JP2901502B2 - Design method of oscillating internal meshing planetary gear pair - Google Patents

Design method of oscillating internal meshing planetary gear pair

Info

Publication number
JP2901502B2
JP2901502B2 JP23294994A JP23294994A JP2901502B2 JP 2901502 B2 JP2901502 B2 JP 2901502B2 JP 23294994 A JP23294994 A JP 23294994A JP 23294994 A JP23294994 A JP 23294994A JP 2901502 B2 JP2901502 B2 JP 2901502B2
Authority
JP
Japan
Prior art keywords
internal
tooth member
external
teeth
brake torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23294994A
Other languages
Japanese (ja)
Other versions
JPH0893860A (en
Inventor
滿容 岩田
厚 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUMITOMO IITON KIKI KK
Original Assignee
SUMITOMO IITON KIKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUMITOMO IITON KIKI KK filed Critical SUMITOMO IITON KIKI KK
Priority to JP23294994A priority Critical patent/JP2901502B2/en
Publication of JPH0893860A publication Critical patent/JPH0893860A/en
Application granted granted Critical
Publication of JP2901502B2 publication Critical patent/JP2901502B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Rotary Pumps (AREA)
  • Retarders (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、揺動内接噛合式遊星歯
車対の設計方法に係り、特に、内歯部材と外歯部材との
内接噛合に所定の抵抗を付与することにより、外力によ
る回転に対するブレーキトルクを得るように構成した揺
動内接噛合式遊星歯車対の設計方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for designing a pair of oscillating internal meshing planetary gears, and more particularly, to a method of imparting a predetermined resistance to internal meshing between an internal gear member and an external gear member. The present invention relates to a method of designing an oscillating internally meshing planetary gear pair configured to obtain a brake torque against rotation by an external force.

【0002】[0002]

【従来の技術】従来、例えば図6〜図8に示されるよう
な油圧モータが提案されている。この油圧モータは、ケ
ーシング10、内歯部材20、外歯部材30、ドライブ
部材40、出力軸50、容積室60、及び圧油供給手段
70とから主に構成される。
2. Description of the Related Art Conventionally, hydraulic motors such as those shown in FIGS. 6 to 8 have been proposed. This hydraulic motor mainly includes a casing 10, an internal tooth member 20, an external tooth member 30, a drive member 40, an output shaft 50, a volume chamber 60, and a pressure oil supply means 70.

【0003】内歯部材20は内歯に相当するローラ21
を備え、ケーシング10に(静止弁部材74を介して)
固定されている。外歯部材30はローラ(内歯)21の
数より1だけ少ない数の外歯31を備え、その軸中心が
内歯部材20の軸中心Oから所定量e だけ偏心した状態
で該内歯部材20と内接噛合するように組付けられてい
る。この外歯部材30は中心部に内スプライン32を備
える。
[0003] The internal tooth member 20 includes a roller 21 corresponding to internal teeth.
The casing 10 (via the stationary valve member 74).
Fixed. The external tooth member 30 is provided with a number of external teeth 31 smaller by one than the number of the rollers (internal teeth) 21, and the axial center thereof is eccentric from the axial center O of the internal tooth member 20 by a predetermined amount e. It is assembled so as to be inscribedly engaged with 20. The external tooth member 30 has an internal spline 32 at the center.

【0004】ドライブ部材40は両端に凸状の外スプラ
イン41、42を備え、外スプライン41が外歯部材3
0の前記内スプライン32と噛合している。出力軸50
は、ドライブ部材40の前記外スプライン42と噛合す
る内スプライン51を備える。なお、出力軸50はスプ
ライン52を介して回転ケース53と連結されている。
The drive member 40 has convex outer splines 41 and 42 at both ends, and the outer spline 41 is
0 with the inner spline 32. Output shaft 50
Includes an inner spline 51 that meshes with the outer spline 42 of the drive member 40. The output shaft 50 is connected to the rotating case 53 via a spline 52.

【0005】図7に示されるように、内歯部材20と外
歯部材30との間には複数の容積室60が形成される。
この容積室60には圧油供給手段70により、外歯部材
30の回転と同期して選択的に圧油が供給される。
[0005] As shown in FIG. 7, a plurality of volume chambers 60 are formed between the internal tooth member 20 and the external tooth member 30.
Pressure oil is selectively supplied to the volume chamber 60 by the pressure oil supply means 70 in synchronization with the rotation of the external tooth member 30.

【0006】なお、この従来例では、該圧油供給手段7
0は、カウンタバランスバルブ73、静止弁部材74、
回転弁部材75、及びこれらの各部材間に形成された多
数の油路から主に構成されるが、この具体的な構成につ
いては既に例えば実開平3−99874号において詳細
な開示があり、又、本発明の要旨と直接関係がないため
説明を省略する。なお、図8において符号98はポン
プ、99は切換弁である。
In this conventional example, the pressure oil supply means 7
0 is a counter balance valve 73, a stationary valve member 74,
It mainly comprises a rotary valve member 75 and a number of oil passages formed between these members. The specific configuration has already been disclosed in detail, for example, in Japanese Utility Model Laid-Open No. 3-99874. The description is omitted because it has no direct relation to the gist of the present invention. In FIG. 8, reference numeral 98 denotes a pump, and 99 denotes a switching valve.

【0007】次に、この油圧モータの作用を簡単に説明
する。
Next, the operation of the hydraulic motor will be briefly described.

【0008】油圧ポンプ98によって発生された圧油
は、切換弁99の切換によってカウンタバランスバルブ
73、静止弁部材74、及び回転弁部材75内に形成さ
れた所定の油路を経由して内歯部材20と外歯部材30
との間の容積室60の一部に選択的に供給される。この
結果圧油の供給された容積室60の容積が拡大する方向
に外歯部材30が回転する。この選択的な圧油の供給
は、静止弁部材74、回転弁部材75の機能により外歯
部材30の回転と同期して行われ、この結果、外歯部材
30が内歯部材20に対して同一方向に連続的に内接回
転する。
The pressure oil generated by the hydraulic pump 98 passes through predetermined oil passages formed in the counterbalance valve 73, the stationary valve member 74, and the rotary valve member 75 by switching of the switching valve 99, and the internal gears thereof. Member 20 and external tooth member 30
Is selectively supplied to a part of the volume chamber 60. As a result, the external teeth member 30 rotates in a direction in which the volume of the volume chamber 60 to which the pressurized oil is supplied increases. The selective supply of the pressure oil is performed in synchronization with the rotation of the external tooth member 30 by the functions of the stationary valve member 74 and the rotary valve member 75. As a result, the external tooth member 30 It continuously rotates inscribed in the same direction.

【0009】ここで外歯部材30の外歯31の歯数は内
歯部材20のローラ(内歯)21の歯数より1だけ少な
いため、外歯部材30は軸中心Oの周りを1回公転する
毎に(固定状態とされた)内歯部材20に対して1歯分
だけずれる(自転する)ことになる。外歯部材30のこ
の公転及び自転の合成された運動は、外歯部材30の内
スプライン32とドライブ部材40の凸状の外スプライ
ン41の噛合によって公転成分が吸収されると共に自転
成分のみが取出され、更に外スプライン42、内スプラ
イン51を介して出力軸50へと伝達される。出力軸5
0はスプライン52を介して回転ケース53と連結され
ているため、結局回転ケース53は該自転成分と同一の
回転速度で回転し、非常に強力なトルクを取出すことが
できる。
Since the number of teeth of the external teeth 31 of the external tooth member 30 is one less than the number of teeth of the roller (internal teeth) 21 of the internal tooth member 20, the external tooth member 30 moves around the axis O once. Each time it revolves, it shifts (rotates) by one tooth with respect to the internal tooth member 20 (set in a fixed state). The combined movement of the revolution and rotation of the external tooth member 30 is caused by the engagement of the internal spline 32 of the external tooth member 30 and the convex external spline 41 of the drive member 40, whereby the revolution component is absorbed and only the rotation component is extracted. Then, it is transmitted to the output shaft 50 via the outer spline 42 and the inner spline 51. Output shaft 5
Since 0 is connected to the rotating case 53 via the spline 52, the rotating case 53 eventually rotates at the same rotation speed as the rotation component, and can take out a very strong torque.

【0010】なお、この油圧モータには、前記容積室6
0を形成するために、内歯部材20及び外歯部材30の
軸方向端部(図6における右端部)に、該端部を閉塞す
るエンドプレート80が設けられている。
The hydraulic motor is provided with the volume chamber 6.
In order to form 0, an end plate 80 for closing the ends is provided at axial ends (right ends in FIG. 6) of the internal tooth member 20 and the external tooth member 30.

【0011】ところで、前記外歯部材30と内歯部材2
0は、前述したような揺動内接噛合式の遊星歯車対を構
成するが、この遊星歯車対は一般に一方の部材が(ロー
ラ21のような)円形の歯形とされ、他方の部材の歯形
がその円形の歯形を用いて歯切りされたと考えられる輪
郭になっている。通常の油圧モータ等に使用されている
遊星歯車対では、外歯部材30と内歯部材20との間に
は数十μm の隙間があり、油圧のような大きな力でなく
とも(比較的小さな外力でも)スムーズに回転するよう
になっている。
The external tooth member 30 and the internal tooth member 2
Numeral 0 constitutes the above-mentioned oscillating internal meshing planetary gear pair. Generally, this planetary gear pair has one member having a circular tooth shape (such as the roller 21) and the other member having a tooth shape. Has a contour that is considered to have been cut using the circular tooth profile. In a planetary gear pair used for a normal hydraulic motor or the like, there is a gap of several tens of μm between the external tooth member 30 and the internal tooth member 20, and even if the force is not as large as the hydraulic pressure, it is relatively small. It rotates smoothly even with external force.

【0012】これに対し、油圧がかかっていない中立の
状態で、外力によってモータ等が回転してしまうことを
防止する目的で当該遊星歯車対の内接噛合に所定の抵抗
を付与するようにした、いわゆるセルフブレーキ機構を
持たせるようにした油圧モータが提案されている。
On the other hand, in order to prevent a motor or the like from rotating by an external force in a neutral state where no hydraulic pressure is applied, a predetermined resistance is applied to the internal meshing of the planetary gear pair. A hydraulic motor having a so-called self-brake mechanism has been proposed.

【0013】この種のセルフブレーキ機構を持った遊星
歯車対は、一般には、通常の遊星歯車対の外歯部材の歯
形形状を変えずに、そのままこれを径方向に大きくする
ことによって前記所定の抵抗を付与するようにしてい
る。
In general, a planetary gear pair having a self-brake mechanism of this kind is provided with a predetermined diameter by increasing the external tooth member of a normal planetary gear pair in the radial direction without changing the tooth profile. The resistance is applied.

【0014】即ち、外歯部材の外歯の歯面の切削又は研
磨時等において、基本歯形形状を変えずに、その切削又
は研磨量等を通常のものより小さくすることにより、外
歯部材の外形を大きくしている。そして(このままでは
組付けができないため)内歯部材20を暖め、熱膨脹さ
せた上で外歯部材30と内歯部材20とを組付け、接触
点の接線方向に摩擦力を生じさせることによってセルフ
ブレーキ機構を実現するようにしている。
In other words, when cutting or polishing the tooth surfaces of the external teeth of the external tooth member, the amount of cutting or polishing is made smaller than usual without changing the basic tooth profile, so that the external tooth member can be cut. The outer shape is enlarged. Then, since the internal tooth member 20 is heated and thermally expanded, the external tooth member 30 and the internal tooth member 20 are assembled and the frictional force is generated in the tangential direction of the contact point (since the internal tooth member 20 cannot be assembled as it is). A brake mechanism is implemented.

【0015】[0015]

【発明が解決しようとする課題】しかしながら、このよ
うにしてセルフブレーキ機構を実現するようにした場
合、確かに外歯部材の外歯と内歯部材の内歯との干渉量
に比例したブレーキトルクを得ることはできるものの、
当該干渉量自体が噛み合い位置関係によってばらつくた
め、内歯部材の内歯と外歯部材の外歯との間に発生する
ブレーキトルクも噛み合い位置によって大きく変動する
という問題があった。
However, when the self-braking mechanism is realized in this manner, it is true that the braking torque proportional to the amount of interference between the external teeth of the external teeth member and the internal teeth of the internal teeth member. You can get
Since the interference amount itself varies depending on the meshing position relationship, there is a problem that the brake torque generated between the internal teeth of the internal gear member and the external teeth of the external gear member also fluctuates greatly depending on the meshing position.

【0016】そのため、中立時に安定した(一定の)セ
ルフブレーキトルクを得ることが困難となり、所定の外
力に対して確実に回転しない所定のブレーキトルク値を
保証しようとした場合、特定の噛み合い位置においては
必要以上に大きなブレーキトルクが発生してしまうこと
になり、その分通常運転時におけるエネルギロスが発生
するという問題があった。
[0016] Therefore, it is difficult to obtain a stable (constant) self-braking torque at the time of neutral operation, and when an attempt is made to guarantee a predetermined brake torque value that does not rotate reliably with respect to a predetermined external force, a specific engagement position is required. However, there is a problem in that an excessively large brake torque is generated, and energy loss during normal operation is correspondingly generated.

【0017】又、噛み合い位置によってブレーキトルク
が異なることから、必然的に通常運転時に得られる出力
トルクもその回転位置の変化に伴って大きく変動すると
いう問題もあった。
Further, since the brake torque varies depending on the meshing position, there is also a problem that the output torque obtained during normal operation naturally fluctuates greatly with a change in the rotational position.

【0018】本発明は、このような従来の問題に鑑みて
なされたものであって、噛み合い位置が変化しても常に
所定のブレーキトルクを得ることができ、もって、遊星
歯車対の内接噛合に必要最低限の抵抗を付与するだけで
済むようにし、通常運転時の回転抵抗を極力小さく抑え
ると共に、出力変動も小さく抑えるようにした(セルフ
ブレーキ機構付の)揺動内接噛合式遊星歯車対を設計す
る方法を提供することを目的とする。
The present invention has been made in view of such a conventional problem, and it is possible to always obtain a predetermined brake torque even if the meshing position changes, and therefore, the internal meshing of the planetary gear pair can be achieved. To minimize the rotational resistance during normal operation and minimize output fluctuations (with self-brake mechanism). It aims to provide a way to design pairs.

【0019】[0019]

【課題を解決するための手段】請求項1に記載の発明
は、n 個の外歯を有する外歯部材と、これと内接噛合す
るn +1個の内歯を有する内歯部材とで構成され、前記
外歯部材の軸中心が前記内歯部材の軸中心から所定量だ
け偏心して組付けられると共に、前記内接噛合により外
歯部材が自転しながら内歯部材の軸中心の周りを公転運
動し、且つ、該内接噛合に所定の抵抗を付与することに
より外力による回転に対するブレーキトルクを得るよう
に構成した揺動内接噛合式遊星歯車対の設計方法におい
て、前記外歯及び内歯の各接触点における反力を求める
手順と、この求められた各接触点における反力の総和が
ほぼ零となるように外歯部材又は内歯部材のいずれか一
方の中心位置を他方の中心位置に対して相対的に移動さ
せる手順と、中心位置を移動した後のブレーキトルクを
求める手順と、外歯部材又は内歯部材のいずれか一方を
他方に対して相対的に任意角度回転させ、上記手順を繰
返すことにより複数の回転位置におけるブレーキトルク
を得る手順と、該複数の回転位置において得られたブレ
ーキトルクの偏差がほぼ零となるように、外歯部材の外
歯及び内歯部材の内歯のうち少なくとも一方の形状を繰
返し変更する手順と、を含むことにより、上記課題を解
決したものである。
According to a first aspect of the present invention, there is provided an external tooth member having n external teeth and an internal tooth member having n + 1 internal teeth meshing with the external tooth member. The axial center of the external tooth member is mounted eccentrically from the axial center of the internal tooth member by a predetermined amount, and the external tooth member revolves around the axial center of the internal tooth member while rotating by the internal engagement. The method for designing a pair of oscillating internal meshing planetary gears configured to obtain a braking torque against rotation by an external force by moving and applying a predetermined resistance to the internal meshing, wherein the external teeth and the internal teeth And the center position of one of the external tooth member or the internal tooth member is set to the other center position so that the sum of the calculated reaction forces at each contact point becomes substantially zero. And the center position And the procedure for determining the brake torque after moving, and rotating either one of the external tooth member or the internal tooth member relative to the other by an arbitrary angle, and repeating the above procedure to obtain the brake torque at a plurality of rotational positions. Obtaining, and a step of repeatedly changing the shape of at least one of the external teeth of the external tooth member and the internal teeth of the internal tooth member such that the deviation of the brake torque obtained at the plurality of rotational positions becomes substantially zero. , The above problem has been solved.

【0020】なお、請求項1の最後の項において「複数
得られたブレーキトルクの偏差がほぼ零となった場合に
は、そのブレーキトルクの値が目標とするブレーキトル
クの値となるように、外歯部材及び内歯部材のうち少な
くとも一方のピッチ円径を繰返し変更するようにする
と、所望値のブレーキトルクを噛み合い位置にかかわら
ず得ることのできる遊星歯車対を設計できるようになる
(請求項2)。
[0020] In the last term of claim 1, "if the deviation of a plurality of obtained brake torques becomes almost zero, the value of the brake torque becomes the target value of the brake torque. If the pitch circle diameter of at least one of the external gear member and the internal gear member is repeatedly changed, it is possible to design a planetary gear pair capable of obtaining a desired value of brake torque regardless of the meshing position. 2).

【0021】[0021]

【作用】n 個の外歯を有する任意の歯形形状の外歯部材
と、n +1個の内歯を有する任意の歯形形状の内歯部材
とを内接噛合させた遊星歯車対においては、外歯部材の
ピッチ円径が内歯部材のピッチ円径のn /(n +1)倍
より大きい場合、n +1以下の箇所において外歯部材の
外歯と内歯部材の内歯とが干渉し摩擦力が発生する。
In a planetary gear pair in which an external tooth member having an arbitrary tooth profile having n external teeth and an internal tooth member having an arbitrary tooth profile having n + 1 internal teeth are internally engaged. When the pitch circle diameter of the tooth member is larger than n / (n + 1) times the pitch circle diameter of the internal tooth member, the external teeth of the external tooth member and the internal teeth of the internal tooth member interfere with each other at a location of n + 1 or less and friction occurs. Force is generated.

【0022】本発明においては、外歯部材と内歯部材と
が任意の噛み合い位置において常にブレーキトルクが一
定となるように外歯部材(又は内歯部材)の歯形形状
を、以下のような方法で設計するようにした。
In the present invention, the tooth shape of the external tooth member (or the internal tooth member) is adjusted by the following method so that the braking torque is always constant at an arbitrary meshing position between the external tooth member and the internal tooth member. Designed with

【0023】1)外歯及び内歯の各接触点における反力
(ベクトル量)を求める:この反力は、例えば各接触点
における内歯と外歯との干渉量と、接触点の形状(曲
率)、材質等からLundberg の式や有限要素法等を用い
て計算する。
1) Obtain a reaction force (vector amount) at each contact point between the external teeth and the internal teeth: This reaction force is, for example, the amount of interference between the internal teeth and the external teeth at each contact point, and the shape of the contact point ( The curvature is calculated using the Lundberg equation, the finite element method, or the like from the material and the like.

【0024】2)1で求めた反力の総和がほぼ零となる
ように外歯部材(内歯部材)の中心位置を移動させる:
この移動は、例えば1で求められた反力の合力を求め、
その合力の方向と反対に当該合力の大きさに比例した量
だけ行うようにする。より具体的には、このようにして
中心位置を動かした後の反力の総和を再び求めることを
何回か繰返し、その結果合力が実際にほぼ零になること
を確認することによって外歯部材の中心位置を確定す
る。
2) The center position of the external tooth member (internal tooth member) is moved so that the total of the reaction forces obtained in step 1 becomes substantially zero:
For this movement, for example, the resultant force of the reaction force obtained in 1 is obtained,
Opposite to the direction of the resultant force, an amount proportional to the magnitude of the resultant force is performed. More specifically, the re-calculation of the total reaction force after moving the center position in this manner is repeated several times, and as a result, it is confirmed that the resultant force is substantially zero. Determine the center position of.

【0025】3)中心位置を移動させた後のブレーキト
ルクを求める:ブレーキトルクは、例えば中心位置を移
動させた後の各接触点と外歯部材の瞬間中心との距離を
計算し、これと各接触点の反力と摩擦係数から求めた摩
擦力との積を計算すると共に、その総和を求めることに
より求める。
3) Determining the brake torque after moving the center position: The brake torque is calculated, for example, by calculating the distance between each contact point after moving the center position and the instantaneous center of the external tooth member. The product is obtained by calculating the product of the reaction force at each contact point and the frictional force obtained from the friction coefficient, and calculating the sum thereof.

【0026】4)外歯部材(内歯部材)を任意角度回転
させ、上記手順を繰返すことにより複数の回転位置にお
けるブレーキトルクを得る:外歯部材(内歯部材)を任
意の角度回転させて相手部材である内歯部材(外歯部
材)との噛み合い位置を変更する。その上で、上記手順
を繰返すことによりブレーキトルクを(複数個)計算す
る。
4) The external tooth member (internal tooth member) is rotated by an arbitrary angle, and the above procedure is repeated to obtain a brake torque at a plurality of rotational positions: the external tooth member (internal tooth member) is rotated by an arbitrary angle. The position of engagement with the internal tooth member (external tooth member) as the mating member is changed. Then, the above procedure is repeated to calculate (a plurality of) brake torques.

【0027】5)複数得られたブレーキトルクの偏差が
ほぼ零となるように、外歯部材(内歯部材)の歯形形状
を繰返し変更する:このようにして求められた複数のブ
レーキトルクの大きさがほぼ一定となるように(偏差が
ほぼ零となるように)外歯部材(内歯部材)の歯形を変
更し、上記手順を繰返し計算する。この結果、ブレーキ
トルクの偏差がほぼ零となった状態の外歯部材(内歯部
材)の歯形が相手部材である内歯部材(外歯部材)との
噛み合いにおいて任意の位置において常にブレーキトル
クが一定となる歯形に相当する。
5) The tooth profile of the external tooth member (internal tooth member) is repeatedly changed so that the deviation of the plurality of obtained brake torques becomes substantially zero: the magnitude of the plurality of brake torques thus obtained The tooth profile of the external tooth member (internal tooth member) is changed so that the value becomes substantially constant (so that the deviation becomes substantially zero), and the above procedure is repeatedly calculated. As a result, when the deviation of the brake torque is substantially zero, the tooth profile of the external tooth member (internal tooth member) is always engaged with the internal tooth member (external tooth member) as the mating member, so that the brake torque is always at an arbitrary position. It corresponds to a fixed tooth profile.

【0028】なお、上述の説明で( )で示したよう
に、2)において「外歯部材の中心を移動」させる代わ
りに「内歯部材の中心を移動」させるようにしても同様
な作用が得られる。
As described in parentheses in the above description, the same operation can be achieved by moving the center of the internal tooth member instead of moving the center of the external tooth member in 2). can get.

【0029】又、4)において「外歯部材を回転」させ
る代わりに「内歯部材を回転」させても同様な作用が得
られる。
The same effect can be obtained by rotating the internal tooth member instead of rotating the external tooth member in 4).

【0030】更に、5)において「外歯部材の歯形を変
更」する代わりに「内歯部材の歯形を変更」しても、更
には、「外歯部材及び内歯部材の歯形の双方を(例えば
半分程度ずつ)変更」するようにしても同様な作用が得
られる。
Further, in 5), instead of "changing the tooth profile of the external tooth member", "changing the tooth profile of the internal tooth member" is achieved. A similar effect can be obtained by changing the value (for example, about half).

【0031】なお、このようにして求められたブレーキ
トルクが目標ブレーキトルクと一致しない場合は、一致
するように外歯部材あるいは内歯部材のピッチ円径を変
更した上で上記手順を繰返すことにより、あらゆる回転
角度において目標ブレーキトルクを発生し得るような遊
星歯車対を得ることができる。
If the brake torque obtained in this way does not match the target brake torque, the above procedure is repeated after changing the pitch circle diameter of the external tooth member or the internal tooth member so as to match. Thus, it is possible to obtain a planetary gear pair capable of generating a target brake torque at any rotation angle.

【0032】[0032]

【実施例】以下図面に基づいて本発明の実施例を詳細に
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings.

【0033】図3に本発明に係る設計方法によって設計
しようとする内歯部材120及び外歯部材130の噛合
状態を示す。
FIG. 3 shows a meshing state of the internal tooth member 120 and the external tooth member 130 to be designed by the designing method according to the present invention.

【0034】図において、符号121が内歯部材120
の内歯に相当するローラ、131が外歯部材の外歯をそ
れぞれ示している。各部材の基本的な構成は従来例とし
て説明した油圧モータにおける構成と特に異なるところ
はない。
In the drawing, reference numeral 121 denotes an internal tooth member 120.
The rollers 131 correspond to the internal teeth of the external tooth member. The basic configuration of each member is not particularly different from the configuration of the hydraulic motor described as the conventional example.

【0035】本実施例では、セルフブレーキ機構を得る
ために、外歯部材130を径方向に微小量(数十μm )
だけ大きく形成するようにしている。そのため、通常の
状態では外歯部材130と内歯部材120とを組み付け
ることができないため、内歯部材120を暖め、熱膨脹
させた上で組付けるようにしている。この結果、内歯部
材120のローラ(内歯)121と外歯部材130の外
歯131の接触点は図4に示されるように弾性変形する
ことになり、この状態で外歯130を回転させると、瞬
間中心O1 に対して各接触点で矢印で示されるような摩
擦力が発生し、これがセルフブレーキとして機能するこ
とになる。
In this embodiment, in order to obtain a self-braking mechanism, the external tooth member 130 is moved in a small amount (several tens μm) in the radial direction.
Only to be large. Therefore, since the external tooth member 130 and the internal tooth member 120 cannot be assembled in a normal state, the internal tooth member 120 is heated and thermally expanded to be mounted. As a result, the contact point between the roller (internal teeth) 121 of the internal tooth member 120 and the external teeth 131 of the external tooth member 130 is elastically deformed as shown in FIG. 4, and the external teeth 130 are rotated in this state. Then, a frictional force as shown by an arrow is generated at each contact point with respect to the instantaneous center O1, and this functions as a self-brake.

【0036】以下図1及び図2に示した制御フローに従
って、(固定とされた)内歯部材120に対して外歯部
材130を設計する方法を詳細に説明する。
Hereinafter, a method of designing the external tooth member 130 with respect to the (fixed) internal tooth member 120 according to the control flow shown in FIGS. 1 and 2 will be described in detail.

【0037】ステップ200では当該遊星歯車対(内歯
部材120及び外歯部材130)において得ようとする
目標ブレーキトルクTが入力され、又内歯部材120の
内歯に相当するローラ121の径やピッチ円、その他の
各種諸元が入力される。
In step 200, the target brake torque T to be obtained by the planetary gear pair (the internal gear member 120 and the external gear member 130) is input, and the diameter and the diameter of the roller 121 corresponding to the internal gear of the internal gear member 120 are input. A pitch circle and other various data are input.

【0038】ステップ202では外歯部材130の仮諸
元が入力されると共に、ブレーキトルクTi を計算する
回数Nが入力・設定される。
In step 202, the provisional specifications of the external tooth member 130 are input, and the number of times N for calculating the brake torque Ti is input and set.

【0039】ステップ204ではブレーキトルクTi の
個数(計算回数)の初期値が1に設定される。ここまで
がいわゆる初期条件の入力に相当するステップになる。
In step 204, the initial value of the number (the number of calculations) of the brake torque Ti is set to 1. The steps up to here are steps corresponding to input of so-called initial conditions.

【0040】ステップ206では、任意の組合せ角θi
で外歯部材130を任意の位置に置く。
In step 206, any combination angle θi
To place the external tooth member 130 at an arbitrary position.

【0041】ステップ208ではこの状態で各接触点に
おけるローラ(内歯)121と外歯131との干渉量を
計算する。この「干渉量」は、各接触点における反力ベ
クトルFを計算するためにその前処理として求めるため
のもので、ここでは次のように定義している。即ち、前
述したように、内歯部材120のローラ(内歯)121
と外歯部材130の外歯131は、図4の(A)に示さ
れるように弾性変形しながら接触しているが、この状態
を理論的に求めることは困難であるため、便宜上図4の
(B)に示されるように、両者が変形せずに重なり合う
状態を考え、この時の重なり合った量(最大値)δをこ
の実施例における「干渉量」と定義している。外歯部材
130と内歯部材120との噛合は全てコンピュータ上
でのシミュレーションによって実行されるため、両部材
の各種寸法諸元と外歯部材の中心位置が定まれば演算に
よって干渉量δを求めることができる。
In step 208, the amount of interference between the roller (internal teeth) 121 and the external teeth 131 at each contact point is calculated in this state. The “interference amount” is obtained as a pre-process for calculating the reaction force vector F at each contact point, and is defined as follows. That is, as described above, the roller (internal teeth) 121 of the internal tooth member 120 is used.
The external teeth 131 of the external tooth member 130 are in contact with each other while being elastically deformed as shown in FIG. 4A, but it is difficult to theoretically determine this state. As shown in (B), a state in which they are overlapped without deformation is considered, and the amount of overlap (maximum value) δ at this time is defined as “interference amount” in this embodiment. Since the meshing between the external tooth member 130 and the internal tooth member 120 is all performed by simulation on a computer, the interference amount δ is obtained by calculation once various dimensions of both members and the center position of the external tooth member are determined. be able to.

【0042】ステップ210では、次式で示されるよう
なLundberg の式を利用し、各接触点における反力Fを
計算する。
In step 210, the reaction force F at each contact point is calculated using Lundberg's equation as shown in the following equation.

【0043】 δ=1.3339・Q/(E・l ) ×log{4.6930・( l3 ・E/Q)・(R1 +R2 )/(R1 ・R2 )} …(1)[0043] δ = 1.3339 · Q / (E · l) × log {4.6930 · (l 3 · E / Q) · (R1 + R2) / (R1 · R2)} ... (1)

【0044】(1)式において、Qは接触荷重(反
力)、Eはヤング率、l は外歯部材130の厚さ、R1
は外歯部材130の外歯の接触点における曲率半径、R
2 は内歯部材120のローラ121の曲率半径である。
この(1)式は、外歯部材130及び内歯部材120が
同質で且つポアソン比が0.3と仮定したときに成立す
る式である。
In the equation (1), Q is the contact load (reaction force), E is the Young's modulus, l is the thickness of the external tooth member 130, R1
Is the radius of curvature at the contact point of the external teeth of the external tooth member 130, R
2 is the radius of curvature of the roller 121 of the internal gear member 120.
Equation (1) is an equation that is satisfied when the external tooth member 130 and the internal tooth member 120 are of the same quality and the Poisson's ratio is 0.3.

【0045】なお、図4の(A)のb に示すような値と
して干渉量を定義したときは、例えば(2)式で示すよ
うなHelz の式を利用することにより反力ベクトルFを
求めることもできる。
When the interference amount is defined as a value as shown by b in FIG. 4A, the reaction force vector F is obtained by using, for example, Helz's equation as shown in equation (2). You can also.

【0046】 b =1.52√[{(R1 ・R2 )/{E・(R1 ・R2 )}・P]…(2) ここでPが単位長さ当りの荷重(反力)に相当する。B = 1.52√ [{(R1 · R2) / {E · (R1 · R2)} · P] (2) Here, P corresponds to a load (reaction force) per unit length.

【0047】ステップ212では、このようにして求め
た反力ベクトルの総和ΣFを計算し、ステップ214で
は該総和ΣFがほぼ零であるか否かが判定される。通常
は1回では零にならないため、NOの判定がなされ、ス
テップ216に進んで反力ベクトルの総和の方向と反対
で且つその大きさに比例した量だけ外歯部材130の中
心を移動し(設定し直し)、ステップ214で総和ΣF
がほぼ零と判定されるまでステップ208、210、2
12、214、216が繰返される。
In step 212, the sum ΣF of the reaction force vectors thus obtained is calculated. In step 214, it is determined whether or not the sum ΣF is substantially zero. Normally, the value does not become zero at one time, so the determination of NO is made, and the process proceeds to step 216 to move the center of the external tooth member 130 by an amount opposite to the direction of the sum of the reaction force vectors and in proportion to the magnitude thereof ( Reset), the total sum ΣF in step 214
Steps 208, 210 and 2 until it is determined that
12, 214, 216 are repeated.

【0048】やがて、何回かの試行錯誤の結果反力ベク
トルの総和ΣFがほぼ零になったときには、ステップ2
18に進んで外歯部材130の瞬間中心O1と各接触点
との距離を計算し、これと各接触点の反力と摩擦係数か
ら求めた摩擦力との積を計算する。そしてその総和であ
る摩擦モーメント、即ちセルフブレーキトルクTi を計
算する。
When the sum ΣF of the reaction force vectors becomes substantially zero as a result of several trials and errors, step 2
Proceeding to 18, the distance between the instantaneous center O1 of the external tooth member 130 and each contact point is calculated, and the product of the reaction force of each contact point and the friction force obtained from the friction coefficient is calculated. Then, the frictional moment, that is, the self-brake torque Ti is calculated.

【0049】ステップ220では、このようにして求め
られたブレーキトルクTi の個数(計算回数)i が設定
回数Nに至ったか否かが判断され、未だNに至っていな
いと判断された時にはステップ222に進んでi を1だ
けインクリメントし、ステップ206に戻って今度は先
程とは別の組合せ角θi+1 において上述した手順と全く
同一の手順によりブレーキトルクTi+1 を計算する。
In step 220, it is determined whether or not the number (the number of calculations) i of the brake torque Ti thus obtained has reached the set number N. If it is determined that the number i has not yet reached N, the process proceeds to step 222. Then, i is incremented by one, and the routine returns to step 206 to calculate the brake torque Ti + 1 at a different combination angle θi + 1 according to the same procedure as described above.

【0050】こうして、N個のブレーキトルクTi が求
められると、フローは図2のステップ224に進み、求
められたブレーキトルクTi の最大値MAX(Ti )と
最小値MIN(Ti )がほぼ等しいか否かが判定され、
等しいと認める程に一致していない場合にはステップ2
26に進んで外歯部材130の歯形諸元の変更がなさ
れ、ステップ204に戻る。そしてこの変更された外歯
部材130の歯形諸元に基づいてステップ204以降の
手順が繰返される。
When the N brake torques Ti have been obtained in this way, the flow proceeds to step 224 in FIG. 2, where the maximum value MAX (Ti) and the minimum value MIN (Ti) of the determined brake torque Ti are substantially equal. Is determined,
If they are not equal enough to be considered equal, step 2
Proceeding to 26, the tooth profile of the external tooth member 130 is changed, and the process returns to step 204. The procedure from step 204 is repeated based on the changed tooth profile of the external tooth member 130.

【0051】やがて、ステップ224でブレーキトルク
Ti の最大値MAX(Ti )と最小値MIN(Ti )が
ほぼ等しいと判断されると、即ちi 個のブレーキトルク
Tiの各値の偏差がほぼ零となったと判断されると、ス
テップ228に進んで当該ブレーキトルクTi が目標ブ
レーキトルクTにほぼ等しいか否かが判断される。等し
くなかったときにはステップ230に進み、目標ブレー
キトルクTの方が小さかった場合には計算によって求め
られたブレーキトルクTi の方が大きい、即ち干渉し過
ぎているということであるため、ステップ232に進ん
で外歯部材130のピッチ円径を小さくし、一方、得ら
れたブレーキトルクTi が目標トルクTより小さいと判
断されたときには干渉量をより大きくするべくステップ
234で外歯部材130のピッチ円径を大きくするよう
にする。その上で、ステップ204に戻り、再度上述し
たフローを実行する。そして、ステップ228において
得られたブレーキトルクTi が目標ブレーキトルクTと
(実質的に)等しくなったと判定されたところで制御フ
ローが終了される。
When it is determined in step 224 that the maximum value MAX (Ti) and the minimum value MIN (Ti) of the brake torque Ti are substantially equal, that is, the deviation of each of the i brake torques Ti becomes substantially zero. If it is determined that the brake torque has been reached, the routine proceeds to step 228, where it is determined whether the brake torque Ti is substantially equal to the target brake torque T. If they are not equal, the routine proceeds to step 230, and if the target brake torque T is smaller, it means that the calculated brake torque Ti is larger, that is, it interferes too much. In step 234, when it is determined that the obtained brake torque Ti is smaller than the target torque T, the pitch circle diameter of the external tooth member 130 is increased in step 234. To be larger. Then, the process returns to step 204, and the above-described flow is executed again. Then, when it is determined in step 228 that the obtained brake torque Ti is (substantially) equal to the target brake torque T, the control flow ends.

【0052】以上のようにしてフローが終了すると、そ
の時の内歯部材120と外歯部材130とが任意の噛み
合い位置で常に一定のブレーキトルクTが得られる遊星
歯車対となっている。
When the flow is completed as described above, the internal gear member 120 and the external gear member 130 at that time form a planetary gear pair in which a constant brake torque T is always obtained at an arbitrary meshing position.

【0053】図5(A)、(B)に従来のブレーキトル
クの各回転位相に対する理論値と本発明によって外歯歯
車が設計されたときの同理論値を比較して示す。図から
明らかなように、従来は外歯部材30と内歯部材20の
噛合位置がずれるに従ってブレーキトルクに大きな変動
がみられていたが、本発明ではこの変動を非常に小さく
抑えることができるようになった。
FIGS. 5A and 5B show a comparison between the theoretical value of the conventional brake torque for each rotational phase and the theoretical value when the external gear is designed according to the present invention. As is apparent from the figure, a large change in the brake torque has conventionally been observed as the engagement position between the external tooth member 30 and the internal tooth member 20 shifts, but in the present invention, this change can be suppressed to a very small value. Became.

【0054】なお、上記実施例では、外歯部材の中心位
置を移動し、外歯歯車を回転させることによって複数個
のブレーキトルクを得、外歯歯車の歯形を変更すること
によって均一なブレーキトルクの遊星歯車対を設計する
ようにしていたが、外歯部材と内歯部材の噛合は相対関
係にあるため、上記実施例の代わりに、内歯部材の中心
位置を移動し、内歯部材の回転によってN個のブレーキ
トルクを得、内歯部材の歯形の変更によって均一な遊星
歯車対を得るようにすることも無論可能である。又、歯
形の変更については、一方だけを変更するのではなく同
時に内歯部材及び外歯部材の双方を例えば半分程度ずつ
変更するような構成としてもよい。
In the above embodiment, a plurality of brake torques are obtained by moving the center position of the external gear member and rotating the external gear, and a uniform brake torque is obtained by changing the tooth profile of the external gear. However, since the meshing between the external tooth member and the internal tooth member is in a relative relationship, instead of the above-described embodiment, the center position of the internal tooth member is moved, and It is of course possible to obtain N brake torques by rotation and obtain a uniform planetary gear pair by changing the tooth profile of the internal gear member. Further, regarding the change of the tooth profile, a configuration may be adopted in which both the internal tooth member and the external tooth member are changed at the same time, for example, about half each, instead of changing only one of them.

【0055】同様に目標ブレーキトルクTと一致させる
ために外歯部材のみのピッチ円径を変更する必要はな
く、内歯部材のみのピッチ円径を変更してもよく、又は
その双方のピッチ円径を変更してもよい。
Similarly, it is not necessary to change the pitch circle diameter of only the external teeth member in order to match the target brake torque T. The pitch circle diameter of only the internal teeth member may be changed, or both pitch circles may be changed. The diameter may be changed.

【0056】[0056]

【発明の効果】以上説明したとおり、本発明によれば、
外歯部材と内歯部材との噛み合い位置に依存したブレー
キトルクの変動を小さくできるため、両部材がどのよう
な位相角で停止している場合でも安定した(一定の)ブ
レーキトルクを得ることができるようになる。
As described above, according to the present invention,
Since the fluctuation of the brake torque depending on the meshing position between the external tooth member and the internal tooth member can be reduced, a stable (constant) brake torque can be obtained even when both members are stopped at any phase angle. become able to.

【0057】又、例えば油圧モータに係る遊星歯車対と
して外歯部材若しくは内歯部材を起動する場合には、起
動圧力のばらつきを小さくすることができる。
Further, for example, when the external gear member or the internal gear member is activated as the planetary gear pair relating to the hydraulic motor, the variation in the activation pressure can be reduced.

【0058】更には、通常運転中の外歯部材と内歯部材
との間の摩擦トルクの変動を小さくできるため、極めて
安定した出力トルクを得ることができるようにもなる。
Furthermore, since the fluctuation of the friction torque between the external tooth member and the internal tooth member during the normal operation can be reduced, an extremely stable output torque can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る遊星歯車対の設計方法の実施例の
前半部分を示す流れ図
FIG. 1 is a flowchart showing a first half of an embodiment of a method for designing a planetary gear pair according to the present invention.

【図2】図1の後半部分を示す流れ図FIG. 2 is a flowchart showing the latter half of FIG. 1;

【図3】外歯部材と内歯部材の噛合状態を示した線図FIG. 3 is a diagram showing a meshing state of an external tooth member and an internal tooth member.

【図4】図3の矢印IV部分の拡大図FIG. 4 is an enlarged view of an arrow IV part in FIG. 3;

【図5】ブレーキトルクの理論値を、従来と、本実施例
とで比較して示した線図
FIG. 5 is a diagram showing theoretical values of brake torque in comparison with a conventional example and this example.

【図6】従来の揺動内接噛合式遊星歯車対が組付けられ
た油圧モータの構成を示す軸断面図
FIG. 6 is an axial cross-sectional view showing a configuration of a hydraulic motor to which a conventional oscillating internally meshing planetary gear pair is assembled.

【図7】図6の矢視VII −VII 線に沿う断面図7 is a sectional view taken along the line VII-VII of FIG. 6;

【図8】図6の矢視VIII−VIII線に沿う、一部に油圧ス
ケルトン図を含む断面図
FIG. 8 is a cross-sectional view partially including a hydraulic skeleton diagram along the line VIII-VIII in FIG. 6;

【符号の説明】[Explanation of symbols]

20、220…内歯部材 21、221…ローラ(内歯) 30、230…外歯部材 31、231…外歯 e …偏心量 20, 220: Internal tooth member 21, 221: Roller (internal tooth) 30, 230: External tooth member 31, 231: External tooth e: Eccentric amount

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F04C 2/10 321 F16H 1/32 Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) F04C 2/10 321 F16H 1/32

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】n 個の外歯を有する外歯部材と、これと内
接噛合するn +1個の内歯を有する内歯部材とで構成さ
れ、前記外歯部材の軸中心が前記内歯部材の軸中心から
所定量だけ偏心して組付けられると共に、前記内接噛合
により外歯部材が自転しながら内歯部材の軸中心の周り
を公転運動し、且つ、該内接噛合に所定の抵抗を付与す
ることにより外力による回転に対するブレーキトルクを
得るように構成した揺動内接噛合式遊星歯車対の設計方
法において、 前記外歯及び内歯の各接触点における反力を求める手順
と、この求められた各接触点における 反力の総和がほぼ零と
なるように外歯部材又は内歯部材のいずれか一方の中心
位置を他方の中心位置に対して相対的に移動させる手順
と、 中心位置を移動した後のブレーキトルクを求める手順
と、 外歯部材又は内歯部材のいずれか一方を他方に対して相
対的に任意角度回転させ、上記手順を繰返すことにより
複数の回転位置におけるブレーキトルクを得る手順と、 該複数の回転位置において得られたブレーキトルクの偏
差がほぼ零となるように、外歯部材の外歯及び内歯部材
の内歯のうち少なくとも一方の形状を繰返し変更する手
順と、 を含むことを特徴とする揺動内接噛合式遊星歯車対の設
計方法。
1. An external tooth member having n external teeth and an internal tooth member having (n + 1) internal teeth meshed internally with the external tooth member, wherein the axial center of the external tooth member is the internal tooth The member is mounted eccentrically from the axial center of the member by a predetermined amount, and the external tooth member revolves around the axial center of the internal tooth member while rotating by the internal engagement, and a predetermined resistance to the internal engagement. in oscillating internally meshing a method of designing a planetary gear pairs configured to obtain the braking torque with respect to rotation due to the external force by applying a procedure for obtaining a reaction force at each contact point of the outer teeth and inner teeth, this A procedure of relatively moving the center position of either the external tooth member or the internal tooth member with respect to the other center position so that the sum of the obtained reaction forces at each contact point becomes substantially zero; To find the brake torque after moving If, one of the external gear member or the internal gear member are relatively arbitrary angular rotation relative to the other, a procedure for obtaining a brake torque at a plurality of rotational positions by repeating the above procedure, the rotational position of the plurality of Repetitively changing the shape of at least one of the external teeth of the external teeth member and the internal teeth of the internal teeth member so that the deviation of the obtained brake torque becomes substantially zero. How to design an internally meshing planetary gear pair.
【請求項2】n 個の外歯を有する外歯部材と、これと内
接噛合するn +1個の内歯を有する内歯部材とで構成さ
れ、前記外歯部材の軸中心が前記内歯部材の軸中心から
所定量だけ偏心して組付けられると共に、前記内接噛合
により外歯部材が自転しながら内歯部材の軸中心の周り
を公転運動し、且つ、該内接噛合に所定の抵抗を付与す
ることにより外力による回転に対するブレーキトルクを
得るように構成した揺動内接噛合式遊星歯車対の設計方
法において、 前記外歯及び内歯の各接触点における反力を求める手順
と、この求められた各接触点における 反力の総和がほぼ零と
なるように外歯部材又は内歯部材のいずれか一方の中心
位置を他方の中心位置に対して相対的に移動させる手順
と、 中心位置を移動した後のブレーキトルクを求める手順
と、 外歯部材又は内歯部材のいずれか一方を他方に対して相
対的に任意角度回転させ、上記手順を繰返すことにより
複数の回転位置におけるブレーキトルクを得る手順と、 該複数の回転位置において得られたブレーキトルクの偏
差がほぼ零となるように、外歯部材の外歯及び内歯部材
の内歯のうち少なくとも一方の形状を繰返し変更する手
順と、 該複数得られたブレーキトルクの値がほぼ目標とするブ
レーキトルクの値となるように、外歯部材及び内歯部材
のうち少なくとも一方のピッチ円径を変更した上で、上
記手順を繰返す手順と、 を含むことを特徴とする揺動内接噛合式遊星歯車対の設
計方法。
2. An external tooth member having n external teeth, and an internal tooth member having (n + 1) internal teeth meshed with the external tooth member, wherein the axial center of the external tooth member is the internal tooth The member is mounted eccentrically from the axial center of the member by a predetermined amount, and the external tooth member revolves around the axial center of the internal tooth member while rotating by the internal engagement, and a predetermined resistance to the internal engagement. in oscillating internally meshing a method of designing a planetary gear pairs configured to obtain the braking torque with respect to rotation due to the external force by applying a procedure for obtaining a reaction force at each contact point of the outer teeth and inner teeth, this A procedure of relatively moving the center position of either the external tooth member or the internal tooth member with respect to the other center position so that the sum of the obtained reaction forces at each contact point becomes substantially zero; To find the brake torque after moving If, one of the external gear member or the internal gear member are relatively arbitrary angular rotation relative to the other, a procedure for obtaining a brake torque at a plurality of rotational positions by repeating the above procedure, the rotational position of the plurality of A procedure of repeatedly changing the shape of at least one of the external teeth of the external tooth member and the internal teeth of the internal tooth member so that the deviation of the obtained brake torque becomes substantially zero; And changing the pitch circle diameter of at least one of the external tooth member and the internal tooth member such that the value of the brake torque becomes substantially the target value of the brake torque, and repeating the above procedure. How to design a dynamic internal meshing planetary gear pair.
JP23294994A 1994-09-28 1994-09-28 Design method of oscillating internal meshing planetary gear pair Expired - Lifetime JP2901502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23294994A JP2901502B2 (en) 1994-09-28 1994-09-28 Design method of oscillating internal meshing planetary gear pair

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23294994A JP2901502B2 (en) 1994-09-28 1994-09-28 Design method of oscillating internal meshing planetary gear pair

Publications (2)

Publication Number Publication Date
JPH0893860A JPH0893860A (en) 1996-04-12
JP2901502B2 true JP2901502B2 (en) 1999-06-07

Family

ID=16947390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23294994A Expired - Lifetime JP2901502B2 (en) 1994-09-28 1994-09-28 Design method of oscillating internal meshing planetary gear pair

Country Status (1)

Country Link
JP (1) JP2901502B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2759740A4 (en) * 2011-09-22 2016-01-20 Ntn Toyo Bearing Co Ltd Reduction device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4820610B2 (en) * 2005-09-15 2011-11-24 住友電工焼結合金株式会社 Internal gear pump evaluation device and internal gear pump evaluation program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2759740A4 (en) * 2011-09-22 2016-01-20 Ntn Toyo Bearing Co Ltd Reduction device

Also Published As

Publication number Publication date
JPH0893860A (en) 1996-04-12

Similar Documents

Publication Publication Date Title
JP4243498B2 (en) Ring gear machine clearance
KR100366693B1 (en) Gear transmission
JP3444643B2 (en) Internally meshing planetary gear structure and method of manufacturing the gear
US4713985A (en) Transmission apparatus
JP5739713B2 (en) Roller transmission
JP4286780B2 (en) Device for changing the control time of an internal combustion engine
US4036073A (en) Elliptic gear wheel
JPH11173386A (en) Plant gear device
US4132090A (en) Crowned involute splines and method of making
EP0527483A2 (en) Epicyclic drive
Jang et al. Geometry design and dynamic analysis of a modified cycloid reducer with epitrochoid tooth profile
WO2000025974A1 (en) Method of manufacturing pin holding ring for internal gear, internally meshed planetary gear structure, and hydraulic motor and pump
JP3067794B2 (en) Oil pump
JP2901502B2 (en) Design method of oscillating internal meshing planetary gear pair
US4704096A (en) Crowned splines and defination of root radius therefor
JP4954209B2 (en) Gear device
JPH11348795A (en) Rotating fluid pressure device
GB2095334A (en) Rotary positive-displacement fluidmachines
JP3920398B2 (en) Inscribed mesh planetary gear structure
JP2008291824A (en) Oil pump
JP2017501360A (en) Transmission and parts
JPH033072B2 (en)
DE4131847C1 (en) Control and conversion engine etc. drive - has several rotors, each with oval gearwheels, eccentric, parallel, and symmetrical w.r.t. rotor axis
JP2007100843A (en) Rocking inscribed planetary gear device and geared motor
US4138206A (en) Gear-type positive-displacement machine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term