JP2902268B2 - Moisture-proof optical material and method for producing the same - Google Patents

Moisture-proof optical material and method for producing the same

Info

Publication number
JP2902268B2
JP2902268B2 JP5154597A JP15459793A JP2902268B2 JP 2902268 B2 JP2902268 B2 JP 2902268B2 JP 5154597 A JP5154597 A JP 5154597A JP 15459793 A JP15459793 A JP 15459793A JP 2902268 B2 JP2902268 B2 JP 2902268B2
Authority
JP
Japan
Prior art keywords
moisture
optical material
infrared
proof
vinylidene chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5154597A
Other languages
Japanese (ja)
Other versions
JPH06347607A (en
Inventor
学 大竹
崇 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOPUKON KK
Original Assignee
TOPUKON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOPUKON KK filed Critical TOPUKON KK
Priority to JP5154597A priority Critical patent/JP2902268B2/en
Publication of JPH06347607A publication Critical patent/JPH06347607A/en
Application granted granted Critical
Publication of JP2902268B2 publication Critical patent/JP2902268B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、赤外線透過性又は反射
性の、防湿性に優れた光学材料及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical material having an infrared transmitting or reflecting property and an excellent moisture-proof property, and a method for producing the same.

【0002】[0002]

【従来の技術】従来の赤外線測定用光学材料のうち、長
波長域(400cm-1〜200cm-1)まで赤外線を透過す
るものとしては、KBr, NaCl, CsI, KRS-5, KRS-6などが
ある。しかし、これらの光学材料、特にKBr, NaCl, CsI
は潮解性が極めて強いため、溶解して透過率が経時的に
低下してしまうため、実際には使用できない。例えば、
LBO, DLAP, BBO, KTP などの非線形光学材料に関しても
同様である。このような問題を回避するため、これまで
に例えば、KBr 等の光学材料表面にフッ素系樹脂等の被
膜を設けて防湿性を付与する試みがなされている。しか
し、この方法は、非常に複雑であり、充分に満足できる
防湿膜は得られなかった。通常、フッ素系樹脂は、水分
子の大きさに比べて非常にポーラス(水分子が容易に通
過できる程隙間が開いていること、即ち、粗い分子構造
を有すること)であるため透湿性が大きい(透湿量: 1.
1g/m2 ×24hr)。そのため、フッ素系樹脂を用いて防湿
性を付与しようとすると、コーティング膜厚を例えば1.
0μm程度の充分な厚さにしない限り、満足な防湿効果
が得られない。ところが、フッ素系樹脂防湿膜の膜厚を
厚くすると1180cm-1付近の炭素−フッ素化学結合に
基づく赤外吸収のため、光学材料の赤外線透過率が数十
%も低下してしまい、赤外線透過光学系の光学材料とし
ては使用できない。さらに、フッ素系樹脂の成膜方法と
して、真空蒸着法(特開平3−104857号公報)や
プラズマ重合法(特開昭50−62652号公報)も提
案されているが、いずれも高価で大掛かりな装置を必要
とするばかりでなく、形成された膜が分解してフッ化水
素ガスを生成し装置を腐食する虞もある。またレーザ装
置の共振器ミラーとして、その基板にZnSe, CaF2(ホタ
ル石)、SiO2(石英)、Al2O3 (サファイヤ)、ガラス
等の赤外線反射性光学材料が使用されているが、これら
の基板上に吸着した水分子によって2.7〜3.2μmの領
域の赤外線が吸収され、これらの基板上に蒸着された蒸
着膜あるいは基板と蒸着膜との境界部分が加熱され、そ
の熱によって基板自体が破壊されてしまうという問題が
あった。
2. Description of the Related Art Among conventional optical materials for measuring infrared rays, those which transmit infrared rays in a long wavelength range (400 cm -1 to 200 cm -1 ) include KBr, NaCl, CsI, KRS-5, KRS-6 and the like. There is. However, these optical materials, especially KBr, NaCl, CsI
Since deliquescence is extremely strong, it dissolves and the transmittance decreases over time, so it cannot be used in practice. For example,
The same applies to nonlinear optical materials such as LBO, DLAP, BBO, and KTP. In order to avoid such a problem, attempts have been made to provide a moisture-proof property by providing a coating of a fluorine resin or the like on the surface of an optical material such as KBr. However, this method is very complicated, and a satisfactory moisture-proof film cannot be obtained. Normally, the fluorine-based resin is very porous (a gap is opened so that water molecules can easily pass therethrough, that is, has a rough molecular structure) compared to the size of water molecules, so that the moisture permeability is large. (Moisture permeability: 1.
1 g / m 2 × 24 hr). Therefore, when trying to impart moisture resistance using a fluororesin, the coating film thickness is, for example, 1.
Unless the thickness is about 0 μm, a satisfactory moisture-proof effect cannot be obtained. However, when the thickness of the fluorine resin moisture-proof film is increased, the infrared transmittance of the optical material is reduced by several tens% due to the infrared absorption based on the carbon-fluorine chemical bond near 1180 cm -1 , and the infrared transmission optical property is reduced. It cannot be used as a system optical material. Further, as a method of forming a fluorine-based resin, a vacuum deposition method (Japanese Patent Application Laid-Open No. 3-104857) and a plasma polymerization method (Japanese Patent Application Laid-Open No. 50-62652) have been proposed, but all are expensive and large-scale. In addition to the necessity of an apparatus, the formed film may be decomposed to generate hydrogen fluoride gas and corrode the apparatus. In addition, infrared reflective optical materials such as ZnSe, CaF 2 (fluorite), SiO 2 (quartz), Al 2 O 3 (sapphire), and glass are used for the substrate as the resonator mirror of the laser device. Water molecules adsorbed on these substrates absorb infrared rays in the 2.7 to 3.2 μm region, and the deposited film deposited on these substrates or the boundary between the substrates and the deposited films is heated, and the heat As a result, there is a problem that the substrate itself is destroyed.

【0003】[0003]

【発明が解決しようとする課題】従って本発明の目的
は、上記問題点を解決し、高価で大掛かりな装置を必要
とすることなく製造できる、防湿性に優れた赤外線光学
材料、及びその製造方法を提供することである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned problems and to provide an infrared optical material having excellent moisture-proof properties, which can be manufactured without requiring an expensive and large-scale apparatus, and a method for manufacturing the same. It is to provide.

【0004】[0004]

【課題を解決するための手段】本発明は、赤外線光学材
料に結晶領域を有する塩化ビニリデン系共重合体含有防
湿層を施してなる防湿性光学材料を提供するものであ
る。本発明はまた、テトラヒドロフラン含有混合溶媒
に、結晶領域を有する塩化ビニリデン系共重合体を分散
・溶解し、この液を赤外線光学材料に塗布し、次いで前
記混合溶媒を蒸発させ、結晶領域を有する塩化ビニリデ
ン系共重合体被膜を形成させることを特徴とする、赤外
線光学材料に結晶領域を有する塩化ビニリデン系共重合
体含有防湿層を施してなる防湿性光学材料の製造方法を
提供するものである。
SUMMARY OF THE INVENTION The present invention provides a moisture-proof optical material obtained by applying a moisture-proof layer containing a vinylidene chloride copolymer having a crystalline region to an infrared optical material. In the present invention, a vinylidene chloride-based copolymer having a crystalline region is dispersed and dissolved in a tetrahydrofuran-containing mixed solvent, and the resulting solution is applied to an infrared optical material. An object of the present invention is to provide a method for producing a moisture-proof optical material in which a vinylidene-based copolymer film is formed by applying a vinylidene chloride-based copolymer-containing moisture-proof layer having a crystalline region to an infrared optical material, characterized by forming a vinylidene-based copolymer film.

【作用】塩化ビニリデン系共重合体は、結晶構造を有
し、その分子間隔が非常に狭く水分子の侵入を遮断する
ことができるため、これをその結晶構造を破壊すること
なくKBr 等の赤外線光学材料の表面に塗布することによ
り、経時的な湿度変化に対し安定した光学特性を有する
光学材料を作製できる。
The vinylidene chloride-based copolymer has a crystal structure, and its molecular spacing is very narrow, so that the penetration of water molecules can be blocked. By applying the composition to the surface of the optical material, an optical material having stable optical characteristics with respect to a change in humidity over time can be manufactured.

【0005】以下、本発明を詳細に説明する。本発明に
使用される赤外線光学材料としては、これらに限定され
るものではないが、赤外線透過性光学材料として、KBr,
NaCl, KCl, CsI, KRS-5, KRS-6, LBO, DLAP, BBO 及び
KTP を挙げることができ、また赤外線反射性光学材料と
して、ZnSe, CaF2(ホタル石)、SiO2(石英)、Al2O3
(サファイヤ)及びガラスを挙げることができる。本発
明に使用される塩化ビニリデン系共重合体は、塩化ビニ
リデンとこれと共重合可能なモノマー、例えば、塩化ビ
ニル、アクリル酸エステル、アクリロニトリル等との共
重合体であり、その共重合モル比は、60:40〜7
0:30が適当である。このような共重合体は、市販さ
れており、例えば、サランラテックス(旭化成株式会社
製、呉羽化学株式会社製)等が挙げられる。
Hereinafter, the present invention will be described in detail. Examples of the infrared optical material used in the present invention include, but are not limited to, KBr,
NaCl, KCl, CsI, KRS-5, KRS-6, LBO, DLAP, BBO and
KTP can be mentioned, and ZnSe, CaF 2 (fluorite), SiO 2 (quartz), Al 2 O 3
(Sapphire) and glass. The vinylidene chloride-based copolymer used in the present invention is a copolymer of vinylidene chloride and a monomer copolymerizable therewith, for example, vinyl chloride, acrylate, acrylonitrile, etc. , 60: 40-7
0:30 is appropriate. Such a copolymer is commercially available, and examples thereof include Saran latex (manufactured by Asahi Kasei Corporation and Kureha Chemical Co., Ltd.).

【0006】本発明において結晶塩化ビニリデン系共重
合体含有防湿層は、塩化ビニリデン系共重合体を70重
量%以上含有することが望ましい。本発明の防湿層は、
適当な溶媒に塩化ビニリデン系共重合体を分散してその
非晶領域(及び結晶領域の一部)を溶解し、結晶領域の
大部分が未溶解状態で存在する液体を赤外線光学材料に
塗布し、次いで必要により加熱しながら、前記混合溶媒
を蒸発させて被膜を形成することにより製造することが
できる。この過程で、未溶解状態で存在する結晶領域
と、溶解している塩化ビニリデン系共重合体の一部が結
晶化することにより生成した結晶領域とを有する、塩化
ビニリデン系共重合体被膜が形成される。ここで「適当
な溶媒」とは、塩化ビニリデン系共重合体を分散した
際、その非晶領域は溶解するが、結晶領域は実質的に溶
解することのない溶媒をいう。具体的には、テトラヒド
ロフラン含有溶媒であり、さらに具体的には、テトラヒ
ドロフラン10〜90重量%と希釈溶媒90〜10重量
%からなる混合溶媒である。希釈溶媒は、塩化ビニリデ
ン系共重合体の溶解性がほとんどなく、テトラヒドロフ
ランとよく混合する溶媒であればよく、例えば、酢酸エ
チル、トルエン、ジオキサン、ベンゼン、キシレン、こ
れらの混合溶媒等が挙げられる。混合溶媒中のテトラヒ
ドロフラン含有量が10重量%より低いと塩化ビニリデ
ン系共重合体の非晶領域の溶解性が充分でなく、また9
0重量%より高いと塩化ビニリデン系共重合体の結晶領
域も溶解されてしまうので好ましくない。
In the present invention, the moisture-proof layer containing the crystalline vinylidene chloride copolymer preferably contains 70% by weight or more of the vinylidene chloride copolymer. The moisture-proof layer of the present invention,
Disperse the vinylidene chloride-based copolymer in an appropriate solvent to dissolve the amorphous region (and part of the crystalline region), and apply a liquid in which most of the crystalline region is in an undissolved state to the infrared optical material. Then, while heating, if necessary, the mixed solvent is evaporated to form a film. In this process, a vinylidene chloride-based copolymer film having a crystalline region existing in an undissolved state and a crystalline region formed by crystallization of a part of the dissolved vinylidene chloride-based copolymer is formed. Is done. Here, the “suitable solvent” refers to a solvent in which, when the vinylidene chloride-based copolymer is dispersed, its amorphous region is dissolved but its crystalline region is not substantially dissolved. Specifically, it is a solvent containing tetrahydrofuran, and more specifically, a mixed solvent composed of 10 to 90% by weight of tetrahydrofuran and 90 to 10% by weight of a diluting solvent. The diluting solvent may be any solvent that has little solubility of the vinylidene chloride copolymer and is well mixed with tetrahydrofuran, and examples thereof include ethyl acetate, toluene, dioxane, benzene, xylene, and a mixed solvent thereof. If the content of tetrahydrofuran in the mixed solvent is lower than 10% by weight, the solubility of the amorphous region of the vinylidene chloride copolymer is not sufficient, and
If it is higher than 0% by weight, the crystalline region of the vinylidene chloride copolymer is also dissolved, which is not preferable.

【0007】塩化ビニリデン系共重合体の結晶領域は、
炭素−塩素の赤外線吸収ピーク(1040cm-1)の面積
強度(A)と、結晶構造に特異的な赤外線吸収ピーク
(1070cm-1)の面積強度(B)とを比較することに
より半定量することができる。すなわちAは一定である
が、Bは結晶領域の割合に従って変動するので、B/A
の値により結晶領域の割合を知ることができる。この
際、塩化ビニリデンホモポリマーの、結晶構造に特異的
な赤外線吸収ピーク(1070cm-1)の面積強度を結晶
化度100%とする。このようにして求めた粉末状の塩
化ビニリデン系共重合体の結晶化度(試料全体の質量に
対する結晶部分の質量)は70〜90重量%であり、本
発明の適当な混合溶媒に溶解し、次いで溶媒を蒸発させ
て形成した被膜塩化ビニリデン系共重合体の結晶化度
は、元の塩化ビニリデン系共重合体のものに対して40
〜60重量%である。また、塗布液中の塩化ビニリデン
系共重合体の濃度は1〜30重量%が適当である。塗布
を浸漬により行う場合、浸漬は室温で行えばよく、浸漬
時間は特に制限はないが1〜10秒で充分である。浸漬
液から赤外線光学材料を引上げる速度は1〜100mm/m
inが適当である。この浸漬液中の塩化ビニリデン系共重
合体の濃度と引上げ速度を調整することにより、防湿膜
の膜厚を任意に調節することができる。充分な防湿効果
を得るためには、膜厚は大きい方が良いが、一般に0.
01〜500μmが適当である。次に、必要により加熱
しながら、溶媒を蒸発させる。蒸発は一般に、45〜6
0℃で4〜48時間処理することにより行うのが好まし
い。
[0007] The crystalline region of the vinylidene chloride copolymer is
Semi-quantification by comparing the area intensity (A) of the infrared absorption peak (1040 cm -1 ) of carbon-chlorine with the area intensity (B) of the infrared absorption peak (1070 cm -1 ) specific to the crystal structure. Can be. That is, although A is constant, B varies according to the ratio of the crystal region, so that B / A
The ratio of the crystal region can be known from the value of. At this time, the area intensity of the infrared absorption peak (1070 cm -1 ) specific to the crystal structure of the vinylidene chloride homopolymer is defined as a crystallinity of 100%. The crystallinity of the powdery vinylidene chloride-based copolymer (mass of the crystal part with respect to the mass of the whole sample) thus obtained is 70 to 90% by weight, and is dissolved in an appropriate mixed solvent of the present invention. Next, the crystallinity of the coated vinylidene chloride-based copolymer formed by evaporating the solvent is 40 times that of the original vinylidene chloride-based copolymer.
6060% by weight. The concentration of the vinylidene chloride copolymer in the coating solution is suitably from 1 to 30% by weight. When the coating is performed by dipping, the dipping may be performed at room temperature, and the dipping time is not particularly limited, but 1 to 10 seconds is sufficient. The speed of pulling the infrared optical material from the immersion liquid is 1 to 100 mm / m
in is appropriate. By adjusting the concentration of the vinylidene chloride copolymer in the immersion liquid and the pulling rate, the thickness of the moisture-proof film can be arbitrarily adjusted. In order to obtain a sufficient moisture-proof effect, the larger the film thickness, the better.
A suitable range is from 01 to 500 μm. Next, the solvent is evaporated while heating as required. Evaporation is generally 45-6
It is preferable to carry out the treatment at 0 ° C. for 4 to 48 hours.

【0008】上記浸漬方法の他、塩化ビニリデン系共重
合体を上記混合溶媒に所定の濃度で分散・溶解した液
を、赤外線光学材料表面にスピナー法、スプレー法(吹
き付ける方法)、ポッティング法(垂らす方法)等の様
々な方法で所望の膜厚になるようにコーティングした
後、必要により上記条件で加熱しながら、前記混合溶媒
を蒸発させ、塩化ビニリデン系共重合体結晶含有被膜を
形成させてもよい。以上により、湿度に対して光学特性
が安定した赤外線光学材料を得ることができる。なお、
赤外線光学材料の赤外線が入射しない側面にも塩化ビニ
リデン系共重合体含有防湿膜を設けて、側面からの水分
子の侵入を防止することが望ましい。
In addition to the above immersion method, a liquid obtained by dispersing and dissolving a vinylidene chloride-based copolymer at a predetermined concentration in the above mixed solvent is applied to the surface of the infrared optical material by a spinner method, a spray method (spraying method), and a potting method (hanging). After the coating is performed to a desired film thickness by various methods such as (method), the mixed solvent is evaporated while heating under the above-described conditions, if necessary, to form a vinylidene chloride-based copolymer crystal-containing film. Good. As described above, an infrared optical material having stable optical characteristics with respect to humidity can be obtained. In addition,
It is desirable to provide a vinylidene chloride copolymer-containing moisture-proof film on the side of the infrared optical material where infrared light does not enter, to prevent water molecules from entering from the side.

【0009】[0009]

【発明の効果】本発明の赤外線光学材料は、その表面に
結晶塩化ビニリデン系共重合体の防湿膜が設けられてい
るため、湿度に対し安定な光学特性を有する。また、高
価で大掛かりな装置を必要とすることなく、遙かに簡便
に、かつ安価(設備投資不要)に作製できる。さらに、
従来のフッ素系樹脂防湿膜を設けたものよりも優れた防
湿性および光学特性を示すとともに、光学部品でしばし
ば問題となるかびの発生を防止するのにも有効である。
さらに、本発明に係る塩化ビニリデン系共重合体含有防
湿膜は、その防湿性が高いため、フッ素系樹脂防湿膜に
比べ同程度の効果を得るにははるかに薄い膜厚で充分で
ある。従って、防湿膜自体の赤外線吸収が小さく、赤外
線透過性光学材料の透過率にもほとんど影響がない。こ
れは、炭素−塩素結合の赤外吸収強度が炭素−フッ素結
合のそれよりも小さいことに起因するものと考えられ
る。
The infrared optical material of the present invention has a moisture-proof film made of a crystalline vinylidene chloride copolymer on its surface, and thus has optical characteristics stable against humidity. Further, it can be manufactured much more simply and at low cost (no capital investment is required) without requiring an expensive and large-scale device. further,
In addition to exhibiting better moisture-proof properties and optical characteristics than those provided with a conventional fluorine-based resin moisture-proof film, it is also effective in preventing the occurrence of mold, which often occurs in optical parts.
Further, the moisture-proof film containing the vinylidene chloride-based copolymer according to the present invention has a high moisture-proof property. Therefore, a far thinner film thickness is sufficient to obtain the same effect as the fluorine-based resin moisture-proof film. Therefore, the infrared absorption of the moisture-proof film itself is small, and the transmittance of the infrared-transmitting optical material is hardly affected. This is considered to be due to the fact that the infrared absorption intensity of the carbon-chlorine bond is smaller than that of the carbon-fluorine bond.

【0010】[0010]

【実施例1】粉末状の塩化ビニリデン−アクリル酸エス
テル共重合体(旭化成株式会社製「サランラテック
ス」)6gをテトラヒドロフランとトルエンの混合溶媒
(容量比9:1)100gに分散・溶解し、6重量%の
液を調製した。次に、KBr 板状体(径30mm、厚み3m
m)をこの液中に20℃で2〜3秒間浸漬し、引上げ速
度50mm/min で引き上げた。次に、70℃で3時間加
熱処理して、溶媒を完全に揮散させた。KBr 表面に形成
された塩化ビニリデン系共重合体の防湿膜の厚さ(乾燥
後)は、0.05μmであった。塩化ビニリデン系共重合
体防湿膜を設けた本発明の赤外線透過性光学材料の赤外
線が透過する透過面の光学膜厚は、乾燥後175nmであ
り、炭素−塩素結合の赤外吸収が1040cm-1付近に現
れる。この吸収の大きさは、フッ素系樹脂の炭素−フッ
素結合の赤外吸収の大きさよりも小さく約5%の大きさ
であった。また、使用波数4000cm-1〜400cm-1
範囲での本発明の赤外線透過性光学材料の平均透過率は
90%以上であり、透過光学系の光学材料として充分で
あることもわかった。これは、結晶構造を有するために
分子間隔が非常に狭く水分子の侵入を遮断することが可
能なためである。またこの防湿膜を設けた本発明の赤外
線透過性光学材料の透湿値は、特開平3−104857
号公報記載のフッ素系樹脂の防湿膜を設けた赤外線透過
性光学材料の約1/10程度(透湿量:0.1g/m2×2
4hr)であった。次に、耐湿度試験の結果を示す。本発
明の塩化ビニリデン系共重合体防湿膜を設けたKBr 板状
体を温度30℃、湿度60%の雰囲気中に3時間放置し
た。透過率の変化は4000cm-1において1%未満であ
り、4000cm-1〜400cm-1の平均透過率は90%以
上であり、防湿効果が充分にあることがわかる。これに
対してフッ素系樹脂防湿膜を設けたKBr 板状体では、透
過率の変化は4000cm-1において10%以上もあり、
4000cm-1〜400cm-1の平均透過率が90%以上で
なければならない仕様を満足していない。従って、本発
明の防湿膜を設けた赤外線透過性光学材料が従来の防湿
膜を設けた光学材料に比べ優れた防湿効果を有している
ことがわかる。なお、上記実施例ではKBr を用いたが、
本発明はこれに限定されず、その他にNaCl, KCl, CsI,
KRS-5, KRS-6等の光学材料や、LBO, DLAP, BBO,KTP 等
の非線形光学材料にも適用することができ、同様に湿度
に対して安定な光学特性を有する光学材料を得ることが
できる。
Example 1 6 g of a powdery vinylidene chloride-acrylate copolymer ("Saran Latex" manufactured by Asahi Kasei Corporation) was dispersed and dissolved in 100 g of a mixed solvent of tetrahydrofuran and toluene (volume ratio 9: 1). A weight percent solution was prepared. Next, a KBr plate (diameter 30 mm, thickness 3 m)
m) was immersed in this solution at 20 ° C. for 2 to 3 seconds and pulled up at a pulling rate of 50 mm / min. Next, heat treatment was performed at 70 ° C. for 3 hours to completely volatilize the solvent. The thickness (after drying) of the moisture-proof film of the vinylidene chloride copolymer formed on the KBr surface was 0.05 μm. The infrared-transmitting optical material of the present invention provided with a vinylidene chloride-based copolymer moisture-proof film has an optical thickness of 175 nm on the transmission surface through which infrared light passes after drying, and has an infrared absorption of 1040 cm -1 of carbon-chlorine bond. Appears nearby. The magnitude of this absorption was smaller than the magnitude of infrared absorption of the carbon-fluorine bond of the fluororesin, and was about 5%. In addition, the average transmittance of the infrared transmitting optical material of the present invention in the range of the use wave number of 4000 cm -1 to 400 cm -1 was 90% or more, and it was found that the infrared transmitting optical material was sufficient as an optical material of the transmission optical system. This is because the molecular structure is very narrow due to the crystal structure, so that the intrusion of water molecules can be blocked. The moisture transmission value of the infrared transmitting optical material of the present invention provided with the moisture proof film is as described in JP-A-3-104857.
No. of about 1/10 of an infrared transparent optical material having a moisture-proof film of the fluorine-based resin described in JP (moisture permeation amount: 0.1g / m 2 × 2
4 hr). Next, the results of the humidity resistance test will be described. The KBr plate provided with the vinylidene chloride copolymer moisture-proof film of the present invention was left for 3 hours in an atmosphere at a temperature of 30 ° C. and a humidity of 60%. Change in transmittance is less than 1% at 4000 cm -1, an average transmittance of 4000cm -1 ~400cm -1 is 90% or more, it can be seen that the moisture-proof effect is sufficient. On the other hand, in a KBr plate provided with a fluorine-based resin moisture-proof film, the change in transmittance is 10% or more at 4000 cm −1 ,
It does not satisfy the specification that the average transmittance of 4000 cm -1 to 400 cm -1 must be 90% or more. Therefore, it can be seen that the infrared-transmitting optical material provided with the moisture-proof film of the present invention has a superior moisture-proof effect as compared with the conventional optical material provided with the moisture-proof film. Although KBr is used in the above embodiment,
The present invention is not limited to this, and in addition, NaCl, KCl, CsI,
It can be applied to optical materials such as KRS-5 and KRS-6 and non-linear optical materials such as LBO, DLAP, BBO, and KTP. Can be.

【0011】[0011]

【実施例2】Er:YAGレーザのレーザ装置の共振器
ミラーとして、その基板にZnSe,CaF(ホタル
石)、SiO(石英)、Al(サファイヤ)、
ガラス等の赤外線反射性光学材料が使用されているが、
これらの基板上に吸着した水分子によって2.7〜3.
2μmの領域の赤外線が吸収され、これらの基板上に蒸
着された蒸着膜あるいは基板と蒸着膜との境界部分が加
熱され、その熱によって基板自体が破壊されてしまうと
いう問題があった。この実施例は、SiO(石英)の
基板上に以下の膜を真空蒸着し、蒸着された光学材料全
体に浸漬法を用いて塩化ビニリデン系共重合体含有防湿
層を形成したものである。
Embodiment 2 As a resonator mirror of a laser device of an Er: YAG laser, ZnSe, CaF 2 (fluorite), SiO 2 (quartz), Al 2 O 3 (sapphire),
Although infrared reflective optical materials such as glass are used,
Depending on the water molecules adsorbed on these substrates, 2.7 to 3.
There is a problem in that infrared rays in a region of 2 μm are absorbed, and a deposited film deposited on these substrates or a boundary portion between the substrates and the deposited film is heated, and the heat destroys the substrate itself. In this example, the following films were vacuum-deposited on a SiO 2 (quartz) substrate, and a vinylidene chloride-based copolymer-containing moisture-proof layer was formed on the entire deposited optical material using an immersion method.

【0012】 2.9μmの波長の赤外線において、反射率が99%で
あった上記石英基板の反射率は、温度30℃、湿度60
%の雰囲気中に3時間放置した後でも、99%であり、
変化がなかった。このことは、水の吸着等による共振器
ミラー自体の特性を損なうことなく、防湿効果を向上さ
せることができることを示している。
[0012] The reflectance of the quartz substrate, which had a reflectance of 99% in infrared light having a wavelength of 2.9 μm, was measured at a temperature of 30 ° C. and a humidity of 60%.
Even after being left in an atmosphere of 3% for 3 hours, it is still 99%,
There was no change. This indicates that the moisture-proof effect can be improved without impairing the characteristics of the resonator mirror itself due to water adsorption or the like.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G02B 1/10 G02B 13/14 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G02B 1/10 G02B 13/14

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 赤外線光学材料に結晶領域を有する塩化
ビニリデン系共重合体含有防湿層を施してなる防湿性光
学材料。
1. A moisture-proof optical material obtained by applying a moisture-proof layer containing a vinylidene chloride copolymer having a crystal region to an infrared optical material.
【請求項2】 赤外線光学材料が、KBr, NaCl, KCl, Cs
I, KRS-5, KRS-6, LBO, DLAP, BBO 及びKTP からなる赤
外線透過性光学材料群から選ばれたものであることを特
徴とする請求項1に記載の防湿性光学材料。
2. The infrared optical material is KBr, NaCl, KCl, Cs
The moisture-proof optical material according to claim 1, wherein the material is selected from a group of infrared-transmitting optical materials consisting of I, KRS-5, KRS-6, LBO, DLAP, BBO, and KTP.
【請求項3】 赤外線光学材料がZnSe, CaF2(ホタル
石)、SiO2(石英)、Al2O3 (サファイヤ)、ガラスか
らなる赤外線反射性光学材料群から選ばれたものである
ことを特徴とする請求項1に記載の防湿性光学材料。
3. An infrared optical material selected from a group of infrared reflective optical materials consisting of ZnSe, CaF 2 (fluorite), SiO 2 (quartz), Al 2 O 3 (sapphire), and glass. The moisture-proof optical material according to claim 1, wherein:
【請求項4】 テトラヒドロフラン含有混合溶媒に、結
晶領域を有する塩化ビニリデン系共重合体を分散・溶解
し、この液を赤外線光学材料に塗布し、次いで前記混合
溶媒を蒸発させ、結晶領域を有する塩化ビニリデン系共
重合体被膜を形成させることを特徴とする、赤外線光学
材料に結晶領域を有する塩化ビニリデン系共重合体含有
防湿層を施してなる防湿性光学材料の製造方法。
4. A vinylidene chloride-based copolymer having a crystal region is dispersed and dissolved in a tetrahydrofuran-containing mixed solvent, and the resulting solution is applied to an infrared optical material. Then, the mixed solvent is evaporated to obtain a chloride having a crystal region. A method for producing a moisture-proof optical material, comprising forming a vinylidene-based copolymer film and forming a vinylidene chloride-based copolymer-containing moisture-proof layer having a crystal region on an infrared optical material.
JP5154597A 1993-06-02 1993-06-02 Moisture-proof optical material and method for producing the same Expired - Lifetime JP2902268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5154597A JP2902268B2 (en) 1993-06-02 1993-06-02 Moisture-proof optical material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5154597A JP2902268B2 (en) 1993-06-02 1993-06-02 Moisture-proof optical material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06347607A JPH06347607A (en) 1994-12-22
JP2902268B2 true JP2902268B2 (en) 1999-06-07

Family

ID=15587669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5154597A Expired - Lifetime JP2902268B2 (en) 1993-06-02 1993-06-02 Moisture-proof optical material and method for producing the same

Country Status (1)

Country Link
JP (1) JP2902268B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3260290B2 (en) * 1996-01-26 2002-02-25 旭光学工業株式会社 Waterproof structure of lens barrel
US20110110117A1 (en) * 2004-02-27 2011-05-12 Masashi Takai Optical member and backlight using the same
JP5638483B2 (en) * 2011-08-03 2014-12-10 株式会社東芝 Semiconductor laser device
JP2014220538A (en) * 2014-08-27 2014-11-20 株式会社東芝 Semiconductor laser device

Also Published As

Publication number Publication date
JPH06347607A (en) 1994-12-22

Similar Documents

Publication Publication Date Title
KR100241971B1 (en) K-sheet type polarizers and its manufacturing method
JP2902456B2 (en) Inorganic polarizing thin film
EP0564134A2 (en) Anti-reflection coating
DE2519403A1 (en) CARRIER MATERIAL AND ITS USE IN A PHOTOGRAPHICAL RECORDING MATERIAL
US4229498A (en) Light-polarizing film
JP3451281B2 (en) UV blocking fluoropolymer film
JP2902268B2 (en) Moisture-proof optical material and method for producing the same
JP2003525121A (en) Polymer ultra-thin film processing
CN1083987C (en) Thermostable polarizers
JPH07333433A (en) Optical compensating sheet and liquid crystal display device using same
US4269896A (en) Surface passivated alkali halide infrared windows
JP5027980B2 (en) Method for depositing fluorinated silica thin film
US4405692A (en) Moisture-protected alkali halide infrared windows
JP3449070B2 (en) Dirt prevention treatment method
JPH1152130A (en) Production of polarizing film
JPH04223404A (en) Polarizing film
US3691045A (en) Method of making photochromic films on glass substrates
JP3428295B2 (en) Polarizing plate protective film and polarizing plate
KR20160106388A (en) Composition for forming a barrier layer, and a barrier layer obtained therefrom
CA1123538A (en) Light-polarizing film
JPH10339869A (en) Base film for display element
JPH09263936A (en) Production of thin film and thin film
JPH08240709A (en) Polarizing film
KR100187138B1 (en) Process for polymer and liquid crystal composited film
JPS6341515A (en) Molecule orientating thin film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 14