JP2915486B2 - Indirect solid-phase antibody method - Google Patents
Indirect solid-phase antibody methodInfo
- Publication number
- JP2915486B2 JP2915486B2 JP11599190A JP11599190A JP2915486B2 JP 2915486 B2 JP2915486 B2 JP 2915486B2 JP 11599190 A JP11599190 A JP 11599190A JP 11599190 A JP11599190 A JP 11599190A JP 2915486 B2 JP2915486 B2 JP 2915486B2
- Authority
- JP
- Japan
- Prior art keywords
- antibody
- antigen
- reaction
- solution
- reca protein
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
- Peptides Or Proteins (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、間接固相抗体法に関する。さらに詳細に
は、本発明は、溶液中の抗原・抗体反応の定量方法に関
する。The present invention relates to an indirect solid-phase antibody method. More specifically, the present invention relates to a method for quantifying an antigen-antibody reaction in a solution.
従来、抗原・抗体反応の定量としては、固相酵素抗体
法、免疫沈降法、競合免疫法、及び阻害試験法等が知ら
れている。Conventionally, as the quantification of the antigen-antibody reaction, a solid-phase enzyme antibody method, an immunoprecipitation method, a competitive immunization method, an inhibition test method and the like are known.
しかるに固相抗体法では、抗原を反応容器の内側に固
定する際に抗原の抗原性が変化してしまうことが少なく
なく、更には抗原が全く変性してしまうこもあり、溶液
条件下における抗原抗体反応を正確に測定することは不
可能であった。However, in the solid-phase antibody method, when the antigen is immobilized inside the reaction vessel, the antigenicity of the antigen often changes, and the antigen may be completely denatured. It was not possible to measure the reaction accurately.
また、免疫沈降法では、反応系に添加される二次抗体
や沈澱剤、それらに含まれる不純物が抗原の反応性や抗
原性に影響を与える可能性が大きく、溶液条件下での抗
原抗体反応を正確に測定することはできなかった。ま
た、高感度で沈殿中の抗原や抗体の量を測定することは
容易でないという問題もあった。In addition, in the immunoprecipitation method, there is a large possibility that the secondary antibody and the precipitant added to the reaction system and impurities contained therein will affect the reactivity and antigenicity of the antigen, and the antigen-antibody reaction under solution conditions Could not be measured accurately. In addition, there is a problem that it is not easy to measure the amount of the antigen or antibody in the precipitate with high sensitivity.
競合免疫法においても同様に、反応液中の因子が測定
系の抗原抗体反応に影響を与えるので、溶液条件下での
抗原抗体反応の測定は不可能であり、さらに阻害試験法
においては、反応系、測定系の相互間の影響を除外でき
ず、正確な抗原抗体反応の定量はできなかった。Similarly, in the competitive immunization method, the factor in the reaction solution affects the antigen-antibody reaction of the measurement system, so that it is impossible to measure the antigen-antibody reaction under solution conditions. The influence between the system and the measurement system could not be excluded, and accurate quantification of the antigen-antibody reaction could not be performed.
従って、上記方法を用いても溶液条件下での抗原抗体
反応を正確に定量することは不可能であった。特に反応
溶液中に種々の因子を含む反応溶液条件下では、これら
の因子の影響を考慮しなければならず、抗体量の測定が
一層困難であった。例えば固相酵素抗体法(ELISA)で
は、抗原抗体反応に影響を与える因子と酵素による発色
反応に影響を与える因子のいずれによってもシグナル強
度が変化するので、反応系の因子の影響を受け易く正確
な測定が不可能になる場合があった。Therefore, it has not been possible to accurately quantify the antigen-antibody reaction under solution conditions even by using the above method. In particular, under the reaction solution conditions in which various factors are contained in the reaction solution, the influence of these factors must be considered, and it has been more difficult to measure the amount of the antibody. For example, in the enzyme-linked immunosorbent assay (ELISA), the signal intensity changes depending on both the factor that affects the antigen-antibody reaction and the factor that affects the color reaction by the enzyme. Measurement may not be possible.
従って本発明は、溶液状態における抗原抗体反応を正
確に定量する方法を提供することを目的とし、特には種
々の因子を含む溶液中でも正確に抗原抗体反応を定量す
ることを可能にする方法を提供することを目的とする。Accordingly, an object of the present invention is to provide a method for accurately quantifying an antigen-antibody reaction in a solution state, and in particular, to provide a method for accurately quantifying an antigen-antibody reaction even in a solution containing various factors. The purpose is to do.
そこで、本発明者は鋭意研究した結果、抗原抗体反応
の反応溶液を希釈することによって抗原抗体反応を停止
させるとともに、反応系の因子が測定に与える影響を最
小限に抑えると抗原抗体反応を正確に定量できることを
見出し本発明を完成するに至った。本発明の方法によれ
ば、希釈の後、未反応の抗体量を測定することで、反応
系に含まれる因子が測定の際に与える影響を完全に除去
することができ、さらに、例えば固相酵素抗体法におい
て抗体量とシグナル強度が比例する条件を用いることに
より、未反応の抗体の量を正確に定量することができ
る。Therefore, the present inventors have conducted intensive studies and found that the antigen-antibody reaction was stopped by diluting the reaction solution of the antigen-antibody reaction, and the effect of reaction system factors on the measurement was minimized to minimize the antigen-antibody reaction. It has been found that the present invention can be quantitatively determined, and the present invention has been completed. According to the method of the present invention, by measuring the amount of unreacted antibody after dilution, it is possible to completely remove the influence of factors contained in the reaction system on the measurement, and further, for example, the solid phase By using a condition in which the amount of the antibody is proportional to the signal intensity in the enzyme antibody method, the amount of the unreacted antibody can be accurately quantified.
すなわち、本発明は、 抗原抗体反応を定量する方法において、 既知量の抗体と抗原とを溶液中で反応させる工程、 上記溶液を希釈して、抗原抗体反応を停止させるとと
もに、反応系の他の因子が測定に与える影響を最小限に
抑えるようにする工程、及び 抗原と未反応の抗体を固相抗体法で定量する工程を含
む定量方法を提供するものである。That is, the present invention provides a method for quantifying an antigen-antibody reaction, comprising the steps of: reacting a known amount of an antibody with an antigen in a solution; diluting the solution to stop the antigen-antibody reaction; It is an object of the present invention to provide a quantification method including a step of minimizing an influence of a factor on a measurement and a step of quantifying an antibody which has not reacted with an antigen by a solid-phase antibody method.
本発明の方法において使用される抗原と抗体の組合せ
の例としては、recAタンパク抗原と、ARM321抗体、ARM4
14抗体、ARM191抗体、ARM193抗体からなる群より選ばれ
る抗体、recAタンパクの変異タンパクであるrecA430抗
原と、ARM321抗体、ARM414抗体、ARM191抗体、ARM193抗
体からなる群より選ばれる抗体等が挙げられる。Examples of combinations of antigens and antibodies used in the method of the present invention include recA protein antigen, ARM321 antibody, ARM4
Antibodies selected from the group consisting of 14 antibodies, ARM191 antibody and ARM193 antibody; recA430 antigen which is a mutant protein of recA protein; and antibodies selected from the group consisting of ARM321 antibody, ARM414 antibody, ARM191 antibody and ARM193 antibody.
recAタンパク、ARM321抗体、ARM414抗体、ARM191抗
体、及びARM193抗体は、The Journal of Biological Ch
emistry,1985,260,pp15402−15405に、recA430は、The
Journal of Biological Chemistry,1989,264,pp21167−
21176に記載されている。このうち、recAタンパク抗原
と、抗RecAモノクローナル抗体ARM321、抗RecAモノクロ
ーナル抗体ARM414、及び抗RecAモノクローナル抗体ARM1
91からなる群より選ばれる抗体を使用することが好まし
い。The recA protein, ARM321 antibody, ARM414 antibody, ARM191 antibody and ARM193 antibody were obtained from The Journal of Biological Ch
emistry, 1985, 260 , pp15402-15405, recA430 is the
Journal of Biological Chemistry, 1989, 264 , pp21167−
21176. Among them, recA protein antigen, anti-RecA monoclonal antibody ARM321, anti-RecA monoclonal antibody ARM414, and anti-RecA monoclonal antibody ARM1
It is preferable to use an antibody selected from the group consisting of 91.
抗原と抗体を反応させる溶液は、いかなるものも可能
であり、抗原性を変える因子の存在する任意の溶液を選
ぶことができる。例えば、recAタンパクを抗原として用
いる場合は、recAタンパクの抗原性に影響を与える可能
性のあるATPやDNAを含む溶液中で抗原抗体反応を定量す
ることができる。その他、pH、イオン強度などを変化さ
せる因子を含有する任意の溶液を選ぶことができる。The solution for reacting the antigen and the antibody can be any solution, and any solution containing a factor that changes antigenicity can be selected. For example, when the recA protein is used as an antigen, the antigen-antibody reaction can be quantified in a solution containing ATP or DNA that may affect the antigenicity of the recA protein. In addition, any solution containing factors that change the pH, ionic strength, and the like can be selected.
反応の条件としては、反応温度は任意に選ぶことがで
き、反応時間は抗原と抗体の反応が飽和に達するまでの
任意の時間を選ぶことができる。As the reaction conditions, the reaction temperature can be arbitrarily selected, and the reaction time can be selected arbitrarily until the reaction between the antigen and the antibody reaches saturation.
抗原・抗体反応後、抗原・抗体の結合を解離させない
希釈剤を用いて反応溶液の希釈を行うことが好ましい。
この様な希釈剤としてはPBSを挙げることができる。PBS
とは、リン酸緩衝液を含有する生理食塩水である。該希
釈工程は抗原・抗体反応を効果的に停止させ、かつ抗体
以外の物質が後の固相抗体法の検出限界以下になる様に
行う。例えば、recAタンパクとARM321抗体、ARM414抗
体、及びARM191抗体からなる群より選ばれる抗体を用い
る場合には、PBS−ツイーンで約1,500倍に希釈すること
が好ましい。ここでPBS−ツイーンとは、0.05%ツイー
ンをPBSに溶かした溶液をいう。さらに、該希釈工程は
室温(約25℃)で、5分以内に行うことが好ましい。After the antigen-antibody reaction, it is preferable to dilute the reaction solution using a diluent that does not dissociate the antigen-antibody bond.
Examples of such a diluent include PBS. PBS
Is a physiological saline solution containing a phosphate buffer. The dilution step is carried out so that the antigen-antibody reaction is effectively stopped, and the substance other than the antibody is below the detection limit of the solid phase antibody method. For example, when using an antibody selected from the group consisting of recA protein, ARM321 antibody, ARM414 antibody, and ARM191 antibody, it is preferable to dilute about 1500 times with PBS-Tween. Here, PBS-Tween refers to a solution in which 0.05% Tween is dissolved in PBS. Further, the dilution step is preferably performed at room temperature (about 25 ° C.) within 5 minutes.
上記の様に希釈した反応液中の抗体量を測定するため
の固相抗体法としては、酵素抗体法、蛍光抗体法、ラジ
オイムノアッセイ等が挙げられる。このうち、酵素抗体
法が好ましい。具体的には、マイクロタイタープレート
のウェルに抗原を固定し、このウェルに抗原抗体反応を
行った反応液を希釈した液を加え未反応の抗体とウェル
に固定した抗原を反応させ、その後上記希釈した反応液
を洗い流し、さらにこのウェルに酵素で標識した二次抗
体を加えウェルに固定した抗原と反応した抗体と反応さ
せ、次いでこのウェルに上記酵素の基質となる物質を加
え、酵素反応によって生成した物質の比色により抗原抗
体複合体を定量することができる。上記固相抗体法で
は、抗原と未反応の抗体が定量されるので、この値を抗
原抗体反応前の抗体量から差し引くことにより、抗原抗
体反応を定量することができる。Examples of the solid-phase antibody method for measuring the amount of the antibody in the reaction solution diluted as described above include an enzyme antibody method, a fluorescent antibody method, and a radioimmunoassay. Among them, the enzyme antibody method is preferred. Specifically, the antigen is immobilized in the wells of the microtiter plate, a solution obtained by diluting the reaction solution subjected to the antigen-antibody reaction is added to the well, and the unreacted antibody is allowed to react with the antigen immobilized in the well. The washed reaction solution is washed away, and a secondary antibody labeled with an enzyme is added to the well to react with the antibody reacted with the antigen immobilized in the well.Then, a substance serving as a substrate for the enzyme is added to the well, and the enzyme reaction is performed. The antigen-antibody complex can be quantified by the colorimetry of the substance. In the solid-phase antibody method, an antibody that has not reacted with an antigen is quantified. By subtracting this value from the amount of the antibody before the antigen-antibody reaction, the antigen-antibody reaction can be quantified.
本発明の方法により、溶液状態下での抗原抗体反応
を、極めて容易にかつ正確に定量することが可能になっ
た。According to the method of the present invention, the antigen-antibody reaction in a solution state can be very easily and accurately quantified.
さらに、抗原を含むタンパク質内のアミノ酸変異や化
学修飾による抗原抗体反応の変化を知ることが可能にな
った。尚、このアミノ酸変異や化学修飾により抗原性が
変化しても、本発明の定量は可能である。Furthermore, it has become possible to know changes in antigen-antibody reactions due to amino acid mutations and chemical modifications in proteins containing antigens. The quantification of the present invention is possible even if the antigenicity changes due to this amino acid mutation or chemical modification.
以下に本発明の実施態様として実施例をあげるが、こ
れは本発明の説明のためのものであって、本発明の範囲
を制限するものではない。Hereinafter, examples will be given as embodiments of the present invention, but these are for explanation of the present invention and do not limit the scope of the present invention.
以下の実施例は、特に断らない限り室温(25℃)下で
行った。The following examples were performed at room temperature (25 ° C.) unless otherwise specified.
また、本実施例で用いたrecAタンパク及びDNAφ×174
は、J.Biol.Chem,1981,256,p7557−7564に、ARM321抗
体、ARM414抗体、ARM191抗体、及びARM193抗体は、J.Bi
ol.Chem,1985,260,PP15402−15404に、recA430は、J.Bi
ol.Chem,1989,264,pp21167−21176に記載の方法によっ
て得た。The recA protein and DNA φ × 174 used in this example
Is described in J. Biol. Chem, 1981, 256 , p7557-764, ARM321 antibody, ARM414 antibody, ARM191 antibody, and ARM193 antibody are J. Bi
ol.Chem, 1985, 260 , PP15402-15404, recA430 is J. Bi
ol. Chem, 1989, 264 , pp. 21167-21176.
〔参考例 1〕 固定相の作製 マイクロタイタープレート(96穴)のウェルに50μl
のrecAタンパク(2μg/ml)溶液を加えて4℃で15時間
放置して、更に200μlのPBS(50mMリン酸緩衝液、pH7.
2、150mM NaCl)で3回洗い、ウェルの壁をrecAタンパ
クで覆い固定した。更にブロッキングの為に、100μl
の小牛血清アルブミン溶液(1%)をウェルに入れ、6
時間ほど放置してから130μlのPBSでウェルを洗った。[Reference Example 1] Preparation of stationary phase 50 μl per well of a microtiter plate (96 wells)
Of recA protein (2 μg / ml) and left at 4 ° C. for 15 hours. Further, 200 μl of PBS (50 mM phosphate buffer, pH 7.
(2, 150 mM NaCl) three times, and the well walls were covered with recA protein and fixed. 100 μl for further blocking
5% calf serum albumin solution (1%)
After standing for about an hour, the wells were washed with 130 μl of PBS.
〔参考例 2〕 検量線の作製 参考例2で作製した固定相のウェル中に、PBS−ツイ
ーン20(0.05%ツイーン20(バイオラッド社製)をPBS
に溶かした溶液)に溶かした濃度0.025nMの抗recAタン
パク抗体であるARM321抗体を50μl加え1時間放置し
た。そのウェルを130μlのPBS−ツイーンで3回洗っ
た。次に、そのウェルに50μlのペルオキシダーゼで標
識した500希釈ヤギに由来する抗マウスIgG抗体(KPL社
製)を加え1時間放置した後、130μlのPBS−ツイーン
で3回、次いで200μlのPBSで洗った。そこへ、100μ
lのo−フェニレンジアミン(1mg/ml)、0.05Mクエン
酸、0.05Mクエン酸ナトリウム、0.015%過酸化水素溶液
を加え30分放置し、呈色反応を行った。32μlの4.5M硫
酸を加えその反応を停めた。呈色反応は、490nmの吸光
度を測ることによって測定した。以上の操作を、ARM321
抗体の濃度を0.038nM、0.05nM、0.063nM、0.094nM、0.1
25nM、0.156nM、0.188nM、0.219nM、0.250nM、0.281n
M、0.313nMに変えて繰り返すことにより、検量線を作製
した。[Reference Example 2] Preparation of calibration curve In a stationary phase well prepared in Reference Example 2, PBS-Tween 20 (0.05% Tween 20 (manufactured by Bio-Rad) was added to PBS.
50 μl of an anti-recA protein antibody ARM321 antibody having a concentration of 0.025 nM dissolved in the above solution was added and left for 1 hour. The wells were washed three times with 130 μl of PBS-Tween. Next, 50 μl of an anti-mouse IgG antibody (manufactured by KPL) derived from a goat diluted with 500 labeled with peroxidase was added to the wells, left for 1 hour, washed three times with 130 μl of PBS-Tween, and then washed with 200 μl of PBS. Was. There, 100μ
l of o-phenylenediamine (1 mg / ml), 0.05 M citric acid, 0.05 M sodium citrate and 0.015% hydrogen peroxide solution were added and left for 30 minutes to perform a color reaction. The reaction was stopped by adding 32 μl of 4.5 M sulfuric acid. The color reaction was measured by measuring the absorbance at 490 nm. Perform the above operation on ARM321
Antibody concentrations of 0.038 nM, 0.05 nM, 0.063 nM, 0.094 nM, 0.1
25nM, 0.156nM, 0.188nM, 0.219nM, 0.250nM, 0.281n
A calibration curve was prepared by changing the M and 0.313 nM and repeating.
以上の操作を、ARM414抗体、ARM191抗体、ARM193抗体
を用いて繰り返した。The above operation was repeated using the ARM414 antibody, the ARM191 antibody, and the ARM193 antibody.
結果を第1図に示した。この結果より、酵素抗体法の
シグナル(490nmでの吸光度)の強さが抗recAタンパク
抗体の量に比例しており、未反応の抗recAタンパク抗体
を0.2nMまでなら酵素抗体法によって正確に定量できる
ことがわかる。そこで、本実施例では、希釈操作の後、
未反応の抗体濃度が0.13nMになるようにした。The results are shown in FIG. From these results, the intensity of the signal (absorbance at 490 nm) of the enzyme antibody method is proportional to the amount of anti-recA protein antibody. Unreacted anti-recA protein antibody can be accurately quantified up to 0.2 nM by the enzyme antibody method. We can see that we can do it. Therefore, in this embodiment, after the dilution operation,
Unreacted antibody concentration was adjusted to 0.13 nM.
〔参考例 3〕 抗recタンパク抗体(IgG)の濃度と酵素抗体法のシグナ
ルの強さ 21μlの反応液A(31mMトリス緩衝液、pH7.5、13mM
塩化マグネシウム、2.8mMジチオスレイトール、88μg/m
l小牛血清アルブミン、2%グリセリン)の中で、0.2μ
Mの抗recAタンパク単クローンIgGのひとつであるARM32
1抗体と濃度0.2μM、0.5μM、1μM、2μMの抗原
であるrecAタンパクとを37℃で10分反応させた。該反応
液から4μlを取り出し1,500倍容(6ml)のPBS−ツイ
ーンを加えて抗原抗体反応を停止してから、室温中で希
釈後5分以内に50μlの希釈溶液をすでにrecタンパク
をウェルの壁に固定してある参考例1のマイクロタイタ
ープレートのウェルに入れ、1時間放置した。そのウェ
ルを130μlのPBS−ツイーンで3回洗った。次に、50μ
lのペルオキシダーゼで標識した1/500希釈ヤギに由来
する抗マウスIgG抗体(KPL社製)を加え1時間放置した
後、130μlのPBS−ツイーンで3回、次いで200μlのP
BSで洗った。そこへ、100μlのo−フェニレンジアミ
ン(1mg/ml)、0.05Mクエン酸、0.05Mクエン酸ナトリウ
ム、0.015%過酸化水素溶液を加え30分放置して発色さ
せた後、32μlの4.5M硫酸を加えその反応を停めた。49
0nmの吸光度を測定し、吸光度から参考例2の検量線を
用いて未反応の抗体量を求めた。[Reference Example 3] Concentration of anti-rec protein antibody (IgG) and signal intensity of enzyme antibody method 21 μl of reaction solution A (31 mM Tris buffer, pH 7.5, 13 mM)
Magnesium chloride, 2.8 mM dithiothreitol, 88 μg / m
l In calf serum albumin, 2% glycerin)
ARM32, one of the M anti-recA protein monoclonal IgG
One antibody was allowed to react with recA protein, which is an antigen at a concentration of 0.2 μM, 0.5 μM, 1 μM, and 2 μM, at 37 ° C. for 10 minutes. 4 μl of the reaction solution was taken out, and the antigen-antibody reaction was stopped by adding 1,500-fold volume (6 ml) of PBS-Tween. After dilution at room temperature, within 50 minutes after dilution, 50 μl of the diluted solution was already transferred to the wall of the well. Was placed in the well of the microtiter plate of Reference Example 1 fixed in Example 1 and left for 1 hour. The wells were washed three times with 130 μl of PBS-Tween. Next, 50μ
l of peroxidase-labeled goat-derived anti-mouse IgG antibody (manufactured by KPL) derived from goat diluted 1/500, allowed to stand for 1 hour, then three times with 130 µl of PBS-Tween, and then 200 µl of P-Tween.
Washed with BS. 100 μl of o-phenylenediamine (1 mg / ml), 0.05 M citric acid, 0.05 M sodium citrate, and 0.015% hydrogen peroxide solution were added thereto, and the mixture was allowed to stand for 30 minutes to develop color. Then, 32 μl of 4.5 M sulfuric acid was added. The reaction was stopped. 49
The absorbance at 0 nm was measured, and the amount of unreacted antibody was determined from the absorbance using the calibration curve of Reference Example 2.
以上の操作をARM414抗体、ARM191抗体について繰り返
した。The above operation was repeated for the ARM414 antibody and the ARM191 antibody.
結果を第2図に示した。上記抗体については、recAタ
ンパクの濃度が高くなるにつれて未反応の抗体の量が少
なくなることを示している。大体0.5μM前後のrecAタ
ンパクで未反応の抗体がなくなった。The results are shown in FIG. For the above antibodies, it is shown that the amount of unreacted antibody decreases as the concentration of recA protein increases. About 0.5 μM of the recA protein eliminated unreacted antibodies.
〔参考例 4〕 抗原抗体複合体の1,500倍希釈に対する安定性 0.2μMの抗体(ARM414抗体、ARM321抗体、ARM191抗
体、ARM193抗体)と1μMのrecAタンパクとを参考例3
と同じ条件で反応させてから、1,500倍容のPBS−ツイー
ンで希釈し、室温で放置する時間を変えて、酵素抗体法
で抗原と結合していない抗体の量を定量した。[Reference Example 4] Stability of antigen-antibody complex against 1,500-fold dilution 0.2 μM antibody (ARM414 antibody, ARM321 antibody, ARM191 antibody, ARM193 antibody) and 1 μM recA protein were used in Reference Example 3
After the reaction was performed under the same conditions as described above, the mixture was diluted with a 1,500-fold volume of PBS-Tween, and the amount of the antibody not bound to the antigen was quantified by an enzyme-linked immunosorbent assay by changing the time of standing at room temperature.
結果を第3図に示す。第3図中、●は抗原、抗体の入
った完全系を示し;△は抗体を除いたコントロールを示
し;○は抗原(recAタンパク)を除いたコントロールを
示す。この結果から、ARM414抗体、ARM321抗体、ARM191
抗体については、希釈後60分にわたって複合体は安定に
存在していたが、ARM193抗体は希釈直後でも全てシグナ
ルを与えることがわかる。この事は、ARM193抗体とrecA
タンパクとの結合はこの希釈に耐えず、この抗体につい
ては本発明の方法は使用できないことを示している。The results are shown in FIG. In FIG. 3, ● represents a complete system containing an antigen and an antibody; Δ represents a control excluding the antibody; and ○ represents a control excluding the antigen (recA protein). From these results, ARM414 antibody, ARM321 antibody, ARM191
As for the antibody, the complex was stably present for 60 minutes after dilution, but it can be seen that all of the ARM193 antibody gave a signal immediately after dilution. This is because the ARM193 antibody and recA
Binding to the protein did not withstand this dilution, indicating that the method of the invention cannot be used with this antibody.
〔参考例 5〕 抗原抗体反応の1,500倍希釈による停止処置の効果 6mlのPBS−ツイーンに1μMのrecAタンパクを4μl
加え、直後に0.2μMの抗体(ARM414抗体、ARM321抗
体、ARM191抗体)溶液を4μl加え室温で放置する時間
を変えて、酵素抗体法により抗原と結合してしない抗体
の量を定量した。[Reference Example 5] Effect of stopping treatment by 1,500-fold dilution of antigen-antibody reaction 4 μl of 1 μM recA protein was added to 6 ml of PBS-Tween.
In addition, immediately after, 4 μl of a 0.2 μM antibody (ARM414 antibody, ARM321 antibody, ARM191 antibody) solution was added, and the time at which the solution was allowed to stand at room temperature was changed, and the amount of the antibody that did not bind to the antigen was quantified by the enzyme antibody method.
結果を第4図に示す。第4図中、●は抗原、抗体の入
った完全系を示し;△は抗体を除いたコントロールを示
し;○は抗原(recAタンパク)を除いたコントロールを
示す。この結果は、適度の希釈の後では、抗原と抗体は
たとえ共存してもその抗原抗体反応はおこらないかまた
は極めてゆっくりとしか起こらないことを示している。
よって、この希釈によって抗原抗体反応が効果的に停止
できることがわかる。The results are shown in FIG. In FIG. 4, ● represents a complete system containing an antigen and an antibody; Δ represents a control excluding the antibody; and ○ represents a control excluding the antigen (recA protein). This result indicates that, after moderate dilution, the antigen-antibody reaction does not occur or occurs very slowly even if the antigen and antibody coexist.
Therefore, it is understood that the antigen-antibody reaction can be effectively stopped by this dilution.
〔実施例 1〕 参考例3の反応液A中で1μMのrecAタンパクと0.2
μMのARM321抗体とを、ATP(ヤマサ醤油(株)製)濃
度0、0.1、0.3、1.3、2.6mMの存在下で37℃で反応時間
を変えて反応させた後、酵素抗体法で未反応の抗体量を
測定した。[Example 1] In the reaction solution A of Reference Example 3, 1 μM of the recA protein and 0.2
After reacting with μM ARM321 antibody in the presence of ATP (Yamasa Shoyu Co., Ltd.) concentrations of 0, 0.1, 0.3, 1.3, and 2.6 mM at 37 ° C. for a different reaction time, unreacted by the enzyme antibody method. Was measured.
結果を第5図に示す。ATP濃度は、●0mM、■0.1mM、
◆0.3mM、▲1.3mM、▼2.6mMである。○はrecAタンパク
を除いたコントロール(ATP非存在下)を示し、▽はrec
Aタンパクを除いたコントロール(ATP2.6mM存在)を示
す。この結果から、ATPの存在によってrecAタンパクがA
RM321抗体に対する抗原性を失うことがわかる。The results are shown in FIG. ATP concentration: 0 mM, ● 0.1 mM,
◆ 0.3mM, ▲ 1.3mM, ▼ 2.6mM. ○ indicates a control excluding recA protein (in the absence of ATP), and ▽ indicates rec
A control excluding A protein (ATP 2.6 mM) is shown. From these results, recA protein is converted to A by the presence of ATP.
It turns out that it loses the antigenicity with respect to RM321 antibody.
〔実施例2〕 参考例3の反応液A中で1μMのrecAタンパクと0.2
μMのARM414抗体を、ATPγS(ベーリンガーマンハイ
ム社製)(1.3mM)及び単鎖DNAφ×174(50μM)の存
在下、ATPγS(1.3mM)の存在下、単鎖DNAφ×174(15
0μM)の存在下、37℃で反応時間を変えて反応させた
後、酵素抗体法で未反応の抗体量を測定した。Example 2 In the reaction solution A of Reference Example 3, 1 μM of the recA protein and 0.2
μM ARM414 antibody was used in the presence of ATPγS (manufactured by Boehringer Mannheim) (1.3 mM) and single-stranded DNA φ × 174 (50 μM), in the presence of ATPγS (1.3 mM), and single-stranded DNA φ174 (15 mM).
(0 μM) at 37 ° C. for various reaction times, and the amount of unreacted antibody was measured by the enzyme antibody method.
結果を第6図に示す。▼はATPγS及び単鎖DNAφ×17
4の存在下、▽はATPγSの存在下、●は単鎖DNAφ×174
の存在下を示す。〇はrecAタンパクのみのコントロール
(ATP及びDNA非存在下)、☆はrecAタンパクを除いた抗
体のみのコントロール(ATP及びDNA非存在下)を示す。The results are shown in FIG. ▼ indicates ATPγS and single-stranded DNA φ × 17
4, in the presence of ATPγS, ●: single-stranded DNA φ × 174
Indicates the presence of 〇 indicates a control containing only the recA protein (in the absence of ATP and DNA), and ☆ indicates a control containing only the antibody excluding the recA protein (in the absence of ATP and DNA).
この結果から、ATPγS及び単鎖DNAφ×174の存在に
よってrecAタンパクがARM414抗体に対する抗原性を失う
ことがわかる。These results show that the presence of ATPγS and single-stranded DNA φ × 174 causes recA protein to lose antigenicity to ARM414 antibody.
〔実施例3〕 抗原にrecA430を、抗体にARM414を用いて実施例2の
方法を繰り返した。Example 3 The method of Example 2 was repeated using recA430 as an antigen and ARM414 as an antibody.
第1図は、recAタンパク抗原に対する抗体の検量線であ
る。第1図Aは、ARM321の検量線であり、第1図Bは、
ARM414の検量線であり、第1図Cは、ARM191の検量線で
あり、第1図Dは、ARM193の検量線である。 第2図は、一定量の抗体に対しrecAタンパク抗原の量を
変化させたときの490nmの吸光度である。第2図Aは、
抗体にARM321を、第2図Bは、抗体にARM414を、第2図
Cは、抗体にARM191を用いたものである。 第3図は、recAタンパク抗原・抗体複合体の1,500倍希
釈に対する安定性を示すものである。第3図Aは、抗体
にARM321を、第3図Bは、抗体にARM414を、第3図C
は、抗体にARM191を、第3図Dは、抗体にARM193を用い
たものである。 第4図は、recAタンパク抗原・抗体反応の1,500倍希釈
による停止処置の効果を示すものである。第4図Aは、
抗体にARM321を、第4図Bは、抗体にARM414を、第4図
Cは、抗体にARM191を用いたものである。 第5図は、ATPによるrecAタンパクの抗原性の変化を定
量したものである。 第6図はATPγS、単鎖DNAφ×174によるrecAタンパク
の抗原性の変化を定量したものである。FIG. 1 is a calibration curve of an antibody against the recA protein antigen. FIG. 1A is a calibration curve of ARM321, and FIG. 1B is
FIG. 1C is a calibration curve of ARM191, and FIG. 1D is a calibration curve of ARM193. FIG. 2 shows the absorbance at 490 nm when the amount of recA protein antigen was changed for a given amount of antibody. FIG. 2A shows
FIG. 2B shows the case where ARM321 was used for the antibody, and FIG. 2C shows the case where ARM191 was used for the antibody. FIG. 3 shows the stability of the recA protein antigen / antibody complex to a 1,500-fold dilution. FIG. 3A shows ARM321 for the antibody, FIG. 3B shows ARM414 for the antibody, and FIG.
Fig. 3 shows a case where ARM191 was used for the antibody, and Fig. 3D shows a case where ARM193 was used for the antibody. FIG. 4 shows the effect of stopping treatment of the recA protein antigen-antibody reaction by a 1,500-fold dilution. FIG. 4A shows
FIG. 4B shows the case where ARM321 was used for the antibody, and FIG. 4C shows the case where ARM191 was used for the antibody. FIG. 5 quantifies the change in the antigenicity of the recA protein by ATP. FIG. 6 quantifies the change in the antigenicity of the recA protein by ATPγS and single-stranded DNA φ × 174.
Claims (6)
ともに、反応系の他の因子が測定に与える影響を最小限
に抑えるようにする工程、及び 抗原と未反応の抗体を固相抗体法で定量する工程を
含む定量方法。1. A method for quantifying an antigen-antibody reaction, comprising: reacting a known amount of an antibody with an antigen in a solution; diluting the solution to stop the antigen-antibody reaction; A method for minimizing the effect of the enzyme on the measurement, and a method for quantifying an antibody that has not reacted with the antigen by a solid-phase antibody method.
原抗体反応を定量する請求項1記載の方法。2. The method according to claim 1, wherein the antigen-antibody reaction in a solution containing a factor that changes antigenicity is determined.
記載の方法。3. The method according to claim 1, wherein the antibody is a monoclonal antibody.
The described method.
で、抗体が抗RecAモノクローナル抗体ARM321、抗RecAモ
ノクローナル抗体ARM414、及び抗RecAモノクローナル抗
体ARM191からなる群より選ばれ、希釈剤がPBS−ツイー
ンである請求項1記載の方法。6. The method according to claim 1, wherein the antigen is a recA protein or a mutant protein, the antibody is selected from the group consisting of anti-RecA monoclonal antibody ARM321, anti-RecA monoclonal antibody ARM414, and anti-RecA monoclonal antibody ARM191, and the diluent is PBS-Tween. Item 7. The method according to Item 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11599190A JP2915486B2 (en) | 1990-05-02 | 1990-05-02 | Indirect solid-phase antibody method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11599190A JP2915486B2 (en) | 1990-05-02 | 1990-05-02 | Indirect solid-phase antibody method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0412274A JPH0412274A (en) | 1992-01-16 |
JP2915486B2 true JP2915486B2 (en) | 1999-07-05 |
Family
ID=14676157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11599190A Expired - Fee Related JP2915486B2 (en) | 1990-05-02 | 1990-05-02 | Indirect solid-phase antibody method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2915486B2 (en) |
-
1990
- 1990-05-02 JP JP11599190A patent/JP2915486B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0412274A (en) | 1992-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU777117B2 (en) | Immunoassay for measuring human C-peptide and kit therefor | |
JP2005510234A (en) | Polypeptide quantification | |
JP3646097B2 (en) | Reagents and solid phase components of specific binding assays that do not contain an advanced glycosylation end product | |
JP3447010B2 (en) | Elimination of rheumatoid factor interference using anti-Fd antibody | |
JP3392868B2 (en) | Competitive immunoassay using binding proteins in a multiclonal antibody format | |
US20040248216A1 (en) | Method of examining cancer by assaying autoantibody against mdm2 and reagent therefor | |
CN109239368A (en) | Measure the method and kit of progesterone | |
JP2915486B2 (en) | Indirect solid-phase antibody method | |
JP3490715B2 (en) | Method for detecting hemoglobin-promoting glucosylated end products | |
JP2004325192A (en) | Measuring method and measuring kit of hapten by gold colloid aggregation method | |
EP1596198B1 (en) | METHOD OF MEASURING OXIDIZED LDL-beta2-GPI-CRP COMPLEX | |
JPS61243363A (en) | Highly sensitive assay of crp | |
JP7066142B2 (en) | How to improve the sensitivity of periostin measurement contained in a sample | |
WO2023068249A1 (en) | Measuring reagent for cross-linked n-telopeptide of type i collagen, preparation method thereof, and immunoassay method using same | |
WO2023068248A1 (en) | Immunoassay method for cross-linked n-telopeptide of type i collagen, immunoassay kit, and antibody or antibody fragment thereof | |
JPS61228353A (en) | Immunological concentration determination method of amine, monochronal antibody and reagent set for executing said method | |
JPH0763758A (en) | Immunological measuring method | |
JP3014387B2 (en) | How to measure human growth hormone | |
JP3995316B2 (en) | Method for detecting cancer by measuring autoantibodies to hormone receptors | |
JP2002243732A (en) | New antibody, and immune reagent containing the antibody | |
JPS6082966A (en) | Assay of antigen | |
JPH08220098A (en) | Enzyme immunity measuring method and enzyme immunity measuring reagent kit | |
WO2003036297A1 (en) | Non-immunological assays for the detection and determination of c-reactive protein | |
JPH11248703A (en) | Immunological method for measuring free hapten | |
JP3257568B2 (en) | Antibodies that bind to human NOS and immunoassays for human NOS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |