JP2904803B2 - Surface processing method - Google Patents

Surface processing method

Info

Publication number
JP2904803B2
JP2904803B2 JP1097574A JP9757489A JP2904803B2 JP 2904803 B2 JP2904803 B2 JP 2904803B2 JP 1097574 A JP1097574 A JP 1097574A JP 9757489 A JP9757489 A JP 9757489A JP 2904803 B2 JP2904803 B2 JP 2904803B2
Authority
JP
Japan
Prior art keywords
processing
product
plane
workpiece
flat surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1097574A
Other languages
Japanese (ja)
Other versions
JPH02278109A (en
Inventor
忠継 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1097574A priority Critical patent/JP2904803B2/en
Publication of JPH02278109A publication Critical patent/JPH02278109A/en
Application granted granted Critical
Publication of JP2904803B2 publication Critical patent/JP2904803B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、平面の加工方法に関する。本発明は、たと
えば粉末冶金法等により平面を有するニヤネットシェー
プ製品の平面加工に利用される。
Description: TECHNICAL FIELD The present invention relates to a method for processing a flat surface. INDUSTRIAL APPLICABILITY The present invention is used for planar processing of a near net shape product having a planar surface by, for example, powder metallurgy.

[従来の技術] 粉末冶金法を利用したニヤネットシェープ成形法がセ
ラミックス製品を中心に行われている。代表的なプロセ
スとして粉末を金型プレス成形した後、焼成して固化さ
せ製品にする金型プレス成形法が挙げられる。得られた
焼成品は最終製品に近い寸法・形状であり、複雑な形状
の部品や難加工性材料の部品に適用すればメリットが大
きい。
[Prior Art] Near net shape molding using powder metallurgy has been performed mainly on ceramic products. As a typical process, there is a die press molding method in which powder is subjected to die press molding, and then fired to be solidified into a product. The obtained baked product has dimensions and shapes close to those of the final product, and there is a great merit if applied to parts having complicated shapes and parts made of difficult-to-process materials.

このプロセスを適用して得た比較的製造が難しい製品
として、第3図に示す溝付円盤がある。第4図は第3図
のA−A断面を示す。金型プレス成形で第3図の中間製
品21を造り、円盤の上下面を第4図に示す研削代25,26
の分だけ除去して斜線で示す製品21とする。内周と外周
の溝底23の上研削面からの深さは各々決められており、
ここでは同じとして説明する。
A relatively difficult product obtained by applying this process is a grooved disk shown in FIG. FIG. 4 shows an AA cross section of FIG. The intermediate product 21 shown in FIG. 3 is manufactured by die press molding, and the upper and lower surfaces of the disk are ground 25, 26 as shown in FIG.
And the product 21 indicated by oblique lines is removed. The depth from the upper grinding surface of the inner and outer groove bottoms 23 is determined respectively,
Here, the description will be made assuming the same.

溝底深さを各溝22でそろえるためには、第3図の中間
製品21の溝底23を同一平面上に造り込む必要がある。し
かし、金型プレス成形法で平板状のものを造る際には、
第5図のように反りやゆがみを生じ易く、また量産する
場合その程度が各製品ごとにばらつくのが一般的であ
る。そこで、原則的に各製品ごとに平面形状を測定して
良形状品だけを選択して後、加工にまわす必要がある。
In order to make the groove bottom depth uniform in each groove 22, it is necessary to form the groove bottom 23 of the intermediate product 21 of FIG. 3 on the same plane. However, when making a plate-shaped product by die press molding,
As shown in FIG. 5, warpage and distortion are likely to occur, and in mass production, the degree generally varies from product to product. Therefore, in principle, it is necessary to measure the planar shape of each product, select only good-shaped products, and then process the products.

従来、平面の加工法としては、第6図に示すように、
被加工物8を平面を有する取り付け台に設置し、工具6
を該平面に平行で目標の高さの面内を移動させる加工法
が広く行き渡っている。しかし、この方法では形状が比
較的悪い被加工物8を取り付け台に置いたとき座りが悪
いため、がたつきにより二重に面加工を行いがちであ
り、平面の仕上げ寸法精度を低下させる原因となってい
る。
Conventionally, as a flat surface processing method, as shown in FIG.
The work piece 8 is set on a mounting table having a flat surface, and the tool 6
There is a widespread use of a processing method in which the target is moved in a plane at a target height in parallel with the plane. However, in this method, when the workpiece 8 having a relatively poor shape is placed on the mounting table, the seating is poor, so that it is apt to perform double surface processing due to backlash, which causes a decrease in the accuracy of the finished dimension of the plane. It has become.

また、被加工物8が第3図に示す溝付きの中間製品21
であるような場合、上下面の面加工をうまく行って平行
度を出しても、溝底深さを内外周で同じ深さとするため
には、溝底を通る面と上下面が平行でなければならな
い。形状が悪くがたつく中間製品では溝底を通る面は水
平でなく、上下面をこの状態で加工すれば溝底深さは内
外周で異なる。以上のことから中間製品の内外周の溝底
が目標精度で同一平面にあり理論的に良製品が得られる
ものでも、面加工の際に形状不良に起因する内外周の溝
底深さ寸法の規格外れを起こし、歩留りの低下をもたら
している。
The workpiece 8 is a grooved intermediate product 21 shown in FIG.
In such a case, even if the upper and lower surfaces are processed well and parallelism is achieved, in order for the groove bottom depth to be the same on the inner and outer circumferences, the surface passing through the groove bottom and the upper and lower surfaces must be parallel. Must. In an intermediate product having a bad shape and a loose shape, the surface passing through the groove bottom is not horizontal, and if the upper and lower surfaces are machined in this state, the groove bottom depth differs between the inner and outer peripheries. From the above, even if the inner and outer groove bottoms of the intermediate product are on the same plane with the target accuracy and a theoretically good product can be obtained, the inner and outer groove bottom depth dimensions due to shape defects during surface processing It is out of specification, resulting in lower yield.

[発明が解決しようとする課題] 本発明は、平面を有する製品の平面加工を行うに際
し、上に述べた従来技術における問題点を解決し、平面
加工に起因する製品寸法の規格外れを防止して歩留りの
向上を図るとともに効率の良い製造プロセスを提供する
ことを目的としてなされた。
[Problems to be Solved by the Invention] The present invention solves the above-mentioned problems in the prior art when performing flat processing of a product having a flat surface, and prevents the product dimensions from being out of specification due to the flat processing. The aim was to improve yield and provide an efficient manufacturing process.

[課題を解決するための手段] 上記の目的を達成するための本発明の平面加工方法
は、平面を有する製品の平面加工方法において、切削装
置、研削装置、または研摩装置と該装置に製品を固定し
製品の向きおよび位置を変化させる駆動装置を持つ治
具、および製品の平面の任意点の位置を少なくとも3点
以上測定する位置センサーと該測定値を演算処理して仮
想平面を求め該仮想平面を目標加工平面位置に移動し固
定する制御信号を発信する演算装置を用いて加工するこ
とを特徴とする。
[Means for Solving the Problems] A planar machining method of the present invention for achieving the above object is a planar machining method for a product having a flat surface, comprising a cutting device, a grinding device, or a polishing device, and a product attached to the device. A jig having a driving device for fixing and changing the direction and position of the product, a position sensor for measuring at least three or more arbitrary points on the plane of the product, and processing the measured values to obtain a virtual plane Processing is performed using an arithmetic unit that transmits a control signal for moving and fixing a plane to a target processing plane position.

以下に本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明者は、第3図に示すセラミックス製の中間製品
21の平面形状を測定した際に、少し形状は悪いが面加工
が良ければ充分規格寸法に入るものが、面加工後規格外
れになることを経験した。そこで、寸法外れを生じる機
構を理論的に解明するとともに、その対策を発明して本
発明の加工方法を確立した。
The present inventor has proposed a ceramic intermediate product shown in FIG.
In the measurement of the planar shape of No. 21, it was found that although the shape was a little bad, but the surface processing was good, the ones that could well enter the standard dimensions would be out of specification after the surface processing. Therefore, the mechanism for causing the dimension deviation has been theoretically elucidated, and a countermeasure has been invented to establish the processing method of the present invention.

まず、本発明の加工方法の説明に入る前に、被加工物
の平面形状を測定誤差なく正確に測定することが可能な
方法について説明する。第1図に示すように、定盤付き
スタンド1の定盤面1bに治具7の定盤面7bを合わせるよ
うに置き、治具7の取り付け装置4に被測定物3を強固
に固定する。測定は治具7をスタンド1の定盤面1bに摺
動させて被測定物3の測定点を接触子2aの直下に合わせ
た後、接触子2aを測定点に接触させて指示値を記録す
る。非接触式の測定装置を用いる場合は、プローブ位置
を同様の方法で測定点に合わせて測定する。面の情報を
得るためには3点以上の測定を行えばよい。
First, before the description of the processing method of the present invention, a method capable of accurately measuring the planar shape of a workpiece without a measurement error will be described. As shown in FIG. 1, the platen surface 7b of the jig 7 is placed so as to match the platen surface 1b of the stand 1 with a platen, and the DUT 3 is firmly fixed to the mounting device 4 of the jig 7. In the measurement, the jig 7 is slid on the surface 1b of the stand 1 so that the measurement point of the DUT 3 is just below the contact 2a, and then the contact 2a is brought into contact with the measurement point to record the indicated value. . When a non-contact measurement device is used, the probe position is measured according to the same method as the measurement point. In order to obtain surface information, three or more points may be measured.

ところで、以上の測定方法では被測定物3の取り付け
装置4への設置状況のばらつきにより測定値に誤差が生
じる。第7図はスタンド1の定盤平面に対して被測定物
3が傾いている場合に測定誤差が生じる機構を示す図
で、簡単のために二次元空間で表現されている。点Oを
原点として水平方向にx座標、垂直方向にz座標を取
る。被測定物は平板であるとしその幅をb、傾きによる
両幅端のz座標の差をhとする。上面の任意の測定点P
の座標を(xP,zP1)とすれば、 zP1=h・xP/b …(1) となる。被測定物3が完全に水平に置いてあるとすれ
ば、 zP2=0 …(2) である。そこで、測定者が被測定物を水平に置いたと認
識しており、しかも実際には第7図のように傾いている
場合、測定誤差εPは εP=h・xP/b …(3) となる。すなわち、測定者は測定値zP1からの情報によ
り点PはεPだけ平面から外れていると認識する。傾き
による誤差を無くすためには、平板の両端点Oと点Qの
位置を測定して基準とする仮想面O−Qを求め、任意点
の位置zP1から仮想面の位置zP3を差し引いた修正値zP4
を測定値の代わりに用いればよい。第7図の場合、仮想
面O−Q上の任意点Pの座標を(xP,zP3)とすれば、 zP3=h・xP/b …(4) となり、式(1)の測定値zP1と等しい。そこで、修正
値zP4は zP4=zP1−zP3=0=zP2 …(5) となり、修正値は真値zP2に等しく誤差は無くなる。
By the way, in the above-described measuring method, an error occurs in the measured value due to a variation in the installation state of the DUT 3 on the mounting device 4. FIG. 7 is a diagram showing a mechanism in which a measurement error occurs when the DUT 3 is inclined with respect to the surface of the platen of the stand 1, and is represented in a two-dimensional space for simplicity. With the point O as the origin, the x coordinate is taken in the horizontal direction and the z coordinate is taken in the vertical direction. It is assumed that the object to be measured is a flat plate, and its width is b, and the difference between the z-coordinates of both width ends due to the inclination is h. Arbitrary measurement point P on the upper surface
Assuming that the coordinates of (x P , z P1 ), z P1 = h · x P / b (1) Assuming that the DUT 3 is completely horizontal, z P2 = 0 (2). Therefore, when the measurer recognizes that the object to be measured has been placed horizontally and is actually inclined as shown in FIG. 7, the measurement error ε P becomes ε P = h · x P / b (3) ). That is, the measurer recognizes that the point P is out of the plane by ε P based on the information from the measured value z P1 . To eliminate error due to the inclination determines a virtual plane O-Q as a reference to measure the positions of both points O and the point Q of the plate, less the position z P3 of the virtual plane from the position z P1 any point Correction value z P4
May be used instead of the measured value. For Figure 7, if the coordinates of any point P on the virtual plane O-Q and (x P, z P3), z P3 = h · x P / b ... (4) , and the formula (1) equal to the measured values z P1. Therefore, correction values z P4 is z P4 = z P1 -z P3 = 0 = z P2 ... (5) , and the correction value are equal error is eliminated in true value z P2.

一般に、平面の形状を測定するためには三次元空間で
考えなければならない。第8図は取り付け装置4に設置
された被測定物3を真上から見た場合を示しており、水
平面内にx座標およびy座標を、垂直方向にz座標を取
る。平面内の任意点Pの測定値による座標を(xP,yP
zP1)とする。また、傾きによる誤差を修正するために
導入する仮想面の任意点Pの座標を(xP,yP,zP3)と
して形状を判断する量に次式の修正値zP4を用いる。
Generally, in order to measure the shape of a plane, it is necessary to think in a three-dimensional space. FIG. 8 shows a case where the DUT 3 placed on the mounting device 4 is viewed from directly above, where x-coordinates and y-coordinates are taken in a horizontal plane, and z-coordinates are taken in a vertical direction. Coordinate by measurement of any point P in the plane (x P, y P,
z P1 ). Further, the coordinates of an arbitrary point P of the virtual plane to be introduced in order to correct the error due to the inclination (x P, y P, z P3) as shape amount to determine the use of the correction value z P4 follows.

zP4=zP1−zP3 …(6) ここで、修正値としては第8図に示すように平面内に
少なくとも3個以上の測定値を偏りなく取り、この測定
点のなるべく近くを通る平面を求めて次式を示す。
z P4 = z P1 −z P3 (6) Here, as a correction value, as shown in FIG. 8, at least three or more measured values are taken in a plane without bias, and a plane passing as close as possible to this measurement point is used. And the following equation is obtained.

zP3=a1・xP+a2・yP+a3 …(7) 式(7)の右辺の係数a1,a2,a3は任意の方法で決定
できるが、例えば各測定値を利用して最小二乗法から決
定することができる。以上の演算を計算機に入力して自
動的に行わせる。
z P3 = a 1 · x P + a 2 · y P + a 3 (7) The coefficients a 1 , a 2 , and a 3 on the right side of the equation (7) can be determined by an arbitrary method. For example, each measured value is used. From the least squares method. The above calculation is input to a computer and automatically performed.

第2図に本発明方法を実施する平面加工装置の一実施
態様を示す。第2図において、8は平面加工を受ける被
加工物、9は被加工物8を固定する取り付け装置、10は
取り付け装置9を移動させる駆動装置、11は被加工物の
位置を測定する測定装置、12は加工用工具、13は被加工
物の基準仮想面、14は加工用工具12の加工面、15は演算
・制御装置である。
FIG. 2 shows an embodiment of a plane processing apparatus for carrying out the method of the present invention. In FIG. 2, reference numeral 8 denotes a workpiece to be subjected to planar processing, 9 denotes a mounting device for fixing the workpiece 8, 10 denotes a driving device for moving the mounting device 9, and 11 denotes a measuring device for measuring the position of the workpiece. , 12 is a processing tool, 13 is a reference virtual surface of a workpiece, 14 is a processing surface of the processing tool 12, and 15 is a calculation / control device.

第2図に示すように被加工物8の加工面を上面として
取り付け装置9に固定する。次に、測定装置11により被
加工面上に少なくとも3個以上の測定点を取り位置を求
める。この測定値を演算・制御装置15に入力して上記の
式(7)の方法により、被加工物の基準仮想面13を求め
る。この時、同時に面の形状を測定すれば、規格外れの
物については後工程に行かないように選別できる。
As shown in FIG. 2, the workpiece 8 is fixed to the mounting device 9 with the processing surface of the workpiece 8 facing upward. Next, the measuring device 11 takes at least three or more measurement points on the surface to be processed to determine the position. The measured value is input to the arithmetic and control unit 15, and the reference virtual plane 13 of the workpiece is obtained by the method of the above equation (7). At this time, if the shape of the surface is measured at the same time, non-standard products can be sorted out without going to the subsequent process.

第4図で示す溝底23を通る平面が加工面と平行でなけ
ればならないような条件の場合は、式(7)を溝底位置
の測定値から求めればよい。基準仮想面13が求まれば、
演算・制御装置15から駆動装置10へ制御指令が発信して
基準仮想面13が加工面14と最適な配置となるように被加
工物8を移動させる。第4図の場合は、溝底23の基準仮
想面を加工面14と平行に保ち、しかも溝深さが最適にな
るように基準仮想面と加工面との間隔を調節する。この
状態で被加工物を強く固定して加工用工具12で面を加工
する。
In the case where the plane passing through the groove bottom 23 shown in FIG. 4 must be parallel to the processing surface, the equation (7) may be obtained from the measured value of the groove bottom position. Once the reference virtual plane 13 is obtained,
A control command is transmitted from the arithmetic / control device 15 to the drive device 10 to move the workpiece 8 so that the reference virtual surface 13 and the processing surface 14 are optimally arranged. In the case of FIG. 4, the reference virtual surface of the groove bottom 23 is kept parallel to the processing surface 14, and the distance between the reference virtual surface and the processing surface is adjusted so that the groove depth is optimized. In this state, the workpiece is strongly fixed and the surface is machined by the machining tool 12.

以上の如く、本発明によれば、従来平面の加工の際に
製品規格として満たさなければならない基準面がある場
合に、加工面と基準面の位置関係を制御できないことに
より規格外れが発生していたのを、この制御を可能にし
て規格外れを防止して製品の品質の向上を図るとともに
格段の歩留り向上を可能にした。
As described above, according to the present invention, when there is a reference surface that must be satisfied as a product standard when processing a conventional flat surface, a deviation from the standard occurs because the positional relationship between the processed surface and the reference surface cannot be controlled. However, this control has been made possible to prevent out-of-specification, to improve the quality of the product, and to improve the yield significantly.

[実施例] 第2図、第4図及び第1表を用いて本発明の実施例を
説明する。実施した装置の構造及び配設は第2図を基本
としており、条件は第1表の通りである。
Embodiment An embodiment of the present invention will be described with reference to FIG. 2, FIG. 4, and Table 1. The structure and arrangement of the implemented device are based on FIG. 2, and the conditions are as shown in Table 1.

第1表の条件で従来法と本発明法との比較を行った。
従来法とは第6図に示すように被加工物取り付け台が電
磁式の定盤であり、被加工物の位置を手動で決めて加工
する方法を指す。従来法であれば加工後の製品の外側の
溝深さの変化が0.4mm有るのに対し、本発明法であれば
0.2mmと半減している。このことから本発明法は平面加
工の精度向上に有効であることが明らかとなった。
Comparison between the conventional method and the method of the present invention was performed under the conditions shown in Table 1.
As shown in FIG. 6, the conventional method refers to a method in which the workpiece mounting base is an electromagnetic surface plate, and the position of the workpiece is manually determined and processed. In the conventional method, the change in the outer groove depth of the processed product is 0.4 mm, whereas in the method of the present invention,
It is halved to 0.2mm. From this, it became clear that the method of the present invention is effective for improving the accuracy of planar processing.

[発明の効果] 本発明は、以上述べたように構成しかつ作用せしめる
ことにより、平面の加工の際に、加工面と基準面の位置
関係の制御を可能にして規格外れを防止して製品の品質
および歩留りの向上を可能にする顕著な効果がある。
[Effects of the Invention] The present invention is configured and operated as described above, thereby enabling control of the positional relationship between a processed surface and a reference surface during processing of a flat surface to prevent deviation from the standard. There is a remarkable effect that allows for an improvement in the quality and yield of the steel.

【図面の簡単な説明】[Brief description of the drawings]

第1図は平面形状の測定装置の構成図、第2図は本発明
を実施するための平面加工装置例の構成図、第3図は被
加工物の一例を示すもので、溝付き円盤斜視図、第4図
は第3図のA−A断面図、第5図は形状不良の例を示す
ものの斜視図、第6図は従来の研削装置の構成図、第7
図は被加工物の取り付け不良の例を説明する図面、第8
図は被測定物である円盤状の平板の平面図。 1……定盤付きスタンド、2……測定装置の接触子、3
……被測定物、4……取り付け装置、5……加工機のフ
レーム、6……加工工具、7……被測定物移動用治具、
8……被加工物、9……取り付け装置、10……駆動装
置、11……測定装置、12……加工工具、13……基準仮想
面、14……加工面、15……演算・制御装置。
FIG. 1 is a configuration diagram of a planar shape measuring device, FIG. 2 is a configuration diagram of an example of a planar processing device for carrying out the present invention, and FIG. FIG. 4, FIG. 4 is a sectional view taken along line AA of FIG. 3, FIG. 5 is a perspective view showing an example of a defective shape, FIG.
The figure is a drawing for explaining an example of mounting failure of the workpiece, and FIG.
The figure is a plan view of a disk-shaped flat plate as an object to be measured. 1 ... stand with surface plate, 2 ... contact of measuring device, 3
... Workpiece to be measured, 4... Mounting device, 5...
8 Workpiece, 9 Mounting device, 10 Drive device, 11 Measuring device, 12 Processing tool, 13 Reference virtual surface, 14 Processing surface, 15 Calculation / control apparatus.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】平面を有する製品の平面加工方法におい
て、切削装置、研削装置、または研摩装置と該装置に製
品を固定し製品の向きおよび位置を変化させる駆動装置
を持つ治具、および製品の平面の任意点の位置を少なく
とも3点以上測定する位置センサーと該測定値を演算処
理して仮想平面を求め該仮想平面を目標加工平面位置に
移動し固定する制御信号を発信する演算装置を用いて加
工することを特徴とする平面の加工方法。
In a method for processing a product having a flat surface, a jig having a cutting device, a grinding device, or a polishing device, a driving device for fixing the product to the device and changing the orientation and position of the product, and A position sensor for measuring at least three or more arbitrary points on the plane and an arithmetic unit for processing the measured values to obtain a virtual plane and transmitting a control signal for moving and fixing the virtual plane to a target processing plane position. A method for processing a flat surface, characterized in that the flat surface is processed.
JP1097574A 1989-04-19 1989-04-19 Surface processing method Expired - Fee Related JP2904803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1097574A JP2904803B2 (en) 1989-04-19 1989-04-19 Surface processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1097574A JP2904803B2 (en) 1989-04-19 1989-04-19 Surface processing method

Publications (2)

Publication Number Publication Date
JPH02278109A JPH02278109A (en) 1990-11-14
JP2904803B2 true JP2904803B2 (en) 1999-06-14

Family

ID=14196011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1097574A Expired - Fee Related JP2904803B2 (en) 1989-04-19 1989-04-19 Surface processing method

Country Status (1)

Country Link
JP (1) JP2904803B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002368531A (en) * 2001-06-06 2002-12-20 Hitachi Metals Ltd Surface mounting type antenna and its production method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2940633C2 (en) * 1979-10-06 1986-01-02 Ernst Leitz Wetzlar Gmbh, 6330 Wetzlar Method for determining the axis of rotation of a rotary table in multi-coordinate measuring devices
JPS61265504A (en) * 1985-05-20 1986-11-25 Hekitoku:Kk Method and apparatus for inspecting strain of tile product

Also Published As

Publication number Publication date
JPH02278109A (en) 1990-11-14

Similar Documents

Publication Publication Date Title
EP2929287B1 (en) High speed metrology with numerically controlled machines
EP1785793B1 (en) Methods for determining and machining worked surface of plate-like material and apparatus for these methods
CN108120390B (en) Measuring apparatus and measuring method
US5386666A (en) Automated system for controlling taper length during the lapping of air bearing surface of magnetic heads
US7991501B2 (en) Method for determining machining plane of planar material, machining method and device for determining machining plane and flat surface machining device
JP4050459B2 (en) Device for detecting the position of two objects
JP2010510519A (en) Gauge for measuring strain of glass sheet
CN114705129B (en) Packaging substrate deformation measuring equipment and method thereof
JP2904803B2 (en) Surface processing method
JPH09108725A (en) Surface trimming of metal slab
CN114713661B (en) Method for repairing stamping die by referring to workpiece rebound parameters
CN103831634A (en) Adjustable jig mechanism
JPH03259705A (en) Angle measuring instrument for bending machine
JPH03268818A (en) Angle measuring instrument for bender
JP3020800B2 (en) Grinding equipment for scratch removal
JPH0649377Y2 (en) Press die with parallelism adjustment function
EP4296807A1 (en) Method and machining centre for plates
CN114654277B (en) Double-inclined-surface workpiece, double-inclined-surface fixture body and machining method thereof
JPH0917759A (en) Method and apparatus for chamfering semiconuctor wafer
RU2028871C1 (en) Method of adjusting a machine-tool for machining rotational surfaces
US5421099A (en) Inspection tool
JPH02109660A (en) Centering method for probe of dimension measurement
JPH04203913A (en) Apparatus for three-dimensional measurement
CN112792698A (en) Method and system for cleaning welding head
JPH0355124Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees