the above and subsequent points. Changing the configuration of the equipment or changing the processing procedure is all included in the technical scope of the present invention.

[実施例] 実施例1 テフロン内張溶解槽(容量1.6)、撹拌機、マント
ルヒータ及びSi成分吸収塔を備えた溶解試験装置を使用
し下記の実験を行なった。
[Example] Example 1 The following experiment was performed using a dissolution test apparatus equipped with a Teflon-lined dissolution tank (capacity 1.6), a stirrer, a mantle heater, and a Si component absorption tower.

試料としてブレアソール石炭灰100gを使用し、これを
所定量の水と共に溶解槽に入れ、撹拌しつつ所定量の塩
酸とふっ酸を加えて所定温度に加熱する。溶解工程で発
生するSiF4,HFなどのガスはエアポンプにより500ml/分
の速度で吸引し、5℃に冷却された水吸収塔へ送って吸
収させる。所定時間溶解反応を行なった後、Si成分につ
いては溶解液、溶解残渣および吸収液と吸収液中に析出
した析出物に含まれるSi量からSi分配率を求め、Al,Fe,
Ti成分については溶解液と残渣中の含有量から夫々の溶
解率を求めた。
Using 100 g of Blairsol coal ash as a sample, put it in a dissolution tank together with a predetermined amount of water, add a predetermined amount of hydrochloric acid and hydrofluoric acid with stirring, and heat to a predetermined temperature. Gases such as SiF 4 and HF generated in the dissolving step are sucked by an air pump at a rate of 500 ml / min, sent to a water absorption tower cooled to 5 ° C. and absorbed. After performing the dissolution reaction for a predetermined time, for the Si component, the Si partition ratio is determined from the amount of Si contained in the dissolution solution, the dissolution residue and the absorption solution and the precipitates precipitated in the absorption solution, and the Al, Fe,
For the Ti component, the respective dissolution rates were determined from the contents in the solution and the residue.

まずSi成分の溶解性については、パルプ濃度:10wt/v
%、溶解時間:6時間、HCl濃度:6Nを定め、HF濃度を1.5
〜6.5Nの範囲、溶解温度を60〜100℃の範囲で変えて、
夫々の影響を調べた。
First, regarding the solubility of the Si component, the pulp concentration: 10 wt / v
%, Dissolution time: 6 hours, HCl concentration: 6N, HF concentration 1.5
~ 6.5 N range, dissolution temperature in the range of 60 ~ 100 ℃,
The effects of each were examined.

溶解温度を70℃および90℃としたときの吸収液中の析
出物(SiO2・2H2O)、吸収液(主にH2SiF6−HF−HCl混
合液)溶解液、(主にH2SiF6)および残渣中の各Si含有
率よりSi分配率を求め、第8図および第9図に示す結果
を得た。
Precipitates (SiO 2 · 2H 2 O) in the absorbing solution when the dissolving temperature was set to 70 ° C. and 90 ° C., absorbing solution (mainly H 2 SiF 6 -HF-HCl mixed solution), (mainly H 2 SiF 6 ) and the Si content in each residue were used to determine the Si distribution, and the results shown in FIGS. 8 and 9 were obtained.

第8,9図からも明らかである様に、残渣中のSi量はい
ずれの場合もHF濃度が高くなるにつれて減少し、HF濃度
6.5Nでほぼ完全に融解する。尚溶解温度を90℃に設定し
た場合(第9図)における溶解液中のSi分配率は極めて
低く、吸収液と析出物のSi分配率(蒸発率)は高くなっ
ている。これは、第3図で説明した様に、高温になるほ
ど前記(4)式の反応が促進されSi成分の蒸発が加速さ
れることを裏付けるものである。
As is clear from FIGS. 8 and 9, the Si content in the residue decreased as the HF concentration increased in each case.
Melts almost completely at 6.5N. When the dissolution temperature was set at 90 ° C. (FIG. 9), the Si distribution in the dissolution was extremely low, and the Si distribution (evaporation) between the absorbing solution and the precipitate was high. This confirms that the higher the temperature is, the more the reaction of the formula (4) is promoted and the evaporation of the Si component is accelerated, as described in FIG.

実施例2 第1表に示した5種類の石炭灰を使用し、テフロン内
張溶解槽(内容積144)、加圧濾過機、中和槽を備え
たベンチスケールの試験設備を用いて溶解試験を行なっ
た。
Example 2 Using the five types of coal ash shown in Table 1, a dissolution test was performed using a bench-scale test facility equipped with a Teflon-lined dissolution tank (volume of 144), a pressure filter, and a neutralization tank. Was performed.

試験に当たっては所定量の水を溶解槽に入れ、撹拌し
つつ試料炭灰10kgを投入する。次いで所定量の塩酸およ
びふっ酸を添加すると共にスチーム加熱によって濃度を
調整し、一定時間撹拌した後冷却する。その後濾過・水
洗して溶解液と残渣に分け、残渣を乾燥した後秤量して
分析用試料とする。
In the test, a predetermined amount of water is put into a dissolution tank, and 10 kg of a sample charcoal ash is charged with stirring. Next, a predetermined amount of hydrochloric acid and hydrofluoric acid are added, and the concentration is adjusted by heating with steam. Thereafter, the solution is filtered and washed with water to separate into a solution and a residue, and the residue is dried and weighed to obtain a sample for analysis.

パルプ濃度:10wt/v%、溶解温度:90℃、HF濃度:4N、H
Cl濃度:1.5N、溶解時間:1時間としたときにおける上記
5種類の石炭灰の各成分の溶解率を第3表に示す。
Pulp concentration: 10wt / v%, dissolution temperature: 90 ° C, HF concentration: 4N, H
Table 3 shows the dissolution rate of each component of the above five types of coal ash when Cl concentration: 1.5 N and dissolution time: 1 hour.

第3表からも明らかである様に、本発明によれば1時
間という短い溶解時間でAl:80〜94%、Fe:70〜90%、T
i:64〜91%、Si:61〜71%という高い溶解率が得られて
おり、本発明は石炭灰の種類の如何を問わず有効に活用
し得ることが分かる。
As is apparent from Table 3, according to the present invention, Al: 80 to 94%, Fe: 70 to 90%, T:
A high dissolution rate of i: 64 to 91% and Si: 61 to 71% was obtained, indicating that the present invention can be effectively used regardless of the type of coal ash.

実施例3 上記実施例2で最も溶解率の低かったブレアソール炭
灰を使用し、第7図のフロー図に準拠して有価成分の回
収実験を行なった。但し溶解条件、Al成分抽出条件、Fe
及びTi成分の逆抽出条件は下記の通りとした。
Example 3 An experiment of recovering valuable components was performed according to the flow chart of FIG. 7 by using Blairsol coal ash having the lowest dissolution rate in Example 2 described above. However, dissolution condition, Al component extraction condition, Fe
The conditions for back extraction of Ti and Ti components were as follows.

(溶解条件) パルプ濃度:10wt/v%、HF濃度:3.8N、HCl濃度:1.5N、
溶解時間:4.5時間、溶解温度:90℃ (Al成分抽出条件) 溶解反応工程でSi成分を蒸発分離した後不溶物(残
渣)を濾去し、溶解液より抽出剤リン酸ジ−2−エチル
ヘキシルのケロシン溶液を用いてFe,Ti成分を有機側へ
抽出分離した。
(Dissolution conditions) Pulp concentration: 10wt / v%, HF concentration: 3.8N, HCl concentration: 1.5N,
Dissolution time: 4.5 hours, dissolution temperature: 90 ° C (Al component extraction conditions) After evaporating and separating the Si component in the dissolution reaction step, the insoluble matter (residue) is filtered off, and the extractant di-2-ethylhexyl phosphate is extracted from the solution. The Fe and Ti components were extracted and separated to the organic side using the kerosene solution.

(FeおよびTi成分の逆抽出条件) 上記Al成分抽出工程で有機相へ移行したFe成分および
Ti成分を、0.2N蓚酸で逆抽出してFe成分を抽出し、次い
で1N蓚酸で逆抽出してTi成分を抽出した。得られた各有
価成分の酸化物としての回収率を第10図に示す。尚第10
図において上欄の数値は各工程毎の回収率、下欄の数値
は積算した回収率を表わしている。
(Conditions for back extraction of Fe and Ti components) The Fe components transferred to the organic phase in the Al component extraction step and
The Ti component was back-extracted with 0.2N oxalic acid to extract the Fe component, and then back-extracted with 1N oxalic acid to extract the Ti component. FIG. 10 shows the obtained recovery rates of the valuable components as oxides. No. 10
In the figure, the numerical values in the upper column indicate the recovery rate for each process, and the numerical values in the lower column indicate the integrated recovery rates.

第10図から明らかである様に、本発明によればAl,Si,
Fe,Tiの各成分に酸化物として高い収率で回収すること
ができる。尚溶解工程で蒸発したSi成分の吸収液より析
出物として回収された珪酸コロイドのSiO2純度は99.9%
以上であり、その粒子形状は偏平状で比表面積は約40m2
/gであった。
As is apparent from FIG. 10, according to the present invention, Al, Si,
Each component of Fe and Ti can be recovered as an oxide in a high yield. The SiO 2 purity of the silicate colloid recovered as a precipitate from the absorption liquid of the Si component evaporated in the melting step was 99.9%
The particle shape is flat and the specific surface area is about 40 m 2
/ g.

また吸収液を中和し沈殿物として回収された珪酸コロ
イドのSiO2純度は析出物のそれより高く99.99%以上で
あり、その粒子は多孔質で約200m2/gの高い比表面積を
有していた。またAl2O3,Fe2O3,TiO2についても、いずれ
も99%以上の純度の微細な粉末として回収することがで
きた。
The SiO 2 purity of the silicate colloid recovered as a precipitate by neutralizing the absorbing solution is higher than that of the precipitate and 99.99% or more, and the particles are porous and have a high specific surface area of about 200 m 2 / g. I was In addition, Al 2 O 3 , Fe 2 O 3 , and TiO 2 were all recovered as fine powder having a purity of 99% or more.

[発明の効果] 本発明は以上の様に構成されており、Al2O3やSiO2
主成分とする石炭灰からAl成分のみならずFe成分やTi成
分等も高純度のものを高収率で回収することができ、石
炭灰を2次資源として有効に活用し得ることになった。
また本発明は石炭灰に限らず鉱物資源としての価値の低
い粘度等からでも上記の様な有価元素を酸化物の形で収
率良く回収することができ、極めて実用価値の高いもの
である。
[Effects of the Invention] The present invention is configured as described above. From coal ash having Al 2 O 3 or SiO 2 as a main component, it is possible to obtain high purity not only Al component but also Fe component and Ti component. As a result, the coal ash could be effectively recovered as a secondary resource.
In addition, the present invention can recover the above valuable elements in the form of oxides in good yield from not only coal ash but also low viscosity as a mineral resource, and is of extremely high practical value.

【図面の簡単な説明】[Brief description of the drawings]

第1図は実験に用いた石炭灰に含まれるAl2O3の成分割
合を示すグラフ、第2図はHF/SiO2量論比とSi溶解率の
関係を示すグラフ、第3図はHF濃度とSi成分の蒸発率の
関係を示すグラフ、第4図はHCl濃度とSi成分の分配率
の関係を示すグラフ、第5図はHF濃度とAl成分の溶解率
の関係を示すグラフ、第6図はHF濃度とAl,Fe,Ti成分の
溶解率の関係を示すグラフ、第7図は本発明の実施例を
示す概略フロー図、第8,9図はHF濃度とSi成分の分配率
の関係を示すグラフ、第10図は実施例で得た有価成分の
回収率を示す図である。 I……溶解工程、II……Si成分回収工程 III……抽出工程、IV……酸化物製造工程 7……溶解槽、12……吸収塔 14……濾過器、20……溶媒抽出器 22,24……逆抽出器、29,30.31……中和槽 35,36,37……濾過器
FIG. 1 is a graph showing the component ratio of Al 2 O 3 contained in the coal ash used in the experiment, FIG. 2 is a graph showing the relationship between the stoichiometric ratio of HF / SiO 2 and the dissolution rate of Si, and FIG. Fig. 4 is a graph showing the relationship between the concentration and the evaporation rate of the Si component, Fig. 4 is a graph showing the relationship between the HCl concentration and the distribution ratio of the Si component, Fig. 5 is a graph showing the relationship between the HF concentration and the dissolution rate of the Al component, FIG. 6 is a graph showing the relationship between the HF concentration and the dissolution rate of the Al, Fe, and Ti components. FIG. 7 is a schematic flow chart showing an embodiment of the present invention. FIGS. 8 and 9 are the HF concentration and the distribution ratio of the Si component. FIG. 10 is a graph showing the recovery of valuable components obtained in the examples. I: dissolution step, II: Si component recovery step III: extraction step, IV: oxide production step 7: dissolution tank, 12: absorption tower 14: filter, 20: solvent extractor 22 , 24 …… Reverse extractor, 29,30.31 …… Neutralization tank 35,36,37 …… Filter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 亀岡 義文 兵庫県神戸市垂水区高丸7―3―3― 334 (72)発明者 釜谷 源一郎 兵庫県高砂市高砂町農人町1845 (72)発明者 中元 忠繁 兵庫県高砂市荒井町小松原5―1―32 (58)調査した分野(Int.Cl.6,DB名) C22B 7/02 C22B 3/00 C01G 49/00 C01G 23/00 C01B 33/18 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Yoshifumi Kameoka 7-3-3-1-334 Takamaru, Tarumizu-ku, Kobe-shi, Hyogo (72) Inventor Genichiro Kamagaya 1845, Nagijincho, Takasago-cho, Takasago-shi, Hyogo (72) Inventor Nakamoto Tadashige 5-1-32, Komatsubara, Arai-machi, Takasago City, Hyogo Prefecture (58) Field surveyed (Int.Cl. 6 , DB name) 18

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】SiO2とAl2O3を主成分として含む無機質粉
末にふっ酸と塩酸の混酸を加えて加熱し、揮発してくる
Si含有成分を水またはアルカリ水溶液に吸収させて回収
する一方、残部液から不溶物を濾去して得られる溶液よ
り溶媒抽出法によってAlその他の金属化合物を抽出・分
離することを特徴とする無機質粉末からの有価成分回収
方法。
1. A mixed acid of hydrofluoric acid and hydrochloric acid is added to an inorganic powder containing SiO 2 and Al 2 O 3 as main components, and the mixture is heated and volatilized.
An inorganic material characterized by extracting and separating Al and other metal compounds by solvent extraction from a solution obtained by filtering off insolubles from the remaining liquid while absorbing and recovering Si-containing components in water or an aqueous alkaline solution. A method for recovering valuable components from powder.
JP22654689A 1989-08-31 1989-08-31 Method for recovering valuable components from inorganic powder Expired - Fee Related JP2916172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22654689A JP2916172B2 (en) 1989-08-31 1989-08-31 Method for recovering valuable components from inorganic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22654689A JP2916172B2 (en) 1989-08-31 1989-08-31 Method for recovering valuable components from inorganic powder

Publications (2)

Publication Number Publication Date
JPH0390523A JPH0390523A (en) 1991-04-16
JP2916172B2 true JP2916172B2 (en) 1999-07-05

Family

ID=16846847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22654689A Expired - Fee Related JP2916172B2 (en) 1989-08-31 1989-08-31 Method for recovering valuable components from inorganic powder

Country Status (1)

Country Link
JP (1) JP2916172B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2031406C (en) * 1989-12-21 2002-05-28 Paolo Galli Graft copolymers of polyolefins and a method of producing same
US5242670A (en) * 1992-07-02 1993-09-07 Gehringer Ronald C Method for hydrofluoric acid digestion of silica/alumina matrix material for the production of silicon tetrafluoride, aluminum fluoride and other residual metal fluorides and oxides
RU2389682C2 (en) * 2007-04-03 2010-05-20 Пингсхуо Индастриал ЛТД. Method of reducing silica and alumina from volatle coal ash
CN102241410B (en) * 2010-05-14 2013-07-10 东北大学 Ecological synthetic utilization method of fly ash

Also Published As

Publication number Publication date
JPH0390523A (en) 1991-04-16

Similar Documents

Publication Publication Date Title
CN106048230B (en) The separation of tungsten and vanadium, recovery method in a kind of useless SCR denitration
CN109179464A (en) A kind of method of Quadratic aluminum dust high-efficiency cleaning resource utilization
CN109534466B (en) Method for preparing water purifying agent containing polymerized aluminum chloride from aluminum ash
CN103103349B (en) Method for decomposing bayan obo rare earth ore concentrate by acid and alkali combination at low temperature
CN101336209A (en) Extraction and purification of minerals from aluminium ores
CN1940096A (en) Extraction of vanadium and molybdenum compound from refused materials containing vanadium and molybdenum etc. multiple elements
CN107344725B (en) Sulfuric acid straight dipping process extracts the preparation process of elemental lithium in lithium ore
CN112897530B (en) Method for efficiently dissolving silicate substances and extracting high-purity silicon oxide
JP3576550B2 (en) Recovery of metal valuables from process residues
CN110817944A (en) Recovery method of waste SCR denitration catalyst
EP0606447A1 (en) Method for producing tetrafluorosilane and aluminum fluoride by hydrofluoric acid digestion of silica/alumina matrix.
CN109108050B (en) Method and system for converting sodium-containing and fluorine-containing compounds in aluminum electrolysis overhaul residues
CN104030332A (en) Method for reclaiming cryolite from fluorine containing pesticide industrial waste residues
CN115156253B (en) Resource treatment method for aluminum electrolysis overhaul slag
CN109439918B (en) System for extracting titanium, iron, aluminum and magnesium components in high-titanium slag through fractional roasting
JP5431780B2 (en) A processing method for obtaining a niobium raw material or a tantalum raw material, a method for separating and purifying niobium or tantalum, and a method for producing niobium oxide or tantalum oxide.
CN102020300B (en) Method for producing metallurgical-grade aluminum oxide by coal ash
CN102101686B (en) Process method for ultra-high purity alumina preparation by utilizing coal ash and comprehensive utilization of ultra-high purity alumina
JPH02236236A (en) Method for recovering metal
JP2916172B2 (en) Method for recovering valuable components from inorganic powder
CN114735732A (en) Method for preparing alumina and silicon dioxide by using high-alumina fly ash
KR101735493B1 (en) System and method for aluminium black dross recycling
RU2502568C2 (en) Complex processing of coal combustion flue ash
CN108220631A (en) A kind of method using aluminum-extracted pulverized fuel ash process condensing crystallizing mother liquor scandium
JP2019528371A (en) Extraction method of rare metal element from coal ash and extraction device of rare metal element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees