JP2898184B2 - Magnetic recording media - Google Patents

Magnetic recording media

Info

Publication number
JP2898184B2
JP2898184B2 JP28653093A JP28653093A JP2898184B2 JP 2898184 B2 JP2898184 B2 JP 2898184B2 JP 28653093 A JP28653093 A JP 28653093A JP 28653093 A JP28653093 A JP 28653093A JP 2898184 B2 JP2898184 B2 JP 2898184B2
Authority
JP
Japan
Prior art keywords
substrate
magnetic recording
recording medium
polycrystalline silicon
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28653093A
Other languages
Japanese (ja)
Other versions
JPH07141646A (en
Inventor
英雄 金子
勝志 徳永
好夫 俵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP28653093A priority Critical patent/JP2898184B2/en
Publication of JPH07141646A publication Critical patent/JPH07141646A/en
Application granted granted Critical
Publication of JP2898184B2 publication Critical patent/JP2898184B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】コンピューターの外部記憶装置、
特には磁気ハードディスクに有用な磁気記録媒体に関す
るものである。
[Industrial application] Computer external storage device,
In particular, the present invention relates to a magnetic recording medium useful for a magnetic hard disk.

【0002】[0002]

【従来の技術】情報化社会の進展に伴い、大容量で高速
で記録、再生できる記録媒体が必要とされ、特にコンピ
ュータの外部メモリとして中心的な役割を果たしている
磁気記録媒体は年々、記録容量、記録密度ともに増加し
ているが、さらに高密度記録を行なうために開発が進め
られている。記録密度向上のためには、記録媒体と情報
を記録再生する磁気ヘッドの距離(フライングハイト)
を下げれば良いが、そのためには記録媒体の表面をでき
るだけ平滑にしなければならない。成膜後の記録媒体の
表面形状はその基板の表面形状によって決まる。また、
ノート型、パームトップ型等のコンピュータの小型化に
伴い、より薄型の磁気記録装置が求められ、従って、よ
り薄い磁気記録媒体が求められている。磁気記録媒体の
厚みは大部分がその基板の厚みなので、より薄い基板で
外力に対して変形し難い基板が必要とされている。
2. Description of the Related Art Along with the progress of the information society, a recording medium capable of recording and reproducing data at a high speed with a large capacity is required. In particular, a magnetic recording medium which plays a central role as an external memory of a computer has been increasing year by year. Although both recording densities are increasing, developments are being made to perform higher density recording. To improve the recording density, the distance between the recording medium and the magnetic head that records and reproduces information (flying height)
, But for that purpose the surface of the recording medium must be as smooth as possible. The surface shape of the recording medium after film formation is determined by the surface shape of the substrate. Also,
With the downsizing of notebook and palm-top type computers, thinner magnetic recording devices are required, and thus thinner magnetic recording media are required. Since most of the thickness of the magnetic recording medium is the thickness of the substrate, a thinner substrate that is not easily deformed by an external force is required.

【0003】従来から用いられている磁気記録媒体の基
板は磁性層の下地メッキ層にNi-PをコートしたAl-M
g 合金基板であるが、Al-Mg 合金は柔らかいために表
面を平滑にし難く、かつ薄くすると磁気記録装置製造中
に歪み易いという欠点があった。そこでより硬く、基板
表面を平滑にできる半導体デバイス用基板に用いられる
シリコン基板が提案[特開昭57-105826 号(シリコン・
ディスクをFRPコアで補強)、特開昭59-8141 号(単
結晶Si ウエハの表面に酸化膜を形成した基板)、特開
昭59-96539号(表面上に実質上凹凸のないシリコン基
板)参照]されている。一方、磁気記録装置、特に磁気
ハードディスクにおいては、一般に磁気記録媒体と情報
を記録媒体に書いたり再生したりする磁気ヘッドが、記
録媒体の回転による空気の流れによって生じる浮力で磁
気ヘッドが浮き上がり、動作時には磁気ヘッドと記録媒
体は離れているが、非動作時には磁気ヘッドと記録媒体
が接しているというコンタクトスタートストップ方式
(略して CSS方式)が用いられている。このため、半導
体で用いられるような平滑なシリコン基板では磁気ヘッ
ドと記録媒体間に吸着が起こり、 CSS方式には適さない
という不利があった。
[0003] A substrate of a magnetic recording medium conventionally used is an Al-M substrate in which a base plating layer of a magnetic layer is coated with Ni-P.
Although it is a g alloy substrate, the Al-Mg alloy has a drawback that it is difficult to smooth its surface because of its softness, and that if it is thin, it will be easily distorted during the manufacture of a magnetic recording apparatus. Therefore, a silicon substrate used as a substrate for a semiconductor device which is harder and can smooth the substrate surface has been proposed [Japanese Patent Laid-Open No. 57-105826 (Silicon
JP-A-59-8141 (substrate in which an oxide film is formed on the surface of a single-crystal Si wafer), JP-A-59-96539 (silicon substrate having substantially no irregularities on the surface) See]. On the other hand, in a magnetic recording device, especially a magnetic hard disk, generally, a magnetic recording medium and a magnetic head for writing and reproducing information on and from the recording medium are lifted by a buoyancy generated by an air flow caused by rotation of the recording medium, and the operation is performed. At times, the magnetic head and the recording medium are separated from each other, but the contact start / stop method (abbreviated CSS method) is used in which the magnetic head and the recording medium are in contact when not operating. For this reason, there is a disadvantage that a smooth silicon substrate used for a semiconductor is attracted between a magnetic head and a recording medium, and is not suitable for the CSS method.

【0004】[0004]

【発明が解決しようとする課題】本発明はこれらの欠点
を解決した平滑性に優れ、 CSS方式にマッチした磁気記
録媒体を提供しようとするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a magnetic recording medium which solves these disadvantages, has excellent smoothness, and is compatible with the CSS system.

【0005】[0005]

【課題を解決するための手段】本発明者等は、かかる課
題を解決するために磁気記録媒体を構成する基板の内、
シリコン材質を詳細に検討した結果、多結晶シリコン
板、非磁性基板に多結晶シリコン膜を成膜した成膜基
板、または単結晶シリコン板に多結晶シリコン膜を成膜
した成膜基板が平滑性に優れ、 CSS方式に適用可能であ
ることを見出し、諸条件を確立して本発明を完成したも
のである。すなわち、磁気記録媒体において、磁気記録
媒体を構成する基板のうち、少なくとも磁気記録装置に
組み込まれたときにロード・アンロード部となる部分の
表面部を多結晶シリコンとする。前記基板全体が多結晶
シリコンであってもよい。前記基板の前記表面部以外は
非磁性基板であり、かつ該基板上の前記表面部に多結晶
シリコン膜が成膜されているものとすることができる。
また、前記基板の前記表面部以外は単結晶シリコン基板
であり、かつ該基板上の前記表面部に多結晶シリコン膜
が成膜されているものとすることができる。前記表面部
の多結晶シリコンの結晶粒径が0.05〜 300μmであるこ
とが好ましい。
Means for Solving the Problems The present inventors have solved the above-mentioned problem by providing a magnetic recording medium comprising:
After examining the silicon material in detail, it was found that the polycrystalline silicon plate, a polycrystalline silicon film deposited on a non-magnetic substrate, or a polycrystalline silicon film deposited on a monocrystalline silicon plate became smooth. It has been found that the present invention is excellent in that it can be applied to the CSS method, and various conditions are established to complete the present invention. That is, in the magnetic recording medium, at least the surface portion of the substrate constituting the magnetic recording medium, which becomes the load / unload portion when incorporated in the magnetic recording device, is made of polycrystalline silicon. The entire substrate may be polycrystalline silicon. The surface portion of the substrate other than the surface portion may be a non-magnetic substrate, and a polycrystalline silicon film may be formed on the surface portion of the substrate.
Further, the substrate may be a single-crystal silicon substrate other than the surface portion, and a polycrystalline silicon film may be formed on the surface portion on the substrate. It is preferable that the polycrystalline silicon on the surface has a crystal grain size of 0.05 to 300 μm.

【0006】以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【作用】本発明の最大の特徴は基板にシリコンを用いた
磁気記録媒体において、多結晶シリコンを磁気記録媒体
基板に用いることにある。多結晶シリコン板において
は、結晶粒内(グレイン)と結晶粒間境界(グレインバ
ウンダリー)とでは研磨速度やエッチング速度が異な
る。多結晶板においては各々のグレインの結晶の向きが
異なるため、研磨面の結晶方位はグレイン毎に異なる。
このため多結晶シリコン板を研磨しても完全な鏡面とは
ならず、適度な凹凸が残る。平滑度はRmax で例えば10
〜50nmとすることができる。このように多結晶シリコン
板を用いることで容易に基板表面を粗面化することがで
きる。磁気記録媒体と磁気ヘッドの吸着はお互いの真実
接触面積に比例するといわれているが、このように基板
表面に凹凸をつけることで、真実接触面積を低減でき C
SS特性を改善することができる。
The most important feature of the present invention is that a polycrystalline silicon is used for a magnetic recording medium substrate in a magnetic recording medium using silicon as a substrate. In a polycrystalline silicon plate, the polishing rate and the etching rate are different between the inside of the crystal grain (grain) and the boundary between the crystal grains (grain boundary). In a polycrystalline plate, the crystal orientation of each grain is different, so that the crystal orientation of the polished surface is different for each grain.
For this reason, even if the polycrystalline silicon plate is polished, it does not become a perfect mirror surface, and moderate irregularities remain. The smoothness is Rmax, for example, 10
5050 nm. By using a polycrystalline silicon plate as described above, the surface of the substrate can be easily roughened. It is said that the magnetic recording medium and the magnetic head attract each other in proportion to the true contact area of each other.
SS characteristics can be improved.

【0007】多結晶シリコンの用い方は、多結晶シリコ
ンウエーハを基板形状に切り抜いても良いし、多結晶シ
リコンを CVD、スパッタ等の手法によりAl 、Al-Mg
、ガラス等の非磁性基板に成膜化しても良く、更に非
磁性基板を単結晶シリコン板とし、これに多結晶シリコ
ンを成膜して磁気記録媒体成膜基板としても良い。ま
た、多結晶シリコン成膜非磁性基板の場合は、非動作時
に磁気ヘッドがコンタクトするロード・アンロード部
(例えばディスク内周部)のみに多結晶シリコンを成膜
しても良い。多結晶シリコン成膜単結晶シリコン基板の
場合には、ロード・アンロード部のみに多結晶シリコン
を成膜し、さらにこれをエッチングしたり研磨すること
でロード・アンロード部には適度な凹凸があり、情報の
記録を行なう部分は半導体用のウエーハと同程度に表面
を平滑にすることができ、高記録密度が可能な磁気記録
媒体基板を得ることができる。
The method of using polycrystalline silicon may be to cut a polycrystalline silicon wafer into a substrate shape, or to convert polycrystalline silicon into Al, Al-Mg by a method such as CVD or sputtering.
Alternatively, a film may be formed on a non-magnetic substrate such as glass, or the non-magnetic substrate may be a single-crystal silicon plate, and polycrystalline silicon may be formed on the single-crystal silicon plate to form a substrate on which a magnetic recording medium is formed. In the case of a non-magnetic substrate on which a polycrystalline silicon film is formed, the polycrystalline silicon film may be formed only on the load / unload portion (for example, the inner peripheral portion of the disk) contacted by the magnetic head during non-operation. In the case of a polycrystalline silicon film single-crystal silicon substrate, a polycrystalline silicon film is formed only on the load / unload portion, and then this is etched or polished, so that the load / unload portion has appropriate irregularities. In addition, a portion for recording information can have a surface as smooth as a semiconductor wafer, and a magnetic recording medium substrate capable of high recording density can be obtained.

【0008】本発明に用いられる多結晶シリコンの結晶
粒径は小さいほど望ましいが、特に結晶粒が磁気ヘッド
のスライダーの幅(幅、長さの寸法の内短い方)より小
さいもの、さらにはスライダーにレールが設けられてい
る時にはこのレール幅(幅、長さの寸法の内短い方)よ
りも小さい方が好ましく、例えば平均結晶粒径で0.05〜
300μm、好ましくは0.05〜50μmが良い。本発明に用
いられる基板の厚みは特に制限はなく、例えば一般に磁
気記録媒体で用いられている 0.2〜 1.5mm程度で十分で
あるが、 0.5mm以下が好ましい。磁気記録媒体基板の大
きさについても特に制限はなく、例えば現在磁気ディス
クで最も一般に用いられている95mmφより大きい多結晶
インゴットも容易に入手可能である。また、単結晶シリ
コン板の上に多結晶シリコンを成膜する場合も 150mmφ
以上の単結晶シリコン板が容易に入手できる。
The smaller the crystal grain size of the polycrystalline silicon used in the present invention is, the more desirable it is. Particularly, the crystal grains are smaller than the width of the slider (the shorter one of the width and the length) of the magnetic head. When a rail is provided, it is preferable that the width is smaller than the rail width (the shorter one of the width and the length).
The thickness is 300 μm, preferably 0.05 to 50 μm. The thickness of the substrate used in the present invention is not particularly limited. For example, about 0.2 to 1.5 mm generally used for a magnetic recording medium is sufficient, but is preferably 0.5 mm or less. There is no particular limitation on the size of the magnetic recording medium substrate. For example, a polycrystalline ingot larger than 95 mmφ, which is currently most commonly used for magnetic disks, can be easily obtained. Also, when forming polycrystalline silicon on a single crystal silicon plate,
The above single crystal silicon plate can be easily obtained.

【0009】多結晶シリコンの成膜は、 CVD法やスパッ
タ法で行われる。 CVD法の場合は、例えば加熱温度を 6
50℃とし、反応ガスにモノシランを使用する。
The polycrystalline silicon is formed by a CVD method or a sputtering method. In the case of the CVD method, for example, a heating temperature of 6
Set to 50 ° C and use monosilane as the reaction gas.

【0010】本発明の磁気記録媒体は上記多結晶シリコ
ン基板及び多結晶シリコン成膜基板の上に下地層、磁気
記録層、保護層、潤滑層の順に各層を形成すれば良く、
各層の材質、成膜方法、成膜装置は従来公知のもので良
い。材質については例えば下地層にCr 層、磁気記録層
にCo-Cr-Ta 層、保護層にC層を形成し、潤滑層にパ
ーフルオロポリエーテル系潤滑剤を塗布する。成膜方法
はRFまたはDCスパッタ法が挙げられ、ターゲットに
は成膜する材質と同質(例えばCr を成膜する時はCr
をターゲットとする)のものを用い、成膜温度を 250℃
とし、スパッタガスにはアルゴンを20m Torr の条件で
成膜すれば良い。
The magnetic recording medium of the present invention may be formed by forming an underlayer, a magnetic recording layer, a protective layer, and a lubricating layer in this order on the polycrystalline silicon substrate and the polycrystalline silicon film-formed substrate.
Conventionally known materials, film forming methods, and film forming apparatuses may be used for each layer. As for the material, for example, a Cr layer is formed as a base layer, a Co-Cr-Ta layer is formed as a magnetic recording layer, a C layer is formed as a protective layer, and a perfluoropolyether-based lubricant is applied to the lubricating layer. An RF or DC sputtering method can be used as a film forming method.
And a film formation temperature of 250 ° C.
The film may be formed by sputtering argon at 20 mTorr.

【0011】[0011]

【実施例】以下、本発明の実施態様を実施例を挙げて具
体的に説明するが、本発明はこれらに限定されるもので
はない。 (実施例1) 多結晶シリコンをスライス、ラップした後、コアドリル
でカッテイングし、外径48mmφ、内径12mmφ、厚み0.38
mmt の基板を作製し面取りを行なった後にポリッシュ、
洗浄して磁気記録媒体基板を作製した。この時、グレイ
ンの大きさは約50μmであった。この磁気記録媒体基板
に下地層としてCr 層100nm 、磁気記録層としてCo-C
r-Ta 層 60nm 、保護層としてC層 30nm の順に基板温
度 250℃、アルゴンガス雰囲気中、RFスパッタ成膜を行
なった。この磁気記録媒体に潤滑剤を塗布し、基板表面
を粗面化した基板内周部で CSSテスト(磁気ヘッド:ス
ライダーの幅;1.5mm、レールの幅;0.3mm)を行なったと
ころ10,000サイクルまで摩擦力に変化は見られなかっ
た。
EXAMPLES Hereinafter, embodiments of the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto. (Example 1) Polycrystalline silicon was sliced and wrapped, and then cut with a core drill to obtain an outer diameter of 48 mm, an inner diameter of 12 mm, and a thickness of 0.38.
After preparing a substrate of mmt and chamfering, polish,
After washing, a magnetic recording medium substrate was manufactured. At this time, the size of the grains was about 50 μm. On this magnetic recording medium substrate, a Cr layer was 100 nm as an underlayer, and Co-C
RF sputtering was performed in an argon gas atmosphere at a substrate temperature of 250 ° C. in the order of an r-Ta layer of 60 nm and a C layer of 30 nm as a protective layer. Lubricant was applied to this magnetic recording medium, and a CSS test (magnetic head: slider width; 1.5 mm, rail width; 0.3 mm) was performed on the inner surface of the substrate whose surface was roughened. No change was observed in the friction force.

【0012】(実施例2)外径48mmφ、内径12mmφ、厚
み0.38mmt の単結晶シリコンからなる基板を作製し、こ
の上に CVD法にて基板面全面に多結晶シリコンを成膜し
た。これをポリシュ、洗浄して成膜基板を作製した。こ
の時、多結晶シリコンの結晶粒径は約 0.5μmであっ
た。この成膜基板に実施例1と同様に下地層、磁気記録
層、保護層、潤滑層を形成し、基板表面を粗面化した基
板内周部で CSSテストを行なったところ10,000サイクル
まで摩擦力に変化は見られなかった。
Example 2 A substrate made of single-crystal silicon having an outer diameter of 48 mmφ, an inner diameter of 12 mmφ, and a thickness of 0.38 mmt was prepared, and a polycrystalline silicon film was formed on the entire surface of the substrate by a CVD method. This was polished and washed to produce a film-formed substrate. At this time, the crystal grain size of the polycrystalline silicon was about 0.5 μm. An underlayer, a magnetic recording layer, a protective layer, and a lubricating layer were formed on this film-formed substrate in the same manner as in Example 1, and a CSS test was performed on the inner peripheral portion of the substrate whose surface was roughened. Did not change.

【0013】(実施例3)外径48mmφ、内径12mmφ、厚
み0.38mmt の単結晶シリコンからなる基板を作製し、こ
の上に CVD法にて基板面全面に多結晶シリコンを成膜し
た。その後外周部のみをエッチングして単結晶面を出し
た後、これをポリシュ、洗浄して成膜基板を作製した。
この成膜基板に実施例1と同様に下地層、磁気記録層、
保護層、潤滑層を形成し、基板表面を粗面化した基板内
周部で CSSテストを行なったところ10,000サイクルまで
摩擦力に変化は見られなかった。
Example 3 A substrate made of single-crystal silicon having an outer diameter of 48 mmφ, an inner diameter of 12 mmφ, and a thickness of 0.38 mmt was prepared, and a polycrystalline silicon film was formed on the entire surface of the substrate by a CVD method. After that, only the outer peripheral portion was etched to form a single crystal plane, which was polished and washed to prepare a film-formed substrate.
An underlayer, a magnetic recording layer,
A protective layer and a lubricating layer were formed, and a CSS test was performed on the inner peripheral portion of the substrate whose surface was roughened. As a result, no change was observed in the frictional force up to 10,000 cycles.

【0014】(実施例4)外径48mmφ、内径12mmφ、厚
み0.38mmt の単結晶シリコンからなる基板を作製し、外
周部にマスクを施した後、この上に CVD法にて基板面全
面に多結晶シリコンを成膜した。これをポリシュ、洗浄
して成膜基板を作製した。この成膜基板に実施例1と同
様に下地層、磁気記録層、保護層、潤滑層を形成し、基
板表面を粗面化した基板内周部で CSSテストを行なった
ところ10,000サイクルまで摩擦力に変化は見られなかっ
た。
(Example 4) A substrate made of single-crystal silicon having an outer diameter of 48 mmφ, an inner diameter of 12 mmφ, and a thickness of 0.38 mmt was prepared, and a mask was applied to the outer peripheral portion. Crystalline silicon was formed. This was polished and washed to produce a film-formed substrate. An underlayer, a magnetic recording layer, a protective layer, and a lubricating layer were formed on this film-formed substrate in the same manner as in Example 1, and a CSS test was performed on the inner peripheral portion of the substrate whose surface was roughened. Did not change.

【0015】(比較例)単結晶シリコンをスライス、ラ
ップした後、コアドリルでカッテイングし、外径48mm
φ、内径12mmφ、厚み0.38mmt の基板を作製し、エッチ
ングした後ポリッシュ、洗浄して単結晶シリコン基板を
作製した。この基板の上に実施例1と同様に下地層、磁
気記録層、保護層、潤滑層を形成し、 CSSテストを行な
ったところ1,000 サイクルで摩擦力は2倍に増加した。
(Comparative Example) After slicing and wrapping single-crystal silicon, cutting was performed with a core drill, and the outer diameter was 48 mm.
A substrate having a diameter φ of 12 mmφ and a thickness of 0.38 mmt was prepared, etched, polished and washed to prepare a single crystal silicon substrate. An underlayer, a magnetic recording layer, a protective layer, and a lubricating layer were formed on this substrate in the same manner as in Example 1, and a CSS test was performed. As a result, the frictional force doubled after 1,000 cycles.

【0016】[0016]

【発明の効果】本発明によれば、平滑性に優れ、 CSS方
式にマッチした磁気記録媒体を提供することができ、産
業上その利用価値は極めて高い。
According to the present invention, it is possible to provide a magnetic recording medium which is excellent in smoothness and conforms to the CSS system, and its industrial value is extremely high.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 俵 好夫 神奈川県川崎市高津区坂戸3丁目2番1 号 KSPビル 信越化学工業株式会社 コーポレートリサーチセンター内 (58)調査した分野(Int.Cl.6,DB名) G11B 5/82 G11B 5/704 G11B 5/66 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yoshio Tawara 3-2-1 Sakado, Takatsu-ku, Kawasaki-shi, Kanagawa KSP Building Shin-Etsu Chemical Co., Ltd. Corporate Research Center (58) Field surveyed (Int.Cl. 6 G11B 5/82 G11B 5/704 G11B 5/66

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】磁気記録媒体において、磁気記録媒体を構
成する基板のうち、少なくとも磁気記録装置に組み込ま
れたときにロード・アンロード部となる部分の表面部が
結晶シリコンであることを特徴とする磁気記録媒体。
1. A magnetic recording medium, of the board constituting the magnetic recording medium, incorporated into at least a magnetic recording apparatus
The surface of the part that becomes the load / unload part when
The magnetic recording medium which is a polycrystalline silicon down.
【請求項2】請求項1の磁気記録媒体において、前記基
板全体が多結晶シリコンである磁気記録媒体。
2. The magnetic recording medium according to claim 1, wherein
Magnetic recording medium the entire plate is a multi-crystal silicon down.
【請求項3】請求項1の磁気記録媒体において、前記基
板の前記表面部以外は非磁性基板であり、かつ該基板
の前記表面部に多結晶シリコン膜が成膜されている磁
記録媒体。
3. The magnetic recording medium according to claim 1, wherein
Other than the surface portion of the plate is non-magnetic substrate, and the substrate on the
Magnetic recording medium which polycrystalline silicon film on the surface portion of is deposited.
【請求項4】請求項1の磁気記録媒体において、前記基
板の前記表面部以外は単結晶シリコン基板であり、かつ
該基板上の前記表面部に多結晶シリコン膜が成膜され
いる磁気記録媒体。
4. The magnetic recording medium according to claim 1, wherein
Other than the surface portion of the plate is a single crystal silicon substrate, and polycrystalline silicon film is deposited on the surface portion of the substrate
Magnetic recording media it is.
【請求項5】前記表面部の多結晶シリコンの結晶粒径
0.05〜 300μmである請求項1、2、3又は4に記載の
磁気記録媒体。
5. The polycrystalline silicon on the surface has a crystal grain size of
5. The magnetic recording medium according to claim 1 , wherein the thickness is 0.05 to 300 [mu] m .
JP28653093A 1993-11-16 1993-11-16 Magnetic recording media Expired - Fee Related JP2898184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28653093A JP2898184B2 (en) 1993-11-16 1993-11-16 Magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28653093A JP2898184B2 (en) 1993-11-16 1993-11-16 Magnetic recording media

Publications (2)

Publication Number Publication Date
JPH07141646A JPH07141646A (en) 1995-06-02
JP2898184B2 true JP2898184B2 (en) 1999-05-31

Family

ID=17705607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28653093A Expired - Fee Related JP2898184B2 (en) 1993-11-16 1993-11-16 Magnetic recording media

Country Status (1)

Country Link
JP (1) JP2898184B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008123633A (en) * 2006-11-15 2008-05-29 Shin Etsu Chem Co Ltd Substrate for magnetic recording medium, and magnetic recording medium
JP4551459B2 (en) * 2008-02-19 2010-09-29 信越化学工業株式会社 Silicon substrate for magnetic recording and method for manufacturing magnetic recording medium

Also Published As

Publication number Publication date
JPH07141646A (en) 1995-06-02

Similar Documents

Publication Publication Date Title
JP4428835B2 (en) Magnetic recording medium and method for manufacturing the same
KR970005351B1 (en) Magnetic recording disk for contact recovring
KR100417276B1 (en) Nonmetallic thin film magnetic recording disk with pre-seed layer
JP2006079800A (en) Silicon substrate for magnetic recording medium, manufacturing method thereof, and magnetic recording medium
JP3018762B2 (en) Magnetic recording medium and method of manufacturing the same
JP2007042263A (en) Substrate for magnetic recording medium, magnetic recording medium, and magnetic recording and reproducing apparatus
JPH05282648A (en) Magnetic recording medium and its production and magnetic recording device
JP2898184B2 (en) Magnetic recording media
JP2009146522A (en) Perpendicular magnetic recording medium and manufacturing method thereof
JPH07105031B2 (en) Magnetic recording disk file
US6670032B2 (en) Oriented magnetic medium on a nonmetallic substrate
US6846543B2 (en) Thin film magnetic recording disk with ruthenium-aluminum layer
JP3126278B2 (en) Magnetic recording media
JPH087264A (en) Magnetic recording medium and its production
JP2009004065A (en) Perpendicular magnetic recording medium, method of manufacturing the same, and magnetic recording apparatus
JP4060859B2 (en) Multilayer structure film and manufacturing method thereof
JP4270066B2 (en) Thin film magnetic head substrate and thin film magnetic head using the same
JPH1049850A (en) Magnetic disc recording apparatus
EP0582412A1 (en) Magnetic recording disk
JPH09306073A (en) Magnetic recorder
JP2002503009A (en) Magnetic recording medium having pattern substrate
JPH0696441A (en) Magnetic recording medium
EP1111595A1 (en) Base for magnetic recording medium, magnetic recording medium, method for producing the same, and magnetic recorder
JP2004280961A (en) Disk substrate, its manufacturing method, and magnetic disk
JP2004139683A (en) Magnetic recording medium and manufacturing method for magnetic recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees