JP2903975B2 - Optical receiver characteristic measuring method and apparatus - Google Patents

Optical receiver characteristic measuring method and apparatus

Info

Publication number
JP2903975B2
JP2903975B2 JP5292302A JP29230293A JP2903975B2 JP 2903975 B2 JP2903975 B2 JP 2903975B2 JP 5292302 A JP5292302 A JP 5292302A JP 29230293 A JP29230293 A JP 29230293A JP 2903975 B2 JP2903975 B2 JP 2903975B2
Authority
JP
Japan
Prior art keywords
optical receiver
light source
light
spontaneous emission
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5292302A
Other languages
Japanese (ja)
Other versions
JPH07146209A (en
Inventor
清 福知
哲行 洲崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP5292302A priority Critical patent/JP2903975B2/en
Publication of JPH07146209A publication Critical patent/JPH07146209A/en
Application granted granted Critical
Publication of JP2903975B2 publication Critical patent/JP2903975B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Optical Communication System (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は光受信器特性測定方法お
よび装置に関し、特に光ファイバを利用して行なう光通
信において、光検出素子と、この光検出素子の検出出力
を増幅する増幅器とを含む光受信器の受信周波数対出力
電力特性で表現する周波数特性を簡易に計測することを
可能とした光受信器特性測定方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring characteristics of an optical receiver, and more particularly, to an optical communication device using an optical fiber, comprising an optical detector and an amplifier for amplifying the detection output of the optical detector. The present invention relates to an optical receiver characteristic measuring method and apparatus capable of easily measuring a frequency characteristic expressed by a receiving frequency versus output power characteristic of an optical receiver including the optical receiver.

【0002】[0002]

【従来の技術】光ファイバを利用し高速ディジタル信号
を伝送する光通信において、最近のギガビット/秒程度
の伝送速度での光通信を確保するために、広い周波数範
囲にわたって光受信器の特性を正確に把握することがシ
ステム構築上重要である。光受信器の性能としては、ト
ランスインピーダンス周波数特性と等価入力雑音電流密
度の周波数特性(雑音周波数特性)があげられる。
2. Description of the Related Art In optical communication for transmitting high-speed digital signals using an optical fiber, the characteristics of an optical receiver must be accurately measured over a wide frequency range in order to secure optical communication at a recent transmission speed of about gigabit / second. It is important for the system construction to understand this. The performance of the optical receiver includes a transimpedance frequency characteristic and a frequency characteristic of an equivalent input noise current density (noise frequency characteristic).

【0003】これら周波数特性を測定する方法として、
線幅の広い光源例えば発光ダイオード(LED)やスー
パールミネッセントダイオード(SLD)からの光を光
受信器で受光した時の出力電力を利用して測定する方法
がある。この方法では、光受信器の受光時に光検出器に
白色雑音であるショット雑音電流とビート雑音電流とを
生じてこれにより生ずる受信器出力雑音がトランスイン
ピーダンス周波数特性を表現することを利用し、かつ受
光時には非受光時に発生する受信器雑音に加えて前述し
たショット雑音電流とビート雑音電流とにもとづく出力
が生ずることを利用して雑音周波数特性を導出するもの
である。また、これを改良した測定方法として、半導体
増幅器から発する自然放出光を受光したときに発生する
ビート雑音の周波数特性と、標準とする光受信器で自然
放出光を受光したときのビート雑音の周波数特性から導
出する方法(例えば特開平3−220467号公報)が
ある。
As a method of measuring these frequency characteristics,
There is a method of measuring by using output power when light from a light source having a wide line width, for example, a light emitting diode (LED) or a super luminescent diode (SLD) is received by an optical receiver. This method utilizes the fact that the photodetector generates a shot noise current and a beat noise current which are white noises at the time of receiving light by the optical receiver, and the output noise of the receiver generated by the shot noise current and the beat noise current expresses a transimpedance frequency characteristic, and The noise frequency characteristic is derived by utilizing the fact that an output is generated based on the shot noise current and the beat noise current in addition to the receiver noise generated during non-light reception during light reception. As an improved measuring method, the frequency characteristics of beat noise generated when spontaneous emission light emitted from a semiconductor amplifier is received and the frequency of beat noise when spontaneous emission light is received by a standard optical receiver There is a method of deriving from characteristics (for example, JP-A-3-220467).

【0004】[0004]

【発明が解決しようとする課題】この従来の光受信器特
性測定方法では、測定の際に光源の強度雑音の影響をな
くするために、線幅の広い光源を使用する必要がある。
しかし、前述したLEDや半導体増幅器では高出力が得
られないため、測定器雑音に比べて十分に大きな受信器
出力を確保できなくなり、精度の良い測定が難しいとい
う問題点があった。また、高出力が得られるSLDで
は、デバイスの劣化が速く寿命が短いという問題点があ
った。さらに、特開平3−220467号公報に開示さ
れているような測定方法では、測定時に校正を行うため
の標準光受信器、および測定の際の校正手順を必要とす
る。この場合では、各装置ごとに標準光受信器をもつこ
とにともなうコストの増大、標準の維持のためのメンテ
ナンス、さらに校正手順を必要とするために測定が煩雑
になるなどの問題点を有する。
In this conventional method for measuring the characteristics of an optical receiver, it is necessary to use a light source having a wide line width in order to eliminate the influence of intensity noise of the light source at the time of measurement.
However, since high output cannot be obtained with the above-described LED or semiconductor amplifier, it is not possible to secure a sufficiently large receiver output as compared with measuring instrument noise, and there is a problem that accurate measurement is difficult. In addition, in the SLD that can obtain a high output, there is a problem that the device is deteriorated quickly and the life is short. Further, the measuring method as disclosed in Japanese Patent Application Laid-Open No. 3-220467 requires a standard optical receiver for performing calibration at the time of measurement, and a calibration procedure at the time of measurement. In this case, there are problems such as an increase in cost due to having a standard optical receiver for each device, maintenance for maintaining the standard, and the need for a calibration procedure, which complicates the measurement.

【0005】本発明の目的は上述した問題点を解決し、
簡素な構成で大きい光出力が確保できる光源を利用し、
校正基準受信器および校正手順を不要として精度の良い
測定を確保しうる簡素な校正の光受信器特性測定方法お
よび装置を提供することにある。
An object of the present invention is to solve the above-mentioned problems,
Using a light source that can secure a large light output with a simple configuration,
An object of the present invention is to provide a simple calibration optical receiver characteristic measuring method and apparatus capable of ensuring accurate measurement without requiring a calibration reference receiver and a calibration procedure.

【0006】[0006]

【課題を解決するための手段】本発明の光受信器特性測
定方法は、希土類添加光ファイバを励起して発生する自
然放出光を特性を測定すべき被測定光受信器に入力して
検出した光電流量と出力電力との比を測定周波数範囲に
わたって求めて前記被測定光受信器のトランスインピー
ダンス周波数特性を導出する第1のステップと、前記希
土類添加光ファイバからの自然放出光の光量を少なくと
も2段階に切り替えて前記被測定光受信器に入力した場
合の前記測定周波数範囲にわたる前記光電流量および前
記出力電力と前記自然放出光の波長帯域とにもとづいて
前記被測定光受信器の雑音周波数特性を導出する第2の
ステップとを備える。
According to the method for measuring the characteristics of an optical receiver according to the present invention, spontaneous emission light generated by exciting a rare-earth-doped optical fiber is inputted to a measured optical receiver whose characteristics are to be measured and detected. A first step of obtaining a ratio between a photoelectric flow rate and an output power over a measurement frequency range to derive a transimpedance frequency characteristic of the optical receiver under test, and reducing the amount of spontaneous emission light from the rare earth-doped optical fiber by at least 2 The noise frequency characteristic of the optical receiver under measurement is changed based on the photoelectric flow rate and the output power over the measurement frequency range and the wavelength band of the spontaneous emission light when input to the optical receiver under measurement after switching to a stage. Deriving a second step.

【0007】また本発明の光受信器特性測定装置は、希
土類としてエルビウムを添加したエルビウム添加光ファ
イバと前記エルビウム添加光ファイバを励起する少なく
とも1つの励起光源とを備え前記励起光源による励起光
を前記エルビウム添加光ファイバに入射して波長帯域が
既知の前記自然放出光を光源として出光する光源手段
と、前記光源手段の出光する前記自然放出光の出力光量
を少なくとも2段階に切り替える光源切替手段と、前記
光源手段の出光する前記自然放出光を特性を測定すべき
被測定光受信器に入力して検出した光電流量と前記光源
手段の出光する前記自然放出光を前記被測定光受信器に
入力した場合に測定周波数範囲の各周波数での出力電力
とにもとづいて校正手順を含むことなく前記被測定光受
信器の雑音周波数特性を求める特性導出手段とを備え
る。
The optical receiver characteristic measuring apparatus of the present invention comprises an erbium-doped optical fiber doped with erbium as a rare earth element and at least one excitation light source for exciting the erbium-doped optical fiber. A light source means for emitting the spontaneous emission light having a known wavelength band as a light source by being incident on an erbium-doped optical fiber; and a light source switching means for switching an output light amount of the spontaneous emission light emitted from the light source means in at least two stages, The spontaneous emission light emitted from the light source means is input to the measured light receiver whose characteristics are to be measured, and the detected photoelectric flow rate and the spontaneous emission light emitted from the light source means are input to the measured light receiver. In this case, the noise frequency characteristic of the optical receiver under test is included without including a calibration procedure based on the output power at each frequency in the measurement frequency range. And a characteristic deriving means for obtaining.

【0008】[0008]

【作用】図4は本発明の光受信器のトランスインピーダ
ンス周波数特性の測定原理を示す説明図である。希土類
元素を添加した光ファイバを用いた光ファイバレーザ増
幅器として、エルビウムを添加した光ファイバをレーザ
活性物質とし、これを半導体レーザを励起光源として励
起するエルビウムファイバ光源からの光には強度雑音が
含まれないので、被測定光受信器13に発生する雑音電
流はショット雑音電流Ishotとビート雑音電流Ib
eatとなる。これらの雑音電流源は、図4(a)に示
すような白色雑音電流である。この白色雑音電流が図4
(b)に示す被測定光受信器13のトランスインピーダ
ンスZT の特性を受けると図4(c)に示すように、出
力電力特性にトランスインピーダンスZT の特性が直接
的に現れる。ここで、ショット雑音電流、ビート雑音電
流の単位周波数当たりの自乗平均はそれぞれ(1),
(2)式で表される。
FIG. 4 is an explanatory diagram showing the principle of measuring the transimpedance frequency characteristic of the optical receiver according to the present invention. As an optical fiber laser amplifier using an optical fiber doped with a rare earth element, an optical fiber doped with erbium is used as a laser active material, and light from an erbium fiber light source that is pumped with a semiconductor laser as an excitation light source contains intensity noise. Therefore, the noise current generated in the optical receiver under test 13 includes the shot noise current Ishot and the beat noise current Ib.
eat. These noise current sources are white noise currents as shown in FIG. This white noise current is shown in FIG.
Upon receiving the characteristic of the transimpedance Z T of the measured light receiver 13 shown in (b) as shown in FIG. 4 (c), characteristic of the transimpedance Z T to the output power characteristic appears directly. Here, the root mean square per unit frequency of the shot noise current and the beat noise current are (1) and
It is expressed by equation (2).

【0009】 〈Ishot2 〉=4(G−1)・nsp・Δν・e(ηe)……(1) 〈Ibeat2 〉=2(G−1)2 ・nsp2 ・Δν・(ηe)2 ……(2 ) また、このとき被測定光受信器13の受光時に内蔵する
光検出器に流れる電流Ipdは次の(3)式で表され
る。
<Ishot 2 > = 4 (G−1) · nsp · Δν · e (ηe) (1) <Ibeat 2 > = 2 (G−1) 2 · nsp 2 · Δν · (ηe) 2 (2) At this time, the current Ipd flowing through the built-in photodetector when the measured optical receiver 13 receives light is expressed by the following equation (3).

【0010】 Ipd=2(G−1)・nsp・Δν・(ηe)……(3) ここで、Gはエルビウム添加ファイバ増幅器の増幅率、
nspは反転分布係数、Δνは出力光の波長幅、ηは光
受信器の量子効率、eは電荷量である。(3)式を用い
て、(1),(2)式はそれぞれ次の(4),(5)式
のように変換される。
Ipd = 2 (G−1) · nsp · Δν · (ηe) (3) where G is the amplification factor of the erbium-doped fiber amplifier,
nsp is the population inversion coefficient, Δν is the wavelength width of the output light, η is the quantum efficiency of the optical receiver, and e is the charge amount. Using the equation (3), the equations (1) and (2) are transformed as the following equations (4) and (5), respectively.

【0011】 〈Ishot2 〉=2・e・Ipd[A2 /Hz]……(4) 〈Ibeat2 〉=Ipd2 /(2Δν)[A2 /Hz]……(5) この状態で被測定光受信器13の出力電力を測定した結
果をP(f)[W/Hz]とすると、トランスインピー
ダンス特性ZT (f)は次の(6)式で与えられる。
<Ishot 2 > = 2 · e · Ipd [A 2 / Hz] (4) <Ibeat 2 > = Ipd 2 / (2Δν) [A 2 / Hz] (5) Assuming that the result of measuring the output power of the measuring optical receiver 13 is P (f) [W / Hz], the transimpedance characteristic Z T (f) is given by the following equation (6).

【0012】 ZT (f)=P(f)1/2 *R/(〈Ibeat2 〉+〈Ishot2 〉+ 〈Icir2 〉)[Ω]……(6) ここで、Rは測定器の特性インピーダンス、Icirは
光受信器の等価入力雑音電流密度である。光源からの入
力光を大きくすれば、Ishot,Ibeatに比べて
Icirが非常に小さくなるのでIcirの影響を無視
することができる。以上の手順を用いて、受信器のトラ
ンスインピーダンス特性を導出する。
Z T (f) = P (f) 1/2 * R / (<Ibeat 2 > + <Ishot 2 > + <Icir 2 >) [Ω] (6) where R is a measuring instrument And Icir is the equivalent input noise current density of the optical receiver. If the input light from the light source is increased, Icir is much smaller than Ishot and Ibeat, so that the influence of Icir can be ignored. By using the above procedure, the transimpedance characteristic of the receiver is derived.

【0013】次に、光受信器の雑音周波数特性の測定に
関して、図5を参照して原理を説明する。測定は、エル
ビウムファイバ光源から被測定光受信器へ入射する光量
を光シャッタ等を用いて2段階に切り替えて(通常は光
を入射したときと入射しないときの2段階を用いる)、
出力電力を測定することにより行う。被測定光受信器に
光が受光されているときには、被測定光受信器の出力に
は前述したショット雑音、ビート雑音および回路雑音に
起因する雑音電力の和が観測される。このときの出力雑
音電力をN1 とすると、N1 は次の(7)式で示され
る。
Next, the principle of measuring the noise frequency characteristic of the optical receiver will be described with reference to FIG. In the measurement, the amount of light incident from the erbium fiber light source to the optical receiver under measurement is switched to two steps using an optical shutter or the like (usually two steps when light is incident and when light is not incident) are used.
This is done by measuring the output power. When light is being received by the optical receiver under measurement, the sum of noise power due to the shot noise, beat noise, and circuit noise described above is observed in the output of the optical receiver under measurement. When the output noise power at this time is N 1, N 1 is expressed by the following equation (7).

【0014】 N1 =ZT (〈Ishot2 〉+〈Ibeat2 〉+〈Icir2 〉)[W ]……(7) 次に、受光していないときの被測定光受信器の出力電力
2 は、次の(8)式のようになる。
N 1 = Z T (<Ishot 2 > + <Ibeat 2 > + <Icir 2 >) [W] (7) Next, the output power N of the measured optical receiver when no light is received 2 is expressed by the following equation (8).

【0015】 N2 =ZT (〈Icir2 〉)[W]……(8) これら(7)式と(8)式との比から、〈Icir2
は次の(9)式で示される。
N 2 = Z T (<Icir 2 >) [W] (8) From the ratio of these equations (7) and (8), <Icir 2 >
Is represented by the following equation (9).

【0016】 〈Icir2 〉=(〈Ishot2 〉+〈Ibeat2 〉)/(N1 /N2 −1)[A2 /Hz]……(9) ここで、受光時の光電流Ipdから、(4),(5)式
により〈Ishot2〉、〈Ibeat2 〉が得られ、
さらに(9)式から雑音周波数特性が導出される。
<Icir 2 > = (<Ishot 2 > + <Ibeat 2 >) / (N 1 / N 2 −1) [A 2 / Hz] (9) Here, from the photocurrent Ipd at the time of light reception. , (4) and (5) yield <Ishot 2 > and <Ibeat 2 >.
Further, a noise frequency characteristic is derived from Expression (9).

【0017】ところで、本発明では、測定に用いる光源
としてエルビウムファイバ光源を用いることを特徴とし
ている。これは、図3(a)に示すエルビウムファイバ
光源では、励起光源3による励起光源量やエルビウム添
加光ファイバ2の長さを調整することで、比較的容易に
大出力を得ることができるからである。また、図3
(a)のような単体での構成で十分な出力が得られない
場合、図3(b)のように光源部を光アイソレータ12
を介して縦続接続することにより、容易に所望の大出力
を得ることができる。
Incidentally, the present invention is characterized in that an erbium fiber light source is used as a light source used for measurement. This is because in the erbium fiber light source shown in FIG. 3A, a large output can be obtained relatively easily by adjusting the amount of the excitation light source by the excitation light source 3 and the length of the erbium-doped optical fiber 2. is there. FIG.
When a sufficient output cannot be obtained with a single unit configuration as shown in FIG. 3A, the light source unit is replaced with an optical isolator 12 as shown in FIG.
By cascade-connecting via the above, a desired large output can be easily obtained.

【0018】[0018]

【実施例】次に、本発明について図面を参照して説明す
る。図1は本発明の第一の実施例の構成図である。本第
一の実施例は、被励起媒体であるエルビウム添加光ファ
イバ2と、半導体レーザ利用の励起光源3と、入射光学
系10とを有する光源手段としてのエルビウムファイバ
光源1と、エルビウムファイバ光源1の出力光101の
光量を2段階に切り替える光源切替手段としての可変光
減衰器4と、光検出器8と増幅器9とを有する被測定光
受信器5と、被測定光受信器5を流れる受光時の光電流
を計測する電流計6と、電流計6とともに特性導出手段
を構成し被測定光受信器5の出力電力を計測する電力ス
ペクトル測定器7とを備える。
Next, the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of a first embodiment of the present invention. In the first embodiment, an erbium-doped optical fiber 2 as a medium to be excited, an excitation light source 3 using a semiconductor laser, an erbium fiber light source 1 as a light source means having an incident optical system 10, and an erbium fiber light source 1 The variable optical attenuator 4 as a light source switching means for switching the light amount of the output light 101 in two stages, the measured light receiver 5 having the photodetector 8 and the amplifier 9, and the received light flowing through the measured light receiver 5 An ammeter 6 for measuring the photocurrent at the time, and a power spectrum measuring device 7 which constitutes a characteristic deriving means together with the ammeter 6 and measures the output power of the optical receiver 5 to be measured.

【0019】エルビウムファイバ光源1から波長帯域が
既知である出力101が送出され、可変減衰器4を通っ
て、被測定光受信器5に入射する。被測定光受信器5の
光検出器8には電流計6が接続されており、光入射時の
光電流を測定する。被測定光受信器5の出力には電力ス
ペクトル測定器7が接続されており、出力電力スペクト
ルを測定する。
An output 101 having a known wavelength band is transmitted from the erbium fiber light source 1, passes through the variable attenuator 4, and enters the optical receiver under test 5. An ammeter 6 is connected to the photodetector 8 of the optical receiver 5 to be measured, and measures a photocurrent when light is incident. A power spectrum measuring device 7 is connected to the output of the measured optical receiver 5 and measures the output power spectrum.

【0020】トランスインピーダンス特性の測定は、電
力スペクトル測定器7の発生する雑音との信号(S)対
雑音(N)の比S/Nを良好にし、かつ被測定光受信器
5の雑音周波数特性の影響を排除するため、可変減衰器
4の減衰量を小さくして十分な量の受光を被測定光受信
器5に与える。この状態で、エルビウムファイバ光源1
の出力光101の波長帯域と、電流計6で計測する光電
流量と、電力スペクトル測定器7で計測する被測定光受
信器5の出力501の電力スペクトルとを利用して、
(4),(5)および(6)式にもとづいてトランスイ
ンピーダンスを導出する。
The transimpedance characteristic is measured by improving the signal-to-noise (N) ratio S / N with the noise generated by the power spectrum measuring device 7 and the noise frequency characteristic of the optical receiver 5 to be measured. In order to eliminate the influence of the above, the attenuation of the variable attenuator 4 is reduced to give a sufficient amount of received light to the optical receiver 5 to be measured. In this state, the erbium fiber light source 1
Using the wavelength band of the output light 101, the photoelectric flow rate measured by the ammeter 6, and the power spectrum of the output 501 of the measured optical receiver 5 measured by the power spectrum measuring device 7.
The transimpedance is derived based on the equations (4), (5) and (6).

【0021】被測定光受信器5の雑音周波数特性の測定
は、被測定光受信器5に十分な受光を与えた状態での電
流計6による光電流量と電力スペクトル測定器7による
出力電力スペクトルN1 (出力雑音電力)を計測する。
次に、可変光減衰器4によって被測定光受信器4の受光
を完全に遮断した時の出力電力スペクトルN2 を計測す
る。これら計測値と入力光の波長幅とにもとづき、
(4),(5)および(9)式から雑音周波数特性を導
出する。
The measurement of the noise frequency characteristic of the measured optical receiver 5 is performed by measuring the photoelectric flow rate by the ammeter 6 and the output power spectrum N by the power spectrum measuring instrument 7 in a state where sufficient light reception is given to the measured optical receiver 5. 1 Measure (output noise power).
Next, the output power spectrum N 2 when the light reception of the measured optical receiver 4 is completely cut off by the variable optical attenuator 4 is measured. Based on these measured values and the wavelength width of the input light,
The noise frequency characteristic is derived from the equations (4), (5) and (9).

【0022】図2は、本発明の第二の実施例の構成図で
ある。本第二の実施例は、図1に示す第一の実施例にお
ける可変光減衰器4に代えて、被測定光受信器5に対す
る入力光量の切替をエルビウムファイバ光源1aの励起
光源3に対する注入電流の切替によって行なうものと
し、エルビウムファイバ光源1aにある可変電流源11
によって注入電流を切り替える。この構成では、励起光
源3に対する注入電流を切り替えるために励起光源3の
劣化が加速される半面、入射光量を切り替える機械的な
制御機構としての可変光減衰器4が不要となる。
FIG. 2 is a block diagram of a second embodiment of the present invention. In the second embodiment, instead of the variable optical attenuator 4 in the first embodiment shown in FIG. 1, the input light quantity to the optical receiver under test 5 is switched by the injection current of the erbium fiber light source 1a to the excitation light source 3. Of the variable current source 11 in the erbium fiber light source 1a.
To switch the injection current. In this configuration, although the deterioration of the excitation light source 3 is accelerated to switch the injection current to the excitation light source 3, the variable optical attenuator 4 as a mechanical control mechanism for switching the amount of incident light is not required.

【0023】[0023]

【発明の効果】以上説明したように本発明によれば、希
土類添加光ファイバを励起して発生する自然放出光を被
測定光受信器に入力し、検出した光電流量と出力電力と
の比を測定周波数範囲にわたって計測してトランスイン
ピーダンス周波数特性を求め、かつ希土類添加光ファイ
バからの自然放出光の光量を少なくとも2段階に切り替
えて計測した光電流量、出力電力および波長帯域にもと
づいて雑音周波数特性を導出することにより、構成基準
受信器および校正手順を不要とした簡素な構成かつ正確
な光受信器特性測定方法および装置が実現できる効果が
ある。
As described above, according to the present invention, the spontaneous emission light generated by exciting the rare-earth-doped optical fiber is input to the optical receiver under measurement, and the ratio between the detected photoelectric flow rate and the output power is determined. Measure transimpedance frequency characteristics by measuring over the measurement frequency range, and change the noise frequency characteristics based on the photoelectric flow rate, output power, and wavelength band measured by switching the amount of spontaneous emission light from the rare-earth-doped optical fiber in at least two stages. The derivation has an effect of realizing a simple configuration and accurate optical receiver characteristic measuring method and apparatus that does not require the configuration reference receiver and the calibration procedure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施例の構成図である。FIG. 1 is a configuration diagram of a first embodiment of the present invention.

【図2】本発明の第二の実施例の構成図である。FIG. 2 is a configuration diagram of a second embodiment of the present invention.

【図3】本発明の第一および第二の実施例におけるエル
ビウムファイバ光源の構成例を示す説明図である。
FIG. 3 is an explanatory diagram showing a configuration example of an erbium fiber light source in the first and second embodiments of the present invention.

【図4】光受信器のトランスインピーダンス周波数特性
の測定原理を示す説明図である。
FIG. 4 is an explanatory diagram illustrating a measurement principle of a transimpedance frequency characteristic of the optical receiver.

【図5】光受信器の雑音周波数特性の測定原理を示す説
明図である。
FIG. 5 is an explanatory diagram illustrating a measurement principle of a noise frequency characteristic of the optical receiver.

【符号の説明】[Explanation of symbols]

1,1a エルビウムファイバ光源 2 エルビウム添加光ファイバ 3 励起光源 4 可変光減衰器 5 被測定光受信器 6 電流計 7 電力スペクトル増幅器 8 光検出器 9 増幅器 10 入射光学系 11 可変電流源 12 光アイソレータ Reference Signs List 1, 1a Erbium fiber light source 2 Erbium-doped optical fiber 3 Excitation light source 4 Variable optical attenuator 5 Optical receiver under measurement 6 Ammeter 7 Power spectrum amplifier 8 Photodetector 9 Amplifier 10 Incident optical system 11 Variable current source 12 Optical isolator

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01M 11/00 H04B 9/00 G02F 1/35 ──────────────────────────────────────────────────続 き Continuation of front page (58) Field surveyed (Int.Cl. 6 , DB name) G01M 11/00 H04B 9/00 G02F 1/35

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 希土類添加光ファイバを励起して発生す
る自然放出光を特性を測定すべき被測定光受信器に入力
して検出した光電流量と出力電力との比を測定周波数範
囲にわたって求めて前記被測定光受信器のトランスイン
ピーダンス周波数特性を導出する第1のステップと、前
記希土類添加光ファイバからの自然放出光の光量を少な
くとも2段階に切り替えて前記被測定光受信器に入力し
た場合の前記測定周波数範囲にわたる前記光電流量およ
び前記出力電力と前記自然放出光の波長帯域とにもとづ
いて前記被測定光受信器の雑音周波数特性を導出する第
2のステップとを備えることを特徴とする光受信器特性
測定方法。
1. A spontaneous emission light generated by exciting a rare-earth-doped optical fiber is input to an optical receiver under measurement whose characteristics are to be measured, and the ratio between the detected photoelectric flow rate and the output power is determined over the measurement frequency range. A first step of deriving a transimpedance frequency characteristic of the measured optical receiver, and a case where the amount of spontaneous emission light from the rare-earth-doped optical fiber is switched to at least two stages and input to the measured optical receiver. A second step of deriving a noise frequency characteristic of the optical receiver under measurement based on the photoelectric flow rate and the output power over the measurement frequency range and a wavelength band of the spontaneous emission light. Receiver characteristic measurement method.
【請求項2】 希土類としてエルビウムを添加したエル
ビウム添加光ファイバと前記エルビウム添加光ファイバ
を励起する少なくとも1つの励起光源とを備え前記励起
光源による励起光を前記エルビウム添加光ファイバに入
射して波長帯域が既知の前記自然放出光を光源として出
光する光源手段と、前記光源手段の出光する前記自然放
出光の出力光量を少なくとも2段階に切り替える光源切
替手段と、前記光源手段の出光する前記自然放出光を特
性を測定すべき被測定光受信器に入力して検出した光電
流量と前記光源手段の出光する前記自然放出光を前記被
測定光受信器に入力した場合に測定周波数範囲の各周波
数での出力電力とにもとづいて校正手順を含むことなく
前記被測定光受信器の雑音周波数特性を求める特性導出
手段とを備えることを特徴とする光受信器特性測定装
置。
2. An erbium-doped optical fiber doped with erbium as a rare earth element, and at least one pump light source for pumping the erbium-doped optical fiber. Light source means for emitting light using the known spontaneous emission light as a light source, light source switching means for switching an output light amount of the spontaneous emission light emitted from the light source means in at least two stages, and the spontaneous emission light emitted from the light source means When the photoelectric flow and the spontaneous emission light emitted from the light source means are input to the optical receiver under measurement whose characteristics are to be measured and are input to the optical receiver under measurement, at each frequency of the measurement frequency range Characteristic deriving means for obtaining a noise frequency characteristic of the optical receiver under measurement without including a calibration procedure based on the output power. An optical receiver characteristic measuring device, characterized in that:
JP5292302A 1993-11-24 1993-11-24 Optical receiver characteristic measuring method and apparatus Expired - Lifetime JP2903975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5292302A JP2903975B2 (en) 1993-11-24 1993-11-24 Optical receiver characteristic measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5292302A JP2903975B2 (en) 1993-11-24 1993-11-24 Optical receiver characteristic measuring method and apparatus

Publications (2)

Publication Number Publication Date
JPH07146209A JPH07146209A (en) 1995-06-06
JP2903975B2 true JP2903975B2 (en) 1999-06-14

Family

ID=17780007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5292302A Expired - Lifetime JP2903975B2 (en) 1993-11-24 1993-11-24 Optical receiver characteristic measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP2903975B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0837499A (en) * 1994-07-25 1996-02-06 Anritsu Corp Optical signal receiver
JP2003344168A (en) * 2002-05-29 2003-12-03 Ando Electric Co Ltd Optically sampling measuring system and its method
JP2007294659A (en) * 2006-04-25 2007-11-08 Agilent Technol Inc Relative intensity noise measuring method and apparatus and its gain characteristic measuring method
CN106878209B (en) * 2015-12-11 2020-04-21 富士通株式会社 Device for measuring filtering characteristic, pre-equalizer and communication equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03220467A (en) * 1990-01-26 1991-09-27 Fujitsu Ltd Method and apparatus for measuring characteristic of photo detector
JPH05226759A (en) * 1992-02-10 1993-09-03 Sumitomo Electric Ind Ltd Light source for measuring light

Also Published As

Publication number Publication date
JPH07146209A (en) 1995-06-06

Similar Documents

Publication Publication Date Title
US6658189B2 (en) Broadband amplified spontaneous emission light source
US7408146B2 (en) Signal light transmitting apparatus, signal light transmitting system using the same, and signal light transmitting method
US6407854B1 (en) Fiber amplifier with fast transient response and constant gain
US7738165B2 (en) Amplified spontaneous emission reflector-based gain-clamped fiber amplifier
CN101431375A (en) Optical amplifier and a method of controlling the optical amplifier
IE903836A1 (en) Low-noise optical amplification unit with reflection of the pumping power
US6016213A (en) Method and apparatus for optical amplifier gain and noise figure measurement
CN101174896A (en) Method for measuring gain and noise factor of erbium-doped fiber amplifier
JP2903975B2 (en) Optical receiver characteristic measuring method and apparatus
US6172995B1 (en) High power broadband source with stable and equalized spectrum output
US6680793B2 (en) Temperature-stabilized optical amplifier and method for temperature-stabilizing an optical amplifier
JPH08256112A (en) Input monitor system for optical amplifying repeater
US5914808A (en) Intermediate isolator type fiber amplifier and fiber transmission system
JP2001068773A (en) Wide band light source using seed beam
TW200803087A (en) Optical amplifier
JP2862145B2 (en) Bidirectional optical amplifier
JP3283282B2 (en) Optical amplifier measuring system, optical amplifier noise characteristic measuring device, optical amplifier measuring method, and optical fiber amplifier noise characteristic measuring device
JP2694803B2 (en) Optical semiconductor laser device wavelength stabilization method
JP3295148B2 (en) Fiber optical amplifier
JP2769186B2 (en) Optical receiving circuit
JPH05235442A (en) Optical amplifier
JPH0989715A (en) Measuring device of noise characteristic of optical transmission apparatus
JPH10144984A (en) Optical fiber amplifier
EP1206016A1 (en) Temperature-stabilized optical amplifier and method for temperature-stabilizing an optical amplifier
JPH11251669A (en) Light amplifier and its gain control method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990223