JP2909571B2 - Method for producing high-purity benzene - Google Patents

Method for producing high-purity benzene

Info

Publication number
JP2909571B2
JP2909571B2 JP35456691A JP35456691A JP2909571B2 JP 2909571 B2 JP2909571 B2 JP 2909571B2 JP 35456691 A JP35456691 A JP 35456691A JP 35456691 A JP35456691 A JP 35456691A JP 2909571 B2 JP2909571 B2 JP 2909571B2
Authority
JP
Japan
Prior art keywords
benzene
purity
alkyl
boiling point
producing high
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35456691A
Other languages
Japanese (ja)
Other versions
JPH05163167A (en
Inventor
正己 伊木
健司 丸橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUMIKA FUAINKEMU KK
Original Assignee
SUMIKA FUAINKEMU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUMIKA FUAINKEMU KK filed Critical SUMIKA FUAINKEMU KK
Priority to JP35456691A priority Critical patent/JP2909571B2/en
Publication of JPH05163167A publication Critical patent/JPH05163167A/en
Application granted granted Critical
Publication of JP2909571B2 publication Critical patent/JP2909571B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高純度ベンゼンの製造
方法に関する。本発明によって得られる精製された高純
度ベンゼンは、医薬品等の高い純度が要求される精密化
学薬品の製造用原料等として有用である。
The present invention relates to a method for producing high-purity benzene. The purified high-purity benzene obtained by the present invention is useful as a raw material for producing fine chemicals, such as pharmaceuticals, which require high purity.

【0002】[0002]

【従来の技術・発明が解決しようとする課題】ベンゼン
の精製については、石油化学レベルでの研究は多々なさ
れており、文献、特許ともに多くの報告がなされてい
る。しかし、これらの多くは特別な装置を必要とするも
のであったり、純度の点から精密化学的用途には満足の
いくものは得られていない。従来より市販されている工
業用ベンゼンには、アルキル置換ベンゼンとして例えば
トルエンが0.0846%(トルエン/ベンゼンのガス
クロ面積比)含有されている。このような工業用ベンゼ
ンを原料として使用した場合、フリーデル・クラフツ反
応のような親電子置換反応においては、不純物として含
まれるアルキル置換ベンゼン、例えばトルエン、キシレ
ン、エチルベンゼン、クメン等の方が反応性が高いた
め、その含有量がたとえ微量であっても、得られる製品
中に不純物としてのアルキル置換ベンゼン誘導体の含有
率が高くなる傾向がある。
2. Description of the Related Art There have been many studies on the purification of benzene at the petrochemical level, and many reports have been made in literatures and patents. However, many of these require special equipment and, in terms of purity, have not been satisfactory for fine chemical applications. Conventionally, commercially available industrial benzene contains, for example, 0.0846% of toluene (benzene / benzene gas chromatography area ratio) as an alkyl-substituted benzene. When such industrial benzene is used as a raw material, in an electrophilic substitution reaction such as the Friedel-Crafts reaction, an alkyl-substituted benzene contained as an impurity, for example, toluene, xylene, ethylbenzene, cumene, etc. is more reactive. Therefore, even if the content is very small, the content of the alkyl-substituted benzene derivative as an impurity in the obtained product tends to be high.

【0003】化学合成は初期の段階で不純物の少ない原
料を使用することが望ましいことから、ベンゼンを原料
段階で精製して用いるのが好ましいが、ベンゼンとアル
キル置換ベンゼンとは物理的性質に大きな違いがないた
め、再結晶、蒸留等の簡易な精製法では除去が困難であ
るのが実情である。従って、本発明の目的は、簡易に高
純度ベンゼンを製造する方法を提供することにある。
[0003] In chemical synthesis, it is desirable to use a raw material having few impurities in the initial stage. Therefore, it is preferable to use benzene after purifying it in the raw material stage. However, benzene and alkyl-substituted benzene have a large difference in physical properties. In fact, removal is difficult with simple purification methods such as recrystallization and distillation. Therefore, an object of the present invention is to provide a method for easily producing high-purity benzene.

【0004】[0004]

【課題を解決するための手段】本発明者らはベンゼン中
の不純物の方が親電子置換反応における反応性が高いこ
とを逆に利用し、市販ベンゼンにアシル化剤を加えるこ
とにより、不純物のアルキル置換ベンゼンを選択的に高
沸点物質に変換することにより、意外にも精留塔を必要
としない単蒸留であっても、十分な純度のベンゼンが得
られることを見いだし、本発明を完成するに至った。即
ち、本発明の要旨は、ベンゼン中に含まれるアルキル置
換ベンゼンをアシル化して高沸点物質に変換し、蒸留す
ることを特徴とする高純度ベンゼンの製造方法に関す
る。
Means for Solving the Problems The inventors of the present invention have found that
Impurities have higher reactivity in the electrophilic substitution reaction.
The reverse is used to add an acylating agent to commercially available benzene.
Selectively increases alkyl-substituted benzene as an impurity
Surprisingly requires rectification column by converting to boiling point substance
Benzene of sufficient purity can be obtained
And found that the present invention was completed. Immediately
That is, the gist of the present invention is to disclose the alkyl group contained in benzene.
Exchange benzeneAcylateConvert to high-boiling substances and distill
Benzene production method characterized by the fact thatabout
You.

【0005】本発明においてアルキル置換ベンゼンを高
沸点物質に変換する方法としては、アシル化誘導体が簡
便に合成され、しかもアシル化剤の入手が容易であるこ
とからアシル化が用いられる。アシル化剤の種類は高沸
点物質に誘導できるものであれば特に限定されるもので
はなく、例えば塩化アセチル、塩化プロピオニル、塩化
ベンゾイル、無水酢酸等が例示される。なかでも、入手
の容易さから例えば塩化アセチル、塩化ベンゾイル等が
好適に使用される。アシル化剤の使用量は、混在するア
ルキル置換ベンゼンに対して通常1〜150倍当量使用
される。例えば、市販の工業用ベンゼンではアルキル置
換ベンゼンの混在量は0.0846%程度であるので、
総ベンゼン量の通常1〜10%当量が適当であり、望ま
しくは2〜5%当量である。これによりアルキル置換ベ
ンゼンを十分にアシル化することが可能である。
As a method for converting the alkyl-substituted benzene in a high boiling point substances in the present invention is conveniently is A acylation derivatives synthesized, moreover acylation is needed use since it is easily available acylating agent. The type of the acylating agent is not particularly limited as long as it can be derived to a high-boiling substance, and examples thereof include acetyl chloride, propionyl chloride, benzoyl chloride, and acetic anhydride. Among them, for example, acetyl chloride, benzoyl chloride and the like are preferably used from the viewpoint of availability. The amount of the acylating agent to be used is usually 1 to 150 equivalents to the mixed alkyl-substituted benzene. For example, in commercial industrial benzene, the content of alkyl-substituted benzene is about 0.0846%.
Usually, 1 to 10% equivalent of the total benzene amount is appropriate, and preferably 2 to 5% equivalent. This makes it possible to sufficiently acylate the alkyl-substituted benzene.

【0006】これらの反応は触媒の存在下に行なっても
よい。例えばルイス酸触媒が例示され、ルイス酸触媒と
しては塩化アルミニウム、塩化亜鉛、三フッ化ホウ素が
一般的に使用される。触媒、例えばルイス酸触媒を利用
する場合にはアシル化剤と等モル程度使用すればよい
が、触媒に応じて適宜変更されることは言うまでもな
い。反応温度は通常20〜30℃であり、アルキル置換
ベンゼンの選択的なアシル化が可能となる。反応時間は
通常1〜2時間である。
[0006] These reactions may be carried out in the presence of a catalyst. For example, a Lewis acid catalyst is exemplified. As the Lewis acid catalyst, aluminum chloride, zinc chloride, and boron trifluoride are generally used. When a catalyst, for example, a Lewis acid catalyst is used, it may be used in an equimolar amount with the acylating agent, but it goes without saying that it is appropriately changed depending on the catalyst. The reaction temperature is usually 20 to 30 ° C., which enables selective acylation of the alkyl-substituted benzene. The reaction time is usually 1-2 hours.

【0007】アルキル置換ベンゼンから誘導される高沸
点物質としては、ベンゼンの沸点(80℃)よりもでき
るだけ高い沸点を有する物質であればよく、通常150
℃以上の高沸点物質であるのが好ましい。例えば、トル
エン(沸点:110℃)を微量含む市販ベンゼンに塩化
アセチルを反応させると、トルエンはp−メチルアセト
フェノン(沸点:224℃)に変換され、ベンゼン(沸
点:80℃)との沸点差は30℃から122℃〜144
℃と大きくなって、分留がきわめて容易になる。
[0007] The high boiling substance derived from the alkyl-substituted benzene may be any substance having a boiling point as high as possible than the boiling point of benzene (80 ° C).
It is preferably a substance having a high boiling point of not less than ° C. For example, when acetyl chloride is reacted with commercially available benzene containing a trace amount of toluene (boiling point: 110 ° C.), toluene is converted into p-methylacetophenone (boiling point: 224 ° C.), and the boiling point difference from benzene (boiling point: 80 ° C.) 30 ° C to 122 ° C to 144
° C and fractionation becomes very easy.

【0008】次いで前記の反応後、蒸留により留温81
℃以下の留分を得ることにより、高純度ベンゼンを得る
ことができる。
Then, after the above-mentioned reaction, distillation was carried out at a distillation temperature of 81.
High-purity benzene can be obtained by obtaining a fraction at or below ° C.

【0009】[0009]

【実施例】以下、実施例により本発明をさらに詳しく説
明するが、本発明はこれらの実施例に何ら限定されるも
のではない。 実施例1 攪拌機、温度計付反応器に、工業用ベンゼン527.4
g(6.8モル)に塩化アルミニウム18.0g(0.
14モル)を仕込み、20〜30℃に保って塩化アセチ
ル10.6g(0.14モル)を10分間で滴下、さら
に1時間反応させた後、水300mlを加えて30分間
攪拌し、静置分液した。上層を共沸脱水した後、蒸留す
ると81℃以下の留分よりトルエン含有率0.0005
%の高純度ベンゼンが得られた(収量:454.9g、
収率:86%)。
EXAMPLES The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. Example 1 527.4 industrial benzene was added to a reactor equipped with a stirrer and a thermometer.
g (6.8 mol) to 18.0 g of aluminum chloride (0.
14 mol), 10.6 g (0.14 mol) of acetyl chloride was added dropwise over 10 minutes while maintaining the temperature at 20 to 30 ° C., and the mixture was further reacted for 1 hour. Separated. After azeotropic dehydration of the upper layer, distillation was performed to obtain a toluene content of 0.0005 from a fraction of 81 ° C. or less.
% Benzene was obtained (yield: 454.9 g,
Yield: 86%).

【0010】実施例2 攪拌機、温度計付反応器に、工業用ベンゼン527.4
g(6.8モル)に塩化アルミニウム9.0g(0.0
68モル)を仕込み、20〜30℃に保って塩化アセチ
ル5.3g(0.068モル)を10分間で滴下、さら
に1時間反応させた後、水300mlを加えて30分間
攪拌し、静置分液した。上層を共沸脱水した後、蒸留す
ると81℃以下の留分よりトルエン含有率(トルエン/
ベンゼンのガスクロ面積比、以下同様)0.0010%
の高純度ベンゼンが得られた(収量:450.9g、収
率:86%)。
Example 2 In a reactor equipped with a stirrer and a thermometer, 527.4 industrial benzene was added.
g (6.8 moles) to 9.0 g (0.0
68 mol), 5.3 g (0.068 mol) of acetyl chloride was added dropwise over 10 minutes while maintaining the temperature at 20 to 30 ° C., and the mixture was further reacted for 1 hour. Then, 300 ml of water was added, the mixture was stirred for 30 minutes, and allowed to stand. Separated. After the upper layer was azeotropically dehydrated and distilled, the toluene content (toluene /
Gasoline area ratio of benzene, the same applies hereinafter) 0.0010%
Was obtained (yield: 450.9 g, yield: 86%).

【0011】実施例3 攪拌機、温度計付反応器に、工業用ベンゼン527.4
g(6.8モル)に塩化アルミニウム90.0g(0.
68モル)を仕込み、20〜30℃に保って塩化ベンゾ
イル95.0g(0.68モル)を10分間で滴下、さ
らに1時間反応させた後、水300mlを加えて30分
間攪拌し、静置分液した。上層を共沸脱水した後、蒸留
すると81℃以下の留分よりトルエン含有率は0.00
01%未満であり、高純度ベンゼンが得られた(収量:
265.9g、収率:50%)。
Example 3 In a reactor equipped with a stirrer and a thermometer, 527.4 industrial benzene was added.
g (6.8 mol) to 90.0 g of aluminum chloride (0.
68 mol) was added, 95.0 g (0.68 mol) of benzoyl chloride was added dropwise over 10 minutes while maintaining the temperature at 20 to 30 ° C., and the mixture was further reacted for 1 hour. Separated. After azeotropic dehydration of the upper layer, distillation yields a fraction of 81 ° C. or less with a toluene content of 0.00
<01%, and high-purity benzene was obtained (yield:
265.9 g, yield: 50%).

【0012】[0012]

【発明の効果】本発明の方法は、ベンゼン中の不純物で
あるアルキル置換ベンゼンを選択的にアシル化により高
沸点物質に変換する単純な反応のみで、特に精留塔を必
要としない単蒸留により高純度のベンゼンを得ることを
可能とする工業的に有利な方法である。本発明の方法に
よって得られるベンゼンは、高い純度が要求される精密
化学薬品の製造用原料等として有用であり、なかでも、
類縁物質の混在について厳しい規定のある医薬品の合成
には特に有用である。
The method of the present invention exhibits, only simple reaction to convert a higher boiling material selectively acylating the alkylated benzene which is an impurity in the benzene, simple distillation is not particularly required rectification column This is an industrially advantageous method that enables high-purity benzene to be obtained. Benzene obtained by the method of the present invention is useful as a raw material for the production of fine chemicals requiring high purity, among others,
It is particularly useful for the synthesis of pharmaceuticals that have strict regulations on the mixture of related substances.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C07C 15/04 C07C 7/04 C07C 7/148 C07C 7/17 Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) C07C 15/04 C07C 7/04 C07C 7/148 C07C 7/17

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ベンゼン中に含まれるアルキル置換ベン
ゼンをアシル化して高沸点物質に変換し、蒸留すること
を特徴とする高純度ベンゼンの製造方法。
1. A alkyl-substituted benzene contained in the benzene is acylated into a high boiling point substances, by distillation
A method for producing high-purity benzene, characterized in that :
JP35456691A 1991-12-18 1991-12-18 Method for producing high-purity benzene Expired - Lifetime JP2909571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35456691A JP2909571B2 (en) 1991-12-18 1991-12-18 Method for producing high-purity benzene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35456691A JP2909571B2 (en) 1991-12-18 1991-12-18 Method for producing high-purity benzene

Publications (2)

Publication Number Publication Date
JPH05163167A JPH05163167A (en) 1993-06-29
JP2909571B2 true JP2909571B2 (en) 1999-06-23

Family

ID=18438422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35456691A Expired - Lifetime JP2909571B2 (en) 1991-12-18 1991-12-18 Method for producing high-purity benzene

Country Status (1)

Country Link
JP (1) JP2909571B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2014641A3 (en) * 2007-06-06 2009-03-18 Huntsman International Llc Process for preparing mixtures of diphenylmethane diisocyanates and polyphenyl polymethylene polyisocyanates

Also Published As

Publication number Publication date
JPH05163167A (en) 1993-06-29

Similar Documents

Publication Publication Date Title
JP2909571B2 (en) Method for producing high-purity benzene
JPS6364410B2 (en)
US4052459A (en) Process for the manufacture of alkylacetophenones
US5243088A (en) 1-monodebromination of dibromonaphthalene compounds
US4024196A (en) Process for the manufacture of hydroquinone
US2367632A (en) Carbalkoxylation of organic compounds
EP0502387B1 (en) Process for producing 3,3&#39;,4,4&#39;-tetramethyldiphenylmethane
JPS60500091A (en) Method for producing dihydrocarbyl oxalate
JPS63303937A (en) Manufacture of propynol
KR950003328B1 (en) 1,1-(3-ethylphenyl)phenylethylene and method for its preparation
Underwood Jr et al. CATALYSIS IN ORGANIC CHEMISTRY. I. REACTIONS OF ETHERS WITH ACID CHLORIDES, ACIDS AND ANHYDRIDES1
JPS6244538B2 (en)
US4138412A (en) Simultaneous production and purification of 4-nitro-omicron-phthalic anhydride
HU200582B (en) New process for producing dihydroxyacyl benzenes as intermediate products of leukotriene antagonists
US5235116A (en) Process for the preparation of 2-(1-phenylethyl)hydroquinone and 2-(1-phenylethyl)hydroquinone diacetate
US5726331A (en) Dimethyl n-lauroyl-l-glutamate
JPH0853390A (en) Production of bis(hydroxyaryl)pentanoic acids
JPS6165837A (en) Method for separating 2-methyl-6-acetylnaphthalene
SU958411A1 (en) Process for producing alpha,gamma-branched ketoesters
US4792629A (en) Alkylation of amine compounds
JPS61161241A (en) Production of aldehyde derivative
JPH04266851A (en) Purification of aromatic dicarboxylic acid diphenyl ester
KR960001909B1 (en) Preparation of 2 methyl-6-acylnaphthalene
JPS63258836A (en) Production of ethene derivative
JPS5849533B2 (en) Production method of cyclohexanone dimethyl acetal