JP2901048B2 - Image signal processing method and apparatus - Google Patents

Image signal processing method and apparatus

Info

Publication number
JP2901048B2
JP2901048B2 JP6190811A JP19081194A JP2901048B2 JP 2901048 B2 JP2901048 B2 JP 2901048B2 JP 6190811 A JP6190811 A JP 6190811A JP 19081194 A JP19081194 A JP 19081194A JP 2901048 B2 JP2901048 B2 JP 2901048B2
Authority
JP
Japan
Prior art keywords
signal
distribution
image
scattered
wave signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6190811A
Other languages
Japanese (ja)
Other versions
JPH0854379A (en
Inventor
幸雄 加川
隆生 土屋
英一 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimada Rika Kogyo KK
Original Assignee
Shimada Rika Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimada Rika Kogyo KK filed Critical Shimada Rika Kogyo KK
Priority to JP6190811A priority Critical patent/JP2901048B2/en
Publication of JPH0854379A publication Critical patent/JPH0854379A/en
Application granted granted Critical
Publication of JP2901048B2 publication Critical patent/JP2901048B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えば超音波CT(co
mputer tomography:計算機断層撮影像)に用いられる
画像信号処理方法及びこの方法を実施する装置に関し、
特に、流体や弾性体の媒質境界の分布画像を生成する技
術に関する。
The present invention relates to an ultrasonic CT (co
The present invention relates to an image signal processing method used for mputer tomography and a device for implementing the method.
In particular, the present invention relates to a technique for generating a distribution image of a medium boundary between a fluid and an elastic body.

【0002】[0002]

【従来の技術】近年、超音波信号を用いて生体や木材等
の内部組織を外部より観測し、観測により得た信号を1
次元乃至多次元画像信号に変換して可視化する技法が種
々提案されている。このような技法は一般に超音波CT
と呼ばれ、生体に関してはX線CT等よりも安全なこと
が実証されている。また、上記画像信号に基づいて実際
に内部組織の断層画像を生成表示する装置はCTスキャ
ナと呼ばれる。このCTスキャナは、超音波信号を音場
(音波が作用する領域、以下同じ)に対して送信する送
波器と、該音場で散乱した散乱波信号を受信する複数の
受波器とを有し、それぞれの角度で受信した散乱波信号
の属性、例えば音圧に基づいて1次元信号を生成した
後、これら1次元信号の波形集合をフーリエ変換法、重
畳積分法等によって2次元信号に変換し、これに基づい
て2次元の断層画像を生成するものである。また、最近
は、CTスキャナを生体等の軸線に沿って少しづつ平行
移動させながら多数の2次元断層画像を生成し、これら
を3次元的に積み重ねることにより当該内部組織の3次
元断層画像に構築することも行われている。
2. Description of the Related Art In recent years, an internal tissue such as a living body or wood has been observed from the outside using an ultrasonic signal, and a signal obtained by the observation has been obtained as one signal.
Various techniques for converting into a dimensional or multidimensional image signal for visualization have been proposed. Such techniques are commonly referred to as ultrasonic CT
It has been demonstrated that the living body is safer than X-ray CT or the like. A device that actually generates and displays a tomographic image of an internal tissue based on the image signal is called a CT scanner. The CT scanner includes a transmitter that transmits an ultrasonic signal to a sound field (a region where a sound wave acts, the same applies hereinafter) and a plurality of receivers that receive scattered wave signals scattered in the sound field. After generating a one-dimensional signal based on the attribute of the scattered wave signal received at each angle, for example, sound pressure, a waveform set of these one-dimensional signals is converted into a two-dimensional signal by a Fourier transform method, a convolution integration method, or the like. The conversion is performed, and a two-dimensional tomographic image is generated based on the conversion. Recently, a large number of two-dimensional tomographic images are generated while the CT scanner is gradually moved in parallel along the axis of a living body or the like, and these are three-dimensionally stacked to construct a three-dimensional tomographic image of the internal tissue. It has also been done.

【0003】[0003]

【発明が解決しようとする課題】ところで、超音波信号
は、X線等に比べるとその波長が数桁程度長いので、波
動性がより顕著に現れ、生体等を透過する際に、回析や
散乱の影響を受け易い。そのため、最終的に生成される
断層画像が歪んだり、あるいはボケの生じた不鮮明なも
のとなる場合がある。これに対処するには、直進性に優
れた高周波超音波信号を用いれば良いが、そうすると周
波数が高くなるにつれて内部組織での減衰が著しく、深
部まで到達しにくくなる欠点がある。また、通常は単一
パルス(インパルス)を使用することから、良好なS/
N比(信号対雑音比)を得ようとすれば尖頭音圧を大き
くする必要があるが、超音波信号といえども高音圧にし
すぎると生体等の組織に悪影響を及ぼすことが指摘され
ている。
By the way, since the wavelength of an ultrasonic signal is several orders of magnitude longer than that of an X-ray or the like, wave characteristics appear more remarkably, and diffraction and Susceptible to scattering. Therefore, the finally generated tomographic image may be distorted or blurred and unclear. To cope with this, a high-frequency ultrasonic signal having excellent straightness may be used. However, there is a drawback in that as the frequency increases, attenuation in internal tissues becomes remarkable and it is difficult to reach a deep part. Further, since a single pulse (impulse) is usually used, a good S /
In order to obtain an N ratio (signal-to-noise ratio), it is necessary to increase the peak sound pressure. However, it has been pointed out that an excessively high sound pressure of an ultrasonic signal adversely affects tissues such as a living body. I have.

【0004】そのため、従来の超音波CT乃至CTスキ
ャナにおいては、高周波化、高音圧化にも限界があり、
改善が望まれていた。本発明の課題は、かかる背景に鑑
み、周波数、音圧共に生体組織に悪影響を及ぼさないレ
ベルの超音波信号を用いながら、歪みやボケの生じない
鮮明な断層画像が得られる画像信号処理方法及び装置を
提供することにある。
[0004] Therefore, in the conventional ultrasonic CT or CT scanner, there is a limit in increasing the frequency and the sound pressure.
Improvement was desired. In view of the background, an object of the present invention is to provide an image signal processing method capable of obtaining a clear tomographic image free of distortion and blur while using an ultrasonic signal at a frequency and a sound pressure that does not adversely affect living tissue at both frequencies and sound pressures. It is to provide a device.

【0005】[0005]

【課題を解決するための手段】本発明が提供する画像信
号処理方法は、被観測物体が存する音場に超音波信号を
送信するとともにその被観測物体の媒質境界で散乱した
複数の散乱波信号を受信することで前記媒質境界の分布
画像を生成する装置において実行される方法であって
受信した各散乱波信号の属性と前記音場が均質である場
合の散乱波信号の属性との差分波信号を生成し、生成し
た差分波信号をTLM法を用いて逆伝搬させて当該信号
の合成振幅が最大となる地点を検出し、検出した地点の
位置情報に基づいて前記分布画像を生成することを特徴
とする。
According to the image signal processing method provided by the present invention, an ultrasonic signal is transmitted to a sound field where an object to be observed exists, and a plurality of scattered wave signals scattered at a medium boundary of the object to be observed. The distribution of the medium boundary
A method performed in an apparatus for generating an image, the method comprising :
It generates a difference wave signal with attributes of the scattered wave signals if the attribute and the sound field of each scattered wave signal is homogeneous received, of the signal generated differential wave signal by back propagation using TLM method composite amplitude detects a point where the maximum, and wherein the benzalkonium to generate a pre-Symbol distribution image based on the position information of the detected point.

【0006】ここに、TLM法とは、音場をコイルとコ
ンデンサで構成される等価的な格子状の伝達線路網で表
現し、ホイヘンスの原理に基づく波動現象を伝達線路網
上を伝わるパルス波の伝達・散乱問題として追跡する手
法であり、時間積分を必要とせず、単純な計算で直接的
に時間領域解を求めることができるという特徴を有す
る。このTLM法の具体的な内容は、藤井,土屋,加
川,日本シミュレーション学会第11回シミュレーショ
ン・テクノロジー・コンファレンス(1992.06)論文集
p135〜138、「伝達線路網(TLM)法を用いた音波伝
搬の非定常解析」、及び、加川幸雄,超音波TECHN
O12月号「数値解析法概説」(日本工業出版(株),1
993,12)に紹介されている。
Here, the TLM method expresses a sound field by an equivalent grid-like transmission line network composed of a coil and a capacitor, and expresses a wave phenomenon based on the Huygens principle on a pulse wave transmitted on the transmission line network. This is a method of tracking as a transmission / scattering problem, and has a feature that a time domain solution can be directly obtained by simple calculation without requiring time integration. The specific contents of this TLM method are described in Fujii, Tsuchiya, Kagawa, Journal of the Japan Society for Simulation Technology, 11th Simulation Technology Conference (1992.06), pp. 135-138, “Transmission of sound waves using the transmission line network (TLM) method”. Transient analysis "and Yukio Kagawa, Ultrasonic TECHN
O12 issue "Numerical Analysis Method Overview" (Nippon Kogyo Publishing Co., Ltd., 1
993, 12).

【0007】本発明が提供する他の画像信号処理方法
は、被観測物体が存する音場に超音波信号を送信すると
ともにその被観測物体の媒質境界で散乱した複数の散乱
波信号を受信することで前記媒質境界の分布画像を生成
する装置において実行される方法であって、受信した各
散乱波信号をTLM法を用いて逆伝搬させてそれぞれの
信号強度分布を検出、検出した各信号強度分布と前記
音場が均質である場合の散乱波信号の信号強度分布との
差分布を導出この差分布に基づいて前記分布画像を
生成することを特徴とする。
[0007] Another image signal processing method provided by the present invention is to transmit an ultrasonic signal to a sound field where an object to be observed exists.
Both generate a distribution image of the medium boundary by receiving a plurality of scattered wave signals scattered at the medium boundary of the object to be observed.
A method performed in an apparatus for, each scattered wave signals received to detect the respective signal intensity distribution by back propagation using TLM method is homogeneous the signal intensity distribution and the sound field detected the difference distribution is derived in the signal intensity distribution of the scattered wave signal when, characterized by the Turkey to generate a pre-Symbol distribution image based on the difference distribution.

【0008】なお、上記画像信号処理方法において、超
音波信号及び散乱波信号をバースト状の信号を含んで形
成し、このバースト状の信号を用いて前記被観測物体の
移動速度を考慮した分布画像を生成するようにしても良
い。また、散乱波信号の属性は、例えば該散乱波信号の
音圧、変位量、速度、及び密度の少なくとも一つを含む
ものである。速度と密度とに基づいて音響インピーダン
スを求めることもできる。
In the image signal processing method, the ultrasonic signal and the scattered wave signal are formed to include a burst-like signal, and the burst-like signal is used to detect the object to be observed.
It is also possible to generate a distribution image considering the moving speed.
No. The attribute of the scattered wave signal includes, for example, at least one of the sound pressure, the displacement, the velocity, and the density of the scattered wave signal. The acoustic impedance can also be determined based on speed and density.

【0009】また、本発明が提供する画像信号処理装置
は、被観測物体が存する音場に超音波信号を送信する送
波器と、前記被観測物体の媒質境界で散乱した散乱波信
号を異なった位置にて受信する複数の受波器と、各受波
器で受信した散乱波信号の属性と前記音場が均質である
場合の散乱波信号の属性との差分波信号を生成する差分
波信号生成手段と、前記差分波信号を入力してTLM法
に基づく逆伝搬制御を施し、各逆伝搬波信号の合成振幅
が最大となる地点を検出する媒質境界検出手段と、検出
された前記地点の位置情報に基づいて前記媒質境界の分
布画像を生成する画像生成手段と、を有することを特徴
とする。
Further, the image signal processing apparatus provided by the present invention is different from a transmitter for transmitting an ultrasonic signal to a sound field where an object to be observed exists, and a scattered wave signal scattered at a medium boundary of the object to be observed. And a differential wave for generating a differential wave signal between the attribute of the scattered wave signal received by each receiver and the attribute of the scattered wave signal when the sound field is homogeneous. Signal generation means, medium difference detection means for receiving the differential wave signal, performing back propagation control based on the TLM method, and detecting a point where the combined amplitude of each back propagation wave signal is maximum; Image generation means for generating the distribution image of the medium boundary based on the position information.

【0010】また、本発明が提供する他の構成の画像信
号処理装置は、被観測物体が存する音場に超音波信号を
送信する送波器と、前記被観測物体の媒質境界で散乱し
た散乱波信号を異なった位置にて受信する複数の受波器
と、各受波器で受信した散乱波信号を入力してTLM法
に基づく逆伝搬制御を施し、各逆伝搬波信号の信号強度
分布を検出する信号強度分布検出手段と、検出した各信
号強度分布と前記音場が均質である場合の散乱波信号の
信号強度分布との差分布を導出する差分布導出手段と、
導出した差分布に基づいて前記媒質境界の分布画像を生
成する画像生成手段と、を有することを特徴とする。
According to another aspect of the present invention, there is provided an image signal processing apparatus comprising: a transmitter for transmitting an ultrasonic signal to a sound field in which an object to be observed exists; and a scatterer scattered at a medium boundary of the object to be observed. A plurality of receivers for receiving wave signals at different positions, and scattered wave signals received by the respective receivers are input and backpropagation control is performed based on the TLM method, and the signal intensity distribution of each backpropagation wave signal Signal intensity distribution detecting means for detecting, and a difference distribution deriving means for deriving a difference distribution between the detected signal intensity distribution and the signal intensity distribution of the scattered wave signal when the sound field is homogeneous,
Image generating means for generating a distribution image of the medium boundary based on the derived difference distribution.

【0011】[0011]

【作用】被観測物体が存する音場に送波器から超音波信
号を送信すると、この超音波信号は当該物体の媒質変化
に応じて透過あるいは反射され、当該媒質境界を2次音
源として拡がる複数の散乱波信号となる。本発明では、
これら散乱波信号を異なった位置に設けた複数の受波器
で受信し、差分波信号生成手段あるいは信号強度分布検
出手段に導く。
When an ultrasonic signal is transmitted from a transmitter to a sound field in which an object to be observed is present , the ultrasonic signal is transmitted or reflected in accordance with a change in the medium of the object, and a plurality of ultrasonic signals spread at the medium boundary as a secondary sound source. Scattered wave signal. In the present invention,
These scattered wave signals are received by a plurality of receivers provided at different positions and guided to a differential wave signal generating means or a signal intensity distribution detecting means.

【0012】差分波信号生成手段では、これら散乱波信
号の属性と音場が均質である場合の散乱波信号の属性と
の差分波信号を生成して媒質境界検出手段に導く。この
ようにすれば各差分波信号は当該音場における音響イン
ピーダンスの変化分のみを表すようになり、後段処理に
おけるS/N比(信号対雑音比)が格段に向上する。媒
質境界検出手段では、生成された差分波信号を入力して
TLM法に基づく逆伝搬制御、例えば伝搬の時間軸を反
転させた逆伝搬波信号となし、各逆伝搬波信号の合成振
幅が最大となる地点を検出する。各散乱波信号は、媒質
境界を2次音源として拡がったものなので、合成振幅の
最大点がその2次音源、即ち物体の媒質境界となる。こ
の検出した地点の位置情報をそれぞれの差分波信号につ
いて生成して後段の画像生成手段に導き、境界分布画像
を得る。
The differential wave signal generating means generates a differential wave signal between the attribute of the scattered wave signal and the attribute of the scattered wave signal when the sound field is homogeneous, and guides it to the medium boundary detecting means. In this way, each differential wave signal represents only the change in the acoustic impedance in the sound field, and the S / N ratio (signal-to-noise ratio) in the subsequent processing is significantly improved. In the medium boundary detection means, the generated differential wave signal is input, and a back propagation control based on the TLM method is performed, for example, a back propagation wave signal in which the time axis of propagation is inverted, and the combined amplitude of each back propagation wave signal is maximized. Is detected. Since each scattered wave signal has a medium boundary spread as a secondary sound source, the maximum point of the combined amplitude is the secondary sound source, that is, the medium boundary of the object. The position information of the detected point is generated for each of the differential wave signals, and is guided to the image generating means at the subsequent stage to obtain a boundary distribution image.

【0013】一方、信号強度分布検出手段では、散乱波
信号を入力してそれぞれTLM法に基づく逆伝搬制御を
施し、各逆伝搬波信号の信号強度分布を検出して差分布
導出手段に導く。これら信号強度分布は、当該音場にお
ける音響インピーダンスの変化を直接に表している。差
分布導出手段では、検出した各信号強度分布と当該音場
が均質である場合の散乱波信号の信号強度分布との差分
布を導出する。これにより音響インピーダンスの変化
点、即ち物体における媒質境界が判るので、これを後段
の画像生成手段に導いて境界分布画像を得る。
On the other hand, the signal intensity distribution detecting means receives the scattered wave signal, performs back propagation control based on the TLM method, detects the signal intensity distribution of each back propagated wave signal, and guides it to the difference distribution deriving means. These signal intensity distributions directly represent changes in acoustic impedance in the sound field. The difference distribution deriving means derives a difference distribution between each detected signal intensity distribution and the signal intensity distribution of the scattered wave signal when the sound field is homogeneous. As a result, the change point of the acoustic impedance, that is, the boundary of the medium in the object is known, and this is guided to the image generation means in the subsequent stage to obtain a boundary distribution image.

【0014】なお、音場が均質である場合の散乱波信号
とは、例えば被観測物体の内部組織が同一の音響インピ
ーダンスの媒質から成る場合、あるいは音場に物体が存
しない場合の伝達超音波信号であり、当該音場について
予め実験により求めておく。例えば生体のように組織毎
の音響インピーダンスが周知の場合は、その組織毎の音
響インピーダンスのデータをROM(read only memor
y)等に記憶させ、随時読み出すようにすれば便利であ
る。音場乃至物体によっては、その都度実測した方が良
い場合や、既存のデータに基づいてシミュレートできる
場合もある。また、TLM法のアルゴリズムは、ホイヘ
ンスの原理という物理モデルを用いているので、散乱波
信号や逆伝搬波信号の伝搬モデル化に際しては、有限要
素法や境界要素法等のような数値手法に見られる演算処
理の困難性は無く、しかも原理的にBorn近似、Rh
ytov近似等を考慮する必要がないので、波動性を厳
密に考慮することができる。従って、超音波信号や散乱
波信号の直進性は必ずしも要求されず、例えば長波帯超
音波信号であっても境界分布画像の歪みやボケが軽減さ
れる。
The scattered wave signal when the sound field is homogeneous is, for example, a transmitted ultrasonic wave when the internal tissue of the object to be observed is made of a medium having the same acoustic impedance or when no object exists in the sound field. Signal, and the sound field is obtained in advance by an experiment. For example , if the acoustic impedance of each tissue is known , such as a living body , the sound of each tissue
Read the impedance data into ROM (read only memor
It is convenient to store it in y) or the like and read it out at any time. Depending on the sound field or the object, there is a case where it is better to actually measure each time, or a case where a simulation can be performed based on existing data. Also, since the TLM algorithm uses a physical model called Huygens' principle, when modeling the propagation of a scattered wave signal or a counter-propagating wave signal, it is necessary to use a numerical method such as the finite element method or the boundary element method. There is no difficulty in the arithmetic processing required, and in principle, the Born approximation, Rh
Since it is not necessary to consider the ytov approximation or the like, it is possible to strictly consider the wave property. Therefore, straightness of the ultrasonic signal or the scattered wave signal is not always required. For example, even in the case of a long wave ultrasonic signal, distortion and blur of the boundary distribution image are reduced.

【0015】[0015]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。図1に本発明を超音波CTに適用した場合
の要部構成例を示す。図中、1は被観測物体、2は超音
波センサ、3は画像前処理部、4は断層画像生成部、5
は表示制御部を示す。被観測物体1は、生体全般、木
材、流体、弾性体等、音場を形成し得るものであればど
のような種類であっても良い。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows a configuration example of a main part when the present invention is applied to an ultrasonic CT. In the figure, 1 is an observed object, 2 is an ultrasonic sensor, 3 is an image preprocessing unit, 4 is a tomographic image generation unit, 5
Indicates a display control unit. The object to be observed 1 may be of any type as long as it can form a sound field, such as a living body, wood, fluid, elastic body, and the like.

【0016】超音波センサ2は、送波器と受波器とから
成り、例えば超音波信号を被観測物体1に送信した後、
該被観測対象物体1からの散乱波信号を一定期間受信す
るものである。なお、1つの送波器を固定的に配すると
ともに1以上の受波器を回転させる構成、送波器と受波
器の組を被観測物体1の軸線の周囲に複数配して各々回
転させる構成、あるいは1つのみのセンサで送波器と受
波器とを兼用する構成にしても良い。受信した複数の散
乱波信号は、画像前処理部3に導かれる。
The ultrasonic sensor 2 includes a transmitter and a receiver. For example, after transmitting an ultrasonic signal to the object 1 to be observed,
The scattered wave signal from the observed object 1 is received for a certain period. A configuration in which one transmitter is fixedly arranged and one or more receivers are rotated, and a plurality of pairs of transmitters and receivers are arranged around the axis of the object 1 to be observed, and each of them is rotated. The configuration may be such that only one sensor is used as the transmitter and the receiver. The received plurality of scattered wave signals are guided to the image preprocessing unit 3.

【0017】画像前処理部3は、信号属性ファイル3
1、伝搬アルゴリズム格納部32、散乱波信号入力部3
3、信号属性比較部34、逆伝搬処理部35、2次音源
位置検出部36、作業メモリ37、及び、各部動作を制
御する制御部38を有する。信号属性ファイル31に
は、被観測物体1が均質である場合の散乱波信号の属
性、例えば音圧、変位量、速度の少なくとも1つを含む
データを予め測定するか、あるいはシミュレーションに
より求めて格納してあり、伝搬アルゴリズム格納部32
には、TLM法に基づく時間反転された音波伝搬の数値
アルゴリズムが格納されている。これについては更に後
述する。
The image preprocessing unit 3 includes a signal attribute file 3
1. Propagation algorithm storage unit 32, scattered wave signal input unit 3
3, a signal attribute comparing unit 34, a back propagation processing unit 35, a secondary sound source position detecting unit 36, a working memory 37, and a control unit 38 for controlling the operation of each unit. In the signal attribute file 31, data including at least one of the attributes of the scattered wave signal when the object to be observed 1 is homogeneous, for example, at least one of sound pressure, displacement, and velocity is obtained in advance or obtained by simulation. The propagation algorithm storage unit 32
Stores a numerical algorithm of time-reversed sound wave propagation based on the TLM method. This will be further described later.

【0018】散乱波信号入力部33は、超音波センサ2
より導かれた散乱波信号を入力するものであり、信号属
性比較部34は、入力した各散乱波信号の属性と信号属
性ファイル31に格納された該当信号の属性、例えば音
圧、変位量、速度、及び密度の少なくとも一つと比較し
て差分波信号を生成するものである。速度と密度とに基
づく音響インピーダンスを比較しても良い(以上、差分
波信号生成手段)。この差分波信号は、例えば作業エリ
ア37に一時格納され、処理時に読み出される。実時間
処理がなされる場合は、作業エリア37を介さずに直接
逆伝搬処理部35に導かれる。逆伝搬処理部35は、伝
搬アルゴリズム格納部32から上記数値アルゴリズムを
読み出して差分波信号にTLM法に基づく逆伝搬制御を
施すものであり、2次音源位置検出部36は、各逆伝搬
波信号の合成振幅が最大となる地点を検出して当該地点
の位置情報を生成するものである(以上、媒質境界検出
手段)。この位置情報は断層画像生成部(画像生成手
段)4に導かれ、ここで媒質境界の分布画像が生成され
た後、表示制御部5で可視化される。
The scattered wave signal input unit 33 is connected to the ultrasonic sensor 2
The signal attribute comparison unit 34 inputs the attribute of each input scattered wave signal and the attribute of the corresponding signal stored in the signal attribute file 31, such as sound pressure, displacement amount, and the like. A difference wave signal is generated by comparing at least one of the speed and the density. The acoustic impedance based on the speed and the density may be compared (above, the differential wave signal generating means). This differential wave signal is temporarily stored in, for example, the work area 37 and is read out at the time of processing. When the real-time processing is performed, the processing is directly guided to the back propagation processing unit 35 without passing through the work area 37. The back propagation processing unit 35 reads the numerical algorithm from the propagation algorithm storage unit 32 and performs back propagation control on the differential wave signal based on the TLM method. The secondary sound source position detection unit 36 Is to detect a point at which the combined amplitude becomes maximum and generate position information of the point (above, medium boundary detecting means). This position information is guided to a tomographic image generation unit (image generation means) 4, where a distribution image of a medium boundary is generated, and then visualized by a display control unit 5.

【0019】次に、上記構成の超音波CTの動作説明に
先立って本実施例の原理を図2を参照して簡単に説明す
る。いま、図2(a)のように、音響インピーダンスの
異なる媒質Aと媒質Bとからなる伝搬路に単一パルス状
の超音波信号pが入射されたとすると、この超音波信号
pは、図2(b)に示すように、媒質境界で反射されて
散乱音波信号p1,p2となる。これはあたかも媒質境
界が音源(2次音源)であり、散乱波信号p1,p2は
そこから放射されるように観測される。これらの散乱波
信号p1,p2を異なる位置の観測点M1,M2で観測
し、その波形を画像前処理部3に入力する。その後、観
測した波形と媒質A1のみの場合の波形との差分を求
め、これらをそれぞれ観測点M1、観測点M2の入力波
S1,S2として(図2(c))、各々時間反転された
音波伝搬の数値アルゴリズムに従って図2(d)のよう
に逆伝搬させる。適当な時間について時間反転させる
と、図2(d)のように逆伝搬波が重なり合った合成波
S12の振幅が最大となる地点が現れる。この振幅最大
の地点が求める媒質境界となる。なお、図2は一次元の
場合の例であるが、二次元以上の場合も同様の原理で媒
質境界を導出することができる。
Next, prior to the description of the operation of the ultrasonic CT having the above configuration, the principle of the present embodiment will be briefly described with reference to FIG. Now, as shown in FIG. 2A, assuming that a single-pulse ultrasonic signal p is incident on a propagation path including a medium A and a medium B having different acoustic impedances, the ultrasonic signal p As shown in (b), it is reflected at the boundary of the medium and becomes scattered sound signals p1 and p2. This is as if the medium boundary is a sound source (secondary sound source), and the scattered wave signals p1 and p2 are observed to be emitted therefrom. The scattered wave signals p1 and p2 are observed at observation points M1 and M2 at different positions, and their waveforms are input to the image preprocessing unit 3. Then, the difference between the observed waveform and the waveform of the medium A1 alone is obtained, and these are used as input waves S1 and S2 of the observation point M1 and the observation point M2, respectively (FIG. 2 (c)). Back propagation is performed as shown in FIG. 2D according to the numerical algorithm of propagation. When the time is reversed for an appropriate time, a point where the amplitude of the combined wave S12 in which the counter-propagating waves overlap is maximized as shown in FIG. 2D. The point of the maximum amplitude is the medium boundary to be determined. Although FIG. 2 shows an example of a one-dimensional case, a medium boundary can be derived based on the same principle in a case of two-dimensional or more.

【0020】本実施例では、上記時間反転された音波伝
搬の数値アルゴリズムを伝搬アルゴリズム格納部32に
格納しておく。以下、この具体的な内容について詳述す
る。例えば2次元のTLM基本要素モデル、即ち単位セ
ルを図3、この単位セルにインパルスが入射された場合
の反射、散乱状態を図4に示す。
In this embodiment, the numerical algorithm of the time-reversed sound wave propagation is stored in the propagation algorithm storage unit 32. Hereinafter, the specific contents will be described in detail. For example, FIG. 3 shows a two-dimensional TLM basic element model, that is, a unit cell, and FIG. 4 shows a reflection / scattering state when an impulse is incident on this unit cell.

【0021】図3を参照すると、この単位セルは、4端
子(対)から成る。ここで図4(a)のように1つの端
子(節点)に単位音圧の超音波信号(この説明において
入射パルスと称する)pが入射されたとすると、この枝
には他に3つの枝が接続されているので、その接続点が
1/3の基準化インピーダンスで終端されていることに
なる。従って、反射係数Γは良く知られた公式により−
1/2となるから、図4(b)に示すように、最初の入
射端子にはその−1/2が反射され、他の端子にはそれ
ぞれ1/2の音圧のパルスが透過していく。このような
反射及び透過パルスは、隣接節点に向い(図4
(c))、各セルへの新たな入射パルスとなって連鎖的
に四方へ散乱していく(図4(d)(e))。その拡が
り方はまさにホイヘンスの原理が示すところのものであ
る。従って、端子nに入反射するパルスの音圧をそれぞ
ki nkr nとすれば、4端子すべてにパルスが入射
される場合は上記手順の重ね合わせとなるから、図4
(a)の最初の入射端子に戻ってくるパルスの音圧は、
下記(1)式のように表すことができる。
Referring to FIG. 3, this unit cell has four terminals (pairs). Here, if an ultrasonic signal p (referred to as an incident pulse in this description) having a unit sound pressure is incident on one terminal (node) as shown in FIG. 4A, three other branches are included in this branch. Since the connection is made, the connection point is terminated with a standardized impedance of 1/3. Therefore, the reflection coefficient Γ is given by the well-known formula-
As shown in FIG. 4 (b), -1/2 is reflected by the first input terminal, and a pulse having a sound pressure of [1/2] is transmitted through the other terminals. Go. Such reflected and transmitted pulses are directed to adjacent nodes (FIG. 4).
(C)), it becomes a new incident pulse to each cell and scatters in a chain in four directions (FIGS. 4 (d) and (e)). The way it spreads is exactly what Huygens' principle shows. Therefore, if the input and reflecting the sound pressure pulses each k p i n, k p r n to the terminal n, from the superposition of the steps when the pulses in all four terminals is incident, Figure 4
The sound pressure of the pulse returning to the first input terminal in (a) is
It can be expressed as the following equation (1).

【0022】[0022]

【数1】 (Equation 1)

【0023】(1)式において、iは入射、rは反射(散
乱)、k,k+1は時刻を表す。要素のすべての線路か
らパルスが入射した場合に拡張すると、その伝搬状態は
(2)式のような一般式で表される。
In the equation (1), i represents incidence, r represents reflection (scattering), and k and k + 1 represent time. Expanding when a pulse is incident from all lines of the element, its propagation state becomes
It is represented by a general formula such as the formula (2).

【0024】[0024]

【数2】 (Equation 2)

【0025】(2)式は、更に散乱マトリクスを[S]で
表すと(3)式のようになる。
The expression (2) becomes the expression (3) when the scattering matrix is further expressed by [S].

【0026】[0026]

【数3】 (Equation 3)

【0027】逆伝搬制御はこの伝搬手順と逆の手順を行
い、反射乃至散乱波から入力波を求めることに相当する
ので、(4)式の演算を行うことで実現することができ
る。
The back propagation control is equivalent to obtaining the input wave from the reflected or scattered wave by performing the reverse procedure to this propagation procedure, and can be realized by performing the calculation of the equation (4).

【0028】[0028]

【数4】 (Equation 4)

【0029】(3)式あるいは(4)式の数値アルゴリムを伝
搬アルゴリズム格納部32に格納しておき、これを差分
波信号の入力時に読み出して逆伝搬させることで上記原
理を具体化するものである。
The above-mentioned principle is embodied by storing the numerical algorithm of the formula (3) or (4) in the propagation algorithm storage unit 32, reading it out at the time of inputting the differential wave signal, and back-propagating it. is there.

【0030】次に、図5及び図6を参照して図1の構成
の超音波CTの動作を説明する。まず、超音波センサ2
を駆動して(ステップ101)、超音波信号を被観測物
体1に向けて送信するとともに、被観測物体1からの複
数の散乱波信号を異なる位置の受波器で受信する(ステ
ップ102)。画像前処理部3では、これら散乱波信号
を入力して各々当該被観測物体1が均質である場合の散
乱波信号の属性との差分をとり、複数の差分波信号を生
成する(ステップ103)。
Next, the operation of the ultrasonic CT having the configuration shown in FIG. 1 will be described with reference to FIGS. First, the ultrasonic sensor 2
Is driven (step 101), an ultrasonic signal is transmitted toward the observed object 1, and a plurality of scattered wave signals from the observed object 1 are received by receivers at different positions (step 102). The image preprocessing unit 3 receives these scattered wave signals, calculates the difference between the scattered wave signal and the attribute of the scattered wave signal when the observed object 1 is homogeneous, and generates a plurality of differential wave signals (step 103). .

【0031】その後、各差分波信号を逆伝搬させて媒質
境界地点を検出する(ステップ104)。ここでの処理
の詳細は図6に示すとおりであり、一の差分波信号の入
力を契機に伝搬アルゴリズム格納部32から前述の時間
軸反転の数値アルゴリズムを読み込み(ステップ20
1)、この数値アルゴリズムに従って各差分波信号の逆
伝搬制御を行う(ステップ202)。これを当該差分波
信号の合成振幅が最大になるまで繰り返し(ステップ2
03)、振幅最大点を検出したときはそのときの位置情
報を生成して断層画像生成部4に出力する(ステップ2
04)。媒質境界は、複数存在するのが通常であり、し
かも各媒質境界は所定方向に連続しているので、断層画
像生成部4では、各差分波信号における振幅最大点の位
置情報を組み合わせて画像情報を生成し(図5、ステッ
プ105)、表示制御部5に表示する。
Thereafter, each differential wave signal is back-propagated to detect a medium boundary point (step 104). The details of the processing here are as shown in FIG. 6, and upon input of one differential wave signal, the numerical algorithm of the above-described time axis inversion is read from the propagation algorithm storage unit 32 (step 20).
1), back propagation control of each differential wave signal is performed according to this numerical algorithm (step 202). This is repeated until the combined amplitude of the differential wave signal becomes maximum (step 2).
03), when the maximum amplitude point is detected, the position information at that time is generated and output to the tomographic image generation unit 4 (step 2).
04). Usually, a plurality of medium boundaries exist, and since each medium boundary is continuous in a predetermined direction, the tomographic image generation unit 4 combines the position information of the maximum amplitude point in each differential wave signal to obtain image information. Is generated (step 105 in FIG. 5) and displayed on the display control unit 5.

【0032】このようにして得られる断層画像は、散乱
波信号の伝搬状態が近似無く組み入れられているので、
使用する超音波信号の周波数にかかわらず歪みやボケが
軽減されて鮮明なものとなっている。従って、直進性を
得るために超音波信号の周波数を高くする必要が無くな
る。また、散乱波信号の属性と被観測物体1が均質であ
る場合の散乱波信号の属性との差分がとられているの
で、逆伝搬される差分波信号は被観測物体1の音響イン
ピーダンスの変化分のみを表すようになり、S/N比が
従来手法に比べて格段に向上している。そのため従来の
ように尖頭音圧を高くする必要も無くなる。これによ
り、生体組織等に悪影響を及ぼさない超音波信号を用い
ながら歪みやボケの生じない鮮明な断層像が得られる超
音波CTを実現することができる。なお、超音波信号及
び散乱波信号が単一パルスであることを前提として説明
したが、これら信号は必ずしも単一パルスに限定され
ず、複数パルスあるいはそれ以外の波形のバースト信号
とすることもできる。バースト信号を用いれば媒質境界
が移動するときの速度も検出可能となる。
In the tomographic image obtained in this manner, the propagation state of the scattered wave signal is incorporated without approximation.
Irrespective of the frequency of the ultrasonic signal to be used, distortion and blur are reduced and become clearer. Therefore, it is not necessary to increase the frequency of the ultrasonic signal in order to obtain straightness. Further, since the difference between the attribute of the scattered wave signal and the attribute of the scattered wave signal when the observed object 1 is homogeneous is taken, the differential wave signal that is back-propagated is a change in the acoustic impedance of the observed object 1. Only the minutes are represented, and the S / N ratio is remarkably improved as compared with the conventional method. Therefore, it is not necessary to increase the peak sound pressure as in the related art. Accordingly, it is possible to realize an ultrasonic CT capable of obtaining a clear tomographic image free from distortion and blur while using an ultrasonic signal that does not adversely affect a living tissue or the like. Although the description has been made on the assumption that the ultrasonic signal and the scattered wave signal are single pulses, these signals are not necessarily limited to a single pulse, and may be a burst signal having a plurality of pulses or other waveforms. . By using the burst signal, the speed at which the medium boundary moves can be detected.

【0033】以上の説明は、差分波信号の合成振幅が最
大となる地点の位置情報に基づいて媒質境界を検出する
場合の例であるが、そのほか、散乱波信号の信号強度分
布、即ち音響エネルギー分布に基づいて媒質境界を検出
することも可能である。この場合は、図1の画像前処理
部3において、差分波信号を処理する部分に代えて、受
信した散乱波信号にTLM法に基づく逆伝搬制御を施し
て各逆伝搬波信号の信号強度分布を検出する信号強度分
布検出手段と、検出した各信号強度分布と音場が均質で
ある場合の散乱波信号の信号強度分布との差分布を導出
する差分布導出手段とを設け、導出した差分布を解析す
ることによって媒質境界を特定する構成とする。信号強
度分布は、逆伝搬の際に簡単な計算により求めることが
でき、差分布は予め実測等で得た分布との差をとること
で容易に求めることができる。特定した媒質境界に基づ
いて断層画像を生成する手順は上述の場合とほぼ同様で
ある。このような構成にすれば、差分布の大きい部分が
媒質の音響インピーダンスの差が大きい部分(媒質境
界)となるので、振幅の最大地点の位置情報を検出する
場合よりも装置構成が簡易となる。また、信号強度分布
あるいは差分布を空間積分することで密度分布や散乱波
信号の速度分布をも得ることもできるので、多面的に媒
質境界を検出することができ、より正確な断層画像を生
成することが可能となる。なお、本発明は、超音波CT
のみならず、この種の画像処理を要する用途全般に適用
可能である。
The above description is an example of the case where the medium boundary is detected based on the position information of the point where the combined amplitude of the differential wave signal is maximum. In addition, the signal intensity distribution of the scattered wave signal, that is, the acoustic energy It is also possible to detect a medium boundary based on the distribution. In this case, in the image pre-processing unit 3 in FIG. 1, instead of the part for processing the differential wave signal, the received scattered wave signal is subjected to the back propagation control based on the TLM method, and the signal intensity distribution of each back propagation wave signal is performed. And a difference distribution deriving means for deriving a difference distribution between the detected signal intensity distribution and the signal intensity distribution of the scattered wave signal when the sound field is homogeneous, and the derived difference is provided. The configuration is such that the medium boundary is specified by analyzing the distribution. The signal intensity distribution can be obtained by simple calculation at the time of back propagation, and the difference distribution can be easily obtained by taking the difference from the distribution obtained by actual measurement or the like in advance. The procedure for generating a tomographic image based on the specified medium boundary is almost the same as in the case described above. According to such a configuration, a portion having a large difference distribution is a portion having a large difference in acoustic impedance of the medium (medium boundary), so that the device configuration is simpler than in a case where position information of a maximum amplitude point is detected. . In addition, since the density distribution and the velocity distribution of the scattered wave signal can also be obtained by spatially integrating the signal intensity distribution or the difference distribution, it is possible to detect the medium boundary from multiple sides and generate a more accurate tomographic image. It is possible to do. Note that the present invention relates to an ultrasonic CT
In addition, the present invention is applicable to all kinds of applications that require this type of image processing.

【0034】[0034]

【発明の効果】以上の説明から明かなように、本発明で
は、受信した各散乱波信号の属性と当該音場が均質であ
る場合の散乱波信号の属性との差分波信号を生成するよ
うにしたので、受信した差分波信号は音場の音響インピ
ーダンスの変化分のみを表すようになり、後段処理にお
けるS/N比が格段に向上する効果がある。また、各差
分波信号をTLM法に基づく逆伝搬アルゴリズムに従っ
て逆伝搬波制御し、その合成振幅が最大となる地点を検
出乃至特定するようにしたので、音波の波動性が厳密に
考慮され、使用する超音波信号の周波数、尖頭電圧を任
意にすることができる効果がある。従って波動性が顕著
に現れる長波帯超音波信号を使用することもできる。
As is clear from the above description, according to the present invention, a difference wave signal between the attribute of each received scattered wave signal and the attribute of the scattered wave signal when the sound field is homogeneous is generated. Therefore, the received differential wave signal represents only the change in the acoustic impedance of the sound field, and the S / N ratio in the subsequent processing is significantly improved. In addition, since each differential wave signal is back-propagated in accordance with a back-propagation algorithm based on the TLM method, and the point where the combined amplitude is maximized is detected or specified, the wave nature of the sound wave is strictly taken into consideration and used. There is an effect that the frequency and the peak voltage of the generated ultrasonic signal can be set arbitrarily. Therefore, it is also possible to use a long-wave ultrasonic signal in which wave characteristics appear remarkably.

【0035】また、受信した散乱波信号にTLM法に基
づく逆伝搬制御を施して各逆伝搬波信号の信号強度分布
を検出し、検出した各信号強度分布と音場が均質である
場合の散乱波信号の信号強度分布との差分布を導出する
とともに、この差分布を解析することにより媒質境界を
特定するようにしたので、差分波信号の合成振幅最大点
の位置情報を検出する場合よりも画像信号処理装置の構
成が簡易となり、しかも密度分布や散乱波信号の速度分
布をも容易に得ることができるので、媒質境界の検出手
法が多面的となる効果がある。
Further, the backscattering control based on the TLM method is performed on the received scattered wave signal to detect the signal strength distribution of each backpropagated wave signal, and the scattering when the detected signal strength distribution and the sound field are homogenous. The difference distribution from the signal intensity distribution of the wave signal is derived, and the medium boundary is specified by analyzing the difference distribution. Since the configuration of the image signal processing apparatus is simplified, and the density distribution and the velocity distribution of the scattered wave signal can be easily obtained, the method of detecting the boundary of the medium is multifaceted.

【0036】このように、本発明によれば、従来の問題
点を一挙に解消し、周波数、音圧共に生体組織に悪影響
を及ぼさないレベルの超音波信号を用いながら、歪みや
ボケの生じない鮮明な断層画像が得られる画像信号処理
方法及び装置を提供することができる。
As described above, according to the present invention, the conventional problems can be solved at once, and distortion and blurring do not occur while using an ultrasonic signal at a level that does not adversely affect living tissue in both frequency and sound pressure. An image signal processing method and apparatus capable of obtaining a clear tomographic image can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る超音波CTの要部構成
図。
FIG. 1 is a main part configuration diagram of an ultrasonic CT according to one embodiment of the present invention.

【図2】本実施例の原理を説明するための1次元の波形
状態遷移図であり、(a)はインパルス入射時、(b)
は散乱時、(c)は差分波信号(入射波)入射時、
(d)は合成波特定時の状態を示す。
FIGS. 2A and 2B are one-dimensional waveform state transition diagrams for explaining the principle of the present embodiment. FIG.
Is at the time of scattering, (c) is at the time of incidence of the differential wave signal (incident wave),
(D) shows the state when the composite wave is specified.

【図3】本実施例によるTLM基本要素モデル(単位セ
ル)の説明図。
FIG. 3 is an explanatory diagram of a TLM basic element model (unit cell) according to the embodiment.

【図4】上記モデルにおけるインパルスの入反射及びそ
の拡がり状態の説明図。
FIG. 4 is an explanatory diagram of the impulse incident / reflected state and its spread state in the model.

【図5】本実施例の超音波CTの動作手順を示すフロー
チャート。
FIG. 5 is a flowchart showing an operation procedure of the ultrasonic CT according to the embodiment.

【図6】図5における媒質境界の特定処理の詳細を示す
フローチャート。
FIG. 6 is a flowchart showing details of a medium boundary specifying process in FIG. 5;

【符号の説明】[Explanation of symbols]

1 被観測物体(音場) 2 超音波センサ(送波器、受波器) 3 画像前処理部 31 信号属性ファイル 32 伝搬アルゴリズム格納部 33 散乱波信号入力部 34 信号属性比較部 35 逆伝搬処理部 36 2次音源位置検出部 37 作業メモリ 38 制御部 4 断層画像生成部(画像生成手段) 5 表示制御部 DESCRIPTION OF SYMBOLS 1 Observed object (sound field) 2 Ultrasonic sensor (transmitter, receiver) 3 Image pre-processing part 31 Signal attribute file 32 Propagation algorithm storage part 33 Scattered wave signal input part 34 Signal attribute comparison part 35 Back propagation processing Unit 36 secondary sound source position detection unit 37 working memory 38 control unit 4 tomographic image generation unit (image generation means) 5 display control unit

フロントページの続き (72)発明者 安藤 英一 東京都調布市柴崎2丁目1番地3 島田 理化工業株式会社内 (56)参考文献 特開 昭60−80442(JP,A) 特開 昭60−80761(JP,A) (58)調査した分野(Int.Cl.6,DB名) A61B 8/00 - 8/15 G01N 29/00 - 29/28 Continuation of front page (72) Inventor Eiichi Ando 2-3-1 Shibasaki, Chofu-shi, Tokyo Shimada Rika Kogyo Co., Ltd. (56) References JP-A-60-80442 (JP, A) JP-A-60-80761 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) A61B 8/00-8/15 G01N 29/00-29/28

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被観測物体が存する音場に超音波信号を送
するとともにその被観測物体の媒質境界で散乱した複
数の散乱波信号を受信することで前記媒質境界の分布画
像を生成する装置において実行される方法であって、 受信した各散乱波信号の属性と前記音場が均質である場
合の散乱波信号の属性との差分波信号を生成し、生成し
た差分波信号を伝達線路網(Transmission Line Matri
x:以下、TLM)法を用いて逆伝搬させて当該信号の
合成振幅が最大となる地点を検出し、検出した地点の位
置情報に基づいて前記分布画像を生成することを特徴と
する画像信号処理方法。
An ultrasonic signal is transmitted to a sound field in which an object to be observed exists, and a plurality of scattered wave signals scattered at a medium boundary of the object to be observed are received to thereby obtain a distribution image of the medium boundary.
A method for generating a differential wave signal between an attribute of each received scattered wave signal and an attribute of a scattered wave signal when the sound field is homogeneous, wherein the generated differential wave Transmission Line Matri
x: hereinafter, by back propagation using TLM) method to detect the point where the composite amplitude is maximum of the signal, wherein the benzalkonium to generate a pre-Symbol distribution image based on the position information of the detected point Image signal processing method.
【請求項2】 被観測物体が存する音場に超音波信号を
送信するとともにその被観測物体の媒質境界で散乱した
複数の散乱波信号を受信することで前記媒質境界の分布
画像を生成する装置において実行される方法であって、 受信した各散乱波信号をTLM法を用いて逆伝搬させて
それぞれの信号強度分布を検出、検出した各信号強度
分布と前記音場が均質である場合の散乱波信号の信号強
度分布との差分布を導出この差分布に基づいて前
布画像を生成することを特徴とする画像信号処理方
法。
2. The distribution of the medium boundary by transmitting an ultrasonic signal to a sound field where the object to be observed exists and receiving a plurality of scattered wave signals scattered at the medium boundary of the object to be observed.
A method performed in an apparatus for generating an image, each scattered wave signals received to detect the respective signal intensity distribution by back propagation using TLM method, the sound field and the signal intensity distribution detected deriving a difference distribution between the signal intensity distribution of the scattered wave signal when a homogeneous, pre on the basis of the difference distribution Stories
Image signal processing method comprising the Turkey to generate the distribution image.
【請求項3】 前記超音波信号及び散乱波信号がバース
ト状の信号を含み、この信号を用いて前記被観測物体の
移動速度を考慮した分布画像を生成することを特徴とす
る請求項1又は2記載の画像信号処理方法。
Wherein said saw including an ultrasonic signal and the scattered wave signals governance over scan <br/> preparative like signal, of the object to be observed object using the signal
3. The image signal processing method according to claim 1, wherein a distribution image considering a moving speed is generated .
【請求項4】 前記散乱波信号の属性は、該散乱波信号
の音圧、変位量、速度、及び密度の少なくとも一つを含
むことを特徴とする請求項1記載の画像信号処理方法。
Is wherein the attribute of the scattered wave signals, dissipating sound pressure Ranha signal, displacement, velocity, and an image signal processing method according to claim 1 Symbol mounting, characterized in that it comprises at least one density.
【請求項5】 被観測物体が存する音場に超音波信号を
送信する送波器と、 前記被観測物体の媒質境界で散乱した散乱波信号を互い
異なった位置にて受信する複数の受波器と、 各受波器で受信した散乱波信号の属性と前記音場が均質
である場合の散乱波信号の属性との差分波信号を生成す
る差分波信号生成手段と、 前記差分波信号を入力してTLM法に基づく逆伝搬制御
を施し、各逆伝搬波信号の合成振幅が最大となる地点を
検出する媒質境界検出手段と、 検出された前記地点の位置情報に基づいて前記媒質境界
の分布画像を生成する画像生成手段と、を有することを
特徴とする画像信号処理装置。
5. A wave transmitter for transmitting an ultrasonic signal to the sound field to be observed object exists, the scattered wave signals scattered by the medium boundary of the object to be observed object to one another
A plurality of receivers to receive at different positions, and a differential wave signal between an attribute of the scattered wave signal received by each receiver and an attribute of the scattered wave signal when the sound field is homogeneous. A differential wave signal generating unit, a medium boundary detecting unit that receives the differential wave signal, performs a back propagation control based on the TLM method, and detects a point where a combined amplitude of each back propagation wave signal is maximum; An image generation unit configured to generate a distribution image of the medium boundary based on the position information of the point.
【請求項6】 被観測物体が存する音場に超音波信号を
送信する送波器と、 前記被観測物体の媒質境界で散乱した散乱波信号を異な
った位置にて受信する複数の受波器と、 各受波器で受信した散乱波信号を入力してTLM法に基
づく逆伝搬制御を施し、各逆伝搬波信号の信号強度分布
を検出する信号強度分布検出手段と、 検出した各信号強度分布と前記音場が均質である場合の
散乱波信号の信号強度分布との差分布を導出する差分布
導出手段と、 導出した差分布に基づいて前記媒質境界の分布画像を生
成する画像生成手段と、を有することを特徴とする画像
信号処理装置。
6. A transmitter for transmitting an ultrasonic signal to a sound field in which an object to be observed exists, and a plurality of receivers for receiving scattered wave signals scattered at a boundary of a medium of the object to be observed at different positions. Signal intensity distribution detecting means for inputting the scattered wave signal received by each receiver and performing back propagation control based on the TLM method to detect the signal intensity distribution of each back propagated wave signal; Difference distribution deriving means for deriving a difference distribution between the distribution and the signal intensity distribution of the scattered wave signal when the sound field is homogeneous, and image generating means for generating a distribution image of the medium boundary based on the derived difference distribution An image signal processing device comprising:
JP6190811A 1994-08-12 1994-08-12 Image signal processing method and apparatus Expired - Fee Related JP2901048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6190811A JP2901048B2 (en) 1994-08-12 1994-08-12 Image signal processing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6190811A JP2901048B2 (en) 1994-08-12 1994-08-12 Image signal processing method and apparatus

Publications (2)

Publication Number Publication Date
JPH0854379A JPH0854379A (en) 1996-02-27
JP2901048B2 true JP2901048B2 (en) 1999-06-02

Family

ID=16264148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6190811A Expired - Fee Related JP2901048B2 (en) 1994-08-12 1994-08-12 Image signal processing method and apparatus

Country Status (1)

Country Link
JP (1) JP2901048B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0405105D0 (en) * 2004-03-05 2004-04-07 Ahmadian Mansour Phased array imaging system
WO2014125815A1 (en) * 2013-02-12 2014-08-21 国立大学法人神戸大学 Scattering tomography method and scattering tomography device
HUE050753T2 (en) 2014-03-12 2021-01-28 Kenjiro Kimura Scattering tomography method and scattering tomography device
WO2018016278A1 (en) * 2016-07-19 2018-01-25 株式会社日立製作所 Elastic wave measurement and analysis method and elastic wave measurement and analysis device
KR20200035977A (en) * 2017-08-09 2020-04-06 조지아 테크 리서치 코오포레이션 Sensor array imaging device

Also Published As

Publication number Publication date
JPH0854379A (en) 1996-02-27

Similar Documents

Publication Publication Date Title
CN102641137B (en) Measurement of viscoelastic property using amplitude-phase modulation
EP1194920B1 (en) Recursive ultrasound imaging
CN102640014B (en) Image generating apparatus and image generating method
US7004905B2 (en) Finite amplitude distortion-based inhomogeneous pulse echo ultrasonic imaging
US6406430B1 (en) Ultrasound image display by combining enhanced flow imaging in B-mode and color flow mode
Jensen et al. Fast simulation of ultrasound images
EP0952462A2 (en) Method and apparatus for improving visualization of biopsy needle in ultrasound imaging
JP4022393B2 (en) Ultrasonic diagnostic equipment
US8840554B2 (en) Ultrasonic 3-dimensional image reconstruction method and ultrasonic wave system thereof
US20050124885A1 (en) Method and apparatus for determining an ultrasound fluid flow centerline
JPH0246213B2 (en)
EP3510938A1 (en) Mapping of intra-body cavity using a distributed ultrasound array on basket catheter
JPH0613028B2 (en) Device for generating multidimensional flow maps of blood flow velocity in the circulatory system of living organisms
CN107049361A (en) It is imaged using the speed of sound of shearing wave
CN106529561A (en) Sparkle artifact detection in Ultrasound color flow
CA3127822A1 (en) Method and system for ultrasonic characterization of a medium
CA3127924A1 (en) Method and system for ultrasonic characterization of a medium
JP2901048B2 (en) Image signal processing method and apparatus
US20240036004A1 (en) Method and system for ultrasonic characterization of a medium
CN108784744A (en) Variable-focus for shearing wave imaging
JPH031849A (en) Apparatus for measuring speed of blood flow
CN108338808A (en) It is imaged using relevant shear velocity
CA3127873A1 (en) Method and system for ultrasonic characterization of a medium
Li et al. 3-D large-pitch synthetic transmit aperture imaging with a reduced number of measurement channels: A feasibility study
EP1581118A1 (en) Detection of small-size defects in medical ultrasonic imaging

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees