JP2896399B1 - Free sedimentation type liquid carbon dioxide shallow water injection system - Google Patents

Free sedimentation type liquid carbon dioxide shallow water injection system

Info

Publication number
JP2896399B1
JP2896399B1 JP10076394A JP7639498A JP2896399B1 JP 2896399 B1 JP2896399 B1 JP 2896399B1 JP 10076394 A JP10076394 A JP 10076394A JP 7639498 A JP7639498 A JP 7639498A JP 2896399 B1 JP2896399 B1 JP 2896399B1
Authority
JP
Japan
Prior art keywords
carbon dioxide
depth
seawater
temperature
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10076394A
Other languages
Japanese (ja)
Other versions
JPH11228122A (en
Inventor
威雄 綾
浩毅 汐崎
健次 山根
Original Assignee
運輸省船舶技術研究所長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 運輸省船舶技術研究所長 filed Critical 運輸省船舶技術研究所長
Priority to JP10076394A priority Critical patent/JP2896399B1/en
Application granted granted Critical
Publication of JP2896399B1 publication Critical patent/JP2896399B1/en
Publication of JPH11228122A publication Critical patent/JPH11228122A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

【要約】 【目的】二酸化炭素の深海貯留法は、二酸化炭素の大気
からの隔離期間が海水の鉛直循環周期の2000年以上
になることが期待できる有望な地球温暖化対策技術であ
るが、貯留可能な3500m以深に液体二酸化炭素を送
り込まなければならないことが、二酸化炭素を中層に放
出させる溶解法に比べて不利な点であると考えられてき
た。本発明は、低温液体二酸化炭素は浅海でも海水より
重くなることに着目し、低温二酸化炭素を大液泡として
浅海に放出することにより貯留深度まで自由沈降させ、
深海貯留を溶解法と同程度以下のコストで実現させるこ
とを目的としている。 【構成】−26℃以下の低温二酸化炭素を直径0.7m
以上の大液泡として深度500〜750mの浅海に放出
すると、5cm以上の厚みの氷層に被われる大液泡は、
沈降とともに海水からの受熱により温度上昇するが、二
酸化炭素が熱平衡状態で海水と同密度となる深度275
0mに達するまで、沈降力を維持するための低温を保持
でき、最終的には、貯留可能深度まで自由沈降する。
Abstract: [Purpose] The deep-sea storage method of carbon dioxide is a promising global warming countermeasure technology that can expect that the isolation period of carbon dioxide from the atmosphere will be over 2000 years of the vertical circulation cycle of seawater. The fact that liquid carbon dioxide must be pumped as deep as possible to 3500 m has been considered a disadvantage compared to the dissolution method in which carbon dioxide is released into the middle layer. The present invention focuses on the fact that low-temperature liquid carbon dioxide is heavier than seawater even in shallow seas, and allows free-fall to the storage depth by releasing low-temperature carbon dioxide as large liquid bubbles into the shallow sea,
The aim is to realize deep-sea storage at a cost similar to or less than the melting method. [Constitution] Low temperature carbon dioxide below -26 ° C 0.7m in diameter
When released into the shallow sea at a depth of 500 to 750 m as the above large liquid bubbles, the large liquid bubbles covered by the ice layer having a thickness of 5 cm or more are:
The temperature rises due to the heat received from seawater along with the sedimentation, but at a depth of 275 where carbon dioxide has the same density as seawater in thermal equilibrium.
Until it reaches 0 m, it can maintain a low temperature to maintain the sedimentation force, and eventually settles freely to the storage depth.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【産業上の利用分野】[Industrial applications]

【0001】有望な地球温暖化対策技術として注目され
ている二酸化炭素の海洋処理法は、深度1000〜20
00mの中層海域に溶解・拡散させる「溶解法」と35
00m以深の深海底窪地に溜める「貯留法」とが考えら
れている。本発明は、二酸化炭素の海洋隔離期間が溶解
法の50〜200年よりはるかに長い2000年以上が
期待できると貯留法に適用されると、その経済効果がよ
く発揮される。
A marine treatment method for carbon dioxide, which has been attracting attention as a promising technology for countermeasures against global warming, has a depth of 1,000 to 20.
"Melting method" to dissolve and diffuse into the middle sea area of 00m and 35
The “storage method” in which the water is stored in deep-sea depressions deeper than 00 m is considered. When the present invention is applied to the storage method in which the marine sequestration period of carbon dioxide is expected to be 2,000 years or more, which is much longer than the 50 to 200 years of the dissolution method, the economic effect is sufficiently exhibited.

【0002】[0002]

【従来の技術】液体二酸化炭素は、熱膨張率と圧縮率が
海水の10倍以上と大きいため、熱平衡状態(海水と同
温度)では、深度2750m以浅で海水より軽く、それ
以深で重くなる。そのため、液体二酸化炭素が二酸化炭
素飽和溶解海水より重くなることが求められる貯留法の
適用深度3500m以深に液体二酸化炭素を送り込むた
めには、少なくとも深度2750mまでパイプで送り込
む必要があると考えられてきた。
2. Description of the Related Art Liquid carbon dioxide has a coefficient of thermal expansion and a compressibility as large as 10 times or more that of seawater. Therefore, in a thermal equilibrium state (at the same temperature as seawater), it is lighter than seawater at a depth of less than 2750 m and heavier at a deeper depth. Therefore, it has been considered that it is necessary to pipe liquid carbon dioxide to a depth of at least 2750 m in order to send liquid carbon dioxide to a depth of 3500 m or less, which is an application depth of the storage method in which liquid carbon dioxide is required to be heavier than carbon dioxide saturated dissolved seawater. .

【0003】一方、二酸化炭素は海水中では、深度45
0〜900m(深度の違いは海域によって海水温度が数
度異なるため)以深で、海水と反応しハイドレートを生
成する。従来のハイドレート研究は、溶解しにくい天然
ガスハイドレートを対象としてきたため、二酸化炭素ハ
イドレートも非溶解との期待が強く、二酸化炭素ハイド
レートを二酸化炭素固定化のエースと考えられた時期も
あった。しかし、水によく解ける二酸化炭素はハイドレ
ートとなっても海水によく溶けることが申請者らの実験
から明らかにされた。また、ハイドレートは液体二酸化
炭素と海水との界面に厚さ数ミクロンの膜状として生成
されるため、塊としての二酸化炭素ハイドレートを製造
することは容易ではない。以上より、ハイドレート化に
よる二酸化炭素の深海貯留は得策でない。
On the other hand, carbon dioxide is generated in seawater at a depth of 45 degrees.
It reacts with seawater at depths of 0 to 900 m or less (differences in depth are caused by several degrees of seawater temperature depending on the sea area) to generate hydrates. Conventional hydrate research has focused on natural gas hydrates, which are difficult to dissolve.Therefore, there is a strong expectation that carbon dioxide hydrate will not dissolve, and there were times when carbon dioxide hydrate was considered an ace of carbon dioxide fixation. there were. However, applicants' experiments showed that carbon dioxide, which can be dissolved well in water, can be well dissolved in seawater even when hydrated. In addition, since hydrate is generated as a film having a thickness of several microns at the interface between liquid carbon dioxide and seawater, it is not easy to produce carbon dioxide hydrate as a lump. From the above, deep-sea storage of carbon dioxide by hydration is not an option.

【0004】固体二酸化炭素(ドライアイス)は全ての
深度で海水より十分重いため、ドライアイスの塊を海上
から投げ込むと、一部は昇華または溶解するが、残りは
深海底まで沈降し、やがて海水からの熱により液体とな
る。この方法による投入法も考えられるが、ドライアイ
スの製造時に大きな熱損失があるという問題がある。
[0004] Since solid carbon dioxide (dry ice) is heavier than seawater at all depths, when a lump of dry ice is thrown from the sea, part of the dry ice is sublimated or melted, but the rest sinks to the deep sea floor and eventually the seawater. It becomes liquid by the heat from. Although a charging method using this method is conceivable, there is a problem that a large heat loss occurs during the production of dry ice.

【0005】[0005]

【発明が解決しようとしている課題】二酸化炭素タンカ
ーから2750m以深まで下ろしたパイプで液体二酸化
炭素を送り込むという従来考えられてきた深海貯留法に
対しては、送り込み管の長いことによる経済性の問題や
長い送り込み管開発の技術上の問題が指摘されてきた。
SUMMARY OF THE INVENTION The conventional deep sea storage method of feeding liquid carbon dioxide through a pipe lowered from a carbon dioxide tanker to a depth of 2750 m or less is not economical due to the long feed pipe. The technical problems of developing long feed pipes have been pointed out.

【0006】従って、本発明で解決しようとしている課
題は、従来の二酸化炭素深海送り込み法の経済性と技術
上の問題を同時に解決することである。
Accordingly, an object of the present invention is to simultaneously solve the economical and technical problems of the conventional carbon dioxide deep sea feeding method.

【0007】[0007]

【課題を解決するための手段】海水より重い低温液体二
酸化炭素を液泡として浅海に放出すると、液泡は海中を
沈降するが、回りの海水からの熱供給により平均温度は
上昇を続け、やがて海水より軽くなり、上昇に転ずる。
しかしながら、海水からの熱供給による液泡の平均温度
の上昇は大きな液泡ほど小さくなることから、ある限界
径以上の低温二酸化炭素液泡は、浅海に放出されても、
等密度深度の2700mを無事通過し、3500m以深
の貯留深度に達することができる。
When low-temperature liquid carbon dioxide, which is heavier than seawater, is released into the shallow water as liquid bubbles, the liquid bubbles settle down in the sea, but the average temperature continues to rise due to heat supply from the surrounding seawater, and eventually the seawater Get lighter and turn up.
However, since the increase in the average temperature of the liquid bubbles due to heat supply from seawater becomes smaller for larger liquid bubbles, even if low-temperature carbon dioxide liquid bubbles with a certain diameter or more are released to the shallow sea,
It can safely pass through 2700 m at an equal density depth and reach a storage depth of 3500 m or less.

【0008】氷点下の低温二酸化炭素液泡は氷層で被わ
れるため、下記の実施例に示される液泡沈降過程の解析
には、氷層による浮力効果を考慮した。
Since the low-temperature carbon dioxide liquid bubbles below the freezing point are covered by the ice layer, the buoyancy effect of the ice layer is considered in the analysis of the liquid bubble settling process shown in the following examples.

【0009】氷層と低温二酸化炭素液泡との境界面に
は、海水より重いハイドレート膜が生成されるが、厚み
が数ミクロンと極めて薄いため、液泡全体への密度効果
は無視できる。
At the interface between the ice layer and the low-temperature carbon dioxide liquid bubbles, a hydrate film heavier than seawater is formed, but since the thickness is extremely thin, several microns, the density effect on the entire liquid bubbles can be ignored.

【0010】大液泡が沈降途中で分裂することが懸念さ
れるが、液泡を被う氷層は、既存の熱伝達式(甲藤好郎
著:伝熱概論[養賢堂1966年]153頁)を使え
ば、放出温度−26℃、液泡径0.7mの場合、5cm
を越える厚みとなり、分裂を起こさせない強度を有して
いる。
[0010] There is a concern that large liquid bubbles may break off during settling. However, the ice layer that covers the liquid bubbles is based on the existing heat transfer method (by Yoshiro Kato: General introduction of heat transfer [Yokendo 1966], p. 153). 5cm when the release temperature is -26 ° C and the liquid bubble diameter is 0.7m
And has a strength not to cause division.

【0011】[0011]

【作用】第1図は、低温二酸化炭素の大液泡が、深度7
50m程度の浅海に放出された場合に、自由沈降して行
く様子を示している。二酸化炭素タンカーで輸送され
る二酸化炭素は、現在行われている陸上輸送と同様、−
40℃、1MPaに保たれる。−40℃の液体二酸化炭
素は、海水より十分重いため、二酸化炭素送り込み管
内を無動力で沈降し、放出深度750mに達する。放
出ノズル(A部)で形成される低温二酸化炭素の大液泡
がのように海中を自由沈降する。
FIG. 1 shows that a large liquid bubble of low-temperature carbon dioxide has a depth of 7 cm.
This shows that the water is settled freely when released into a shallow sea of about 50 m. The carbon dioxide transported by the carbon dioxide tanker is-
It is kept at 40 ° C. and 1 MPa. Since liquid carbon dioxide at −40 ° C. is sufficiently heavier than seawater, it sinks without power in the carbon dioxide feed pipe and reaches a discharge depth of 750 m. Large liquid bubbles of low-temperature carbon dioxide formed at the discharge nozzle (part A) settle down freely in the sea as shown.

【0012】第2図は、放出ノズル例を示している。二
酸化炭素タンカーから送り込まれる低温液体二酸化炭素
は、放出ノズルのフード内面で大気泡に成長し、所用
寸法に達した二酸化炭素液泡が次々に自由沈降を繰り返
す。
FIG. 2 shows an example of a discharge nozzle. The low-temperature liquid carbon dioxide sent from the carbon dioxide tanker grows into large bubbles on the inner surface of the hood of the discharge nozzle, and the carbon dioxide liquid bubbles that have reached the required size repeat free sedimentation one after another.

【0013】[0013]

【実施例】深度2750mまで自由沈降する二酸化炭素
液泡の直径の計算例を説明する。第3図は、深度750
mにおける密度差比[Δρ/ρSEA=(二酸化炭素密
度/海水密度)−1]が0.1(−38℃)と0.05
(−26℃)の場合に、液泡径dをパラメータとして沈
降する液泡の密度差比がどのように変化するかを示した
ものであり、横軸は温度、縦軸は深度とそれに対応する
ゲージ圧力を示し、図中の多くの斜めの線は、二酸化炭
素と海水の等密度比線ρco2/ρSEAを表してい
る。飽和線より下方において二酸化炭素は液体となる。
C.P.は二酸化炭素の臨界点(31.06℃,7.3
83MPa)である。鎖線は、北太平洋と北大西洋の鉛
直温度分布を考慮した海水の密度比(両海域で数度の温
度差があるが、密度比にはほとんど差が現れない)を示
している。従って、液泡の密度差比が、深度2750m
で鎖線より左側にあれば、2750m以深で海水と温度
平衡になっても、深海底まで沈降が続くことになる。
EXAMPLE An example of calculation of the diameter of a carbon dioxide liquid bubble which freely settles to a depth of 2750 m will be described. FIG. 3 shows the depth 750
The density difference ratio [Δρ / ρ SEA = (carbon dioxide density / seawater density) −1] at m is 0.1 (−38 ° C.) to 0.05
In the case of (−26 ° C.), the graph shows how the density difference ratio of the settling liquid bubbles changes using the liquid bubble diameter d as a parameter. The horizontal axis represents temperature, and the vertical axis represents depth and a gauge corresponding thereto. Pressure is shown and many oblique lines in the figure represent isopycnic ratio lines ρ co2 / ρ SEA of carbon dioxide and seawater. Below the saturation line, the carbon dioxide becomes liquid.
C. P. Is the critical point of carbon dioxide (31.06 ° C, 7.3
83 MPa). The dashed line indicates the seawater density ratio taking into account the vertical temperature distribution between the North Pacific Ocean and the North Atlantic Ocean (there is a temperature difference of several degrees between the two seas, but there is almost no difference in the density ratio). Accordingly, the density difference ratio of the liquid bubbles is 2750 m in depth.
If it is on the left side of the chain line, even if it reaches a temperature equilibrium with seawater at a depth of 2750 m or less, the sedimentation will continue to the deep sea floor.

【0014】低温二酸化炭素液泡が海中を沈降する場
合、液泡表面は直ちに氷で被われ、液泡からの冷熱供給
を受けて氷の暑さが増す。沈降速度は、液泡平均温度と
深度から定まる液泡と海水との密度差から氷層による浮
力効果を差し引いた沈降力が沈降に伴う抗力とバランス
することから求められる。氷層厚みは、沈降速度と液泡
径から定まる熱伝達率を基に計算される。第3図の二酸
化炭素液泡の密度比は、このような仮定の下に計算され
た値である。
When the low-temperature carbon dioxide liquid bubble sinks in the sea, the surface of the liquid bubble is immediately covered with ice, and the heat of the ice increases due to the supply of cold heat from the liquid bubble. The sedimentation velocity is determined from the balance between the sedimentation force obtained by subtracting the buoyancy effect of the ice layer from the density difference between the liquid foam and seawater determined from the average temperature and the depth of the liquid foam, and the drag associated with the sedimentation. The ice layer thickness is calculated based on the heat transfer coefficient determined from the sedimentation velocity and the liquid bubble diameter. The density ratio of the carbon dioxide liquid bubbles in FIG. 3 is a value calculated under such an assumption.

【0015】第3図から、深度750mで放出される二
酸化炭素の密度比が0.05、つまり、放出温度が−2
6℃の時、液泡径が0.7m以上であれば、限界深度2
750mまで自由沈降を続けることができるだけの熱的
非平衡を確保できることが分かる。
From FIG. 3, the density ratio of carbon dioxide released at a depth of 750 m is 0.05, that is, the release temperature is -2.
At 6 ° C, if the liquid bubble diameter is 0.7m or more, the critical depth 2
It can be seen that a thermal non-equilibrium sufficient to continue free sedimentation up to 750 m can be secured.

【0016】そして、当然のことながら、放出時の二酸
化炭素密度比が大きくなるほど、限界液泡径は小さくな
る。従って、二酸化炭素をタンクローリーで陸上輸送す
る際の−40℃で放出する場合は、限界直径は0.7m
より小さくなる。
As a matter of course, the larger the carbon dioxide density ratio at the time of release, the smaller the critical liquid bubble diameter. Therefore, when carbon dioxide is released at -40 ° C when transported by land on a tank truck, the critical diameter is 0.7 m.
Smaller.

【図面の簡単な説明】[Brief description of the drawings]

【図1】低温二酸化炭素大液泡浅海放出の概念を示す図
である。
FIG. 1 is a view showing the concept of low-temperature carbon dioxide large liquid bubble shallow sea discharge.

【符号の説明】 二酸化炭素タンカー 二酸化炭素送り込み管 放出深度(750m) 自由沈降する低温二酸化炭素の大液泡[Explanation of symbols] Carbon dioxide tanker Carbon dioxide feed pipe Release depth (750m) Large liquid bubbles of low-temperature carbon dioxide that settle freely

【図2】二酸化炭素大液泡を作るための放出ノズルの作
用を示す図である。
FIG. 2 is a view showing the operation of a discharge nozzle for producing a large liquid bubble of carbon dioxide.

【符号の説明】 放出ノズルフード 成長中の低温二酸化炭素液泡[Explanation of symbols] Discharge nozzle hood Growing low-temperature carbon dioxide liquid bubbles

【図3】浅海放出された低温二酸化炭素液泡の沈降中密
度比の計算例を示す図である。
FIG. 3 is a diagram showing a calculation example of a density ratio during sedimentation of low-temperature carbon dioxide liquid bubbles discharged in shallow water.

【記号の説明】Δρ 密度差=二酸化炭素密度−海水密
度 ρSEA 深度(圧力)と海水温度を考慮した海水密度 ρH20標準状態の清水密度 C.P.二酸化炭素の臨界点(31.06℃,7.38
3MPa)
[Explanation of symbols] Δρ Density difference = carbon dioxide density-seawater density ρ SEA depth (pressure) and seawater density considering seawater temperature ρ Freshwater density in H20 standard state P. Critical point of carbon dioxide (31.06 ° C, 7.38
3MPa)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 −26℃以下の低温二酸化炭素を限界直
径(0.7m)以上の大液泡として深度500〜750
mの浅海に放出し、液体二酸化炭素が熱平衡状態で海水
と等密度となる深度2750mを通過するまで、二酸化
炭素液泡の熱的非平衡性を保持させることにより、回収
二酸化炭素を深海貯留が可能となる3500m以深まで
自由沈降させる二酸化炭素浅海投入システム
1. A low-temperature carbon dioxide of -26 ° C. or less is converted into a large liquid foam having a diameter of at least 0.7 m and a depth of 500 to 750.
m to a depth of 2750 m, where the liquid carbon dioxide passes through a depth of 2750 m, which is in equilibrium with seawater in a thermal equilibrium state, allowing the captured carbon dioxide to be stored in the deep sea by maintaining the thermal non-equilibrium of the carbon dioxide liquid foam CO2 shallow water input system to settle freely to a depth of 3500m or less
JP10076394A 1998-02-19 1998-02-19 Free sedimentation type liquid carbon dioxide shallow water injection system Expired - Lifetime JP2896399B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10076394A JP2896399B1 (en) 1998-02-19 1998-02-19 Free sedimentation type liquid carbon dioxide shallow water injection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10076394A JP2896399B1 (en) 1998-02-19 1998-02-19 Free sedimentation type liquid carbon dioxide shallow water injection system

Publications (2)

Publication Number Publication Date
JP2896399B1 true JP2896399B1 (en) 1999-05-31
JPH11228122A JPH11228122A (en) 1999-08-24

Family

ID=13604100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10076394A Expired - Lifetime JP2896399B1 (en) 1998-02-19 1998-02-19 Free sedimentation type liquid carbon dioxide shallow water injection system

Country Status (1)

Country Link
JP (1) JP2896399B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5163996B2 (en) 2007-07-06 2013-03-13 小出 仁 Liquefied carbon dioxide inflow method and underground infeed device
JP4883583B2 (en) * 2007-09-26 2012-02-22 独立行政法人海上技術安全研究所 CO2 deep sea injection method and apparatus
JP2014122563A (en) * 2012-12-20 2014-07-03 Toshiba Corp Floating body type power plant

Also Published As

Publication number Publication date
JPH11228122A (en) 1999-08-24

Similar Documents

Publication Publication Date Title
CN105625998B (en) A kind of reverse recovery method of sea bed gas hydrate stabilized zone and its winning apparatus
CA2030391C (en) Method for the fixation of carbon dioxide, apparatus for fixing and disposing carbon dioxide, and apparatus for the treatment of carbon dioxide
US7485222B2 (en) Apparatus for hydrate-based desalination using compound permeable restraint panels and vaporization-based cooling
US8048309B2 (en) Seawater-based carbon dioxide disposal
KR20010020574A (en) Desalination through methane hydrate
US20210214626A1 (en) Method and System for Extracting Methane Gas, Converting it to Clathrates, and Transporting it for Use
WO2011072963A1 (en) Converting an underwater methane hydrate containing deposit into a marketable product
JP3021004B2 (en) Method and apparatus for introducing carbon dioxide into the deep sea
JP2004501748A (en) Desalination fractionator using artificial pressurized assist device where input water cooling is controlled by hydrate dissociation
JP2896399B1 (en) Free sedimentation type liquid carbon dioxide shallow water injection system
Holder et al. Modeling clathrate hydrate formation during carbon dioxide injection into the ocean
JP6030785B1 (en) Methane hydrate transfer
JP6341518B2 (en) Methane gas recovery associated water treatment apparatus and treatment method
RU2505740C2 (en) Method for production, storage and decomposition of natural gas hydrates
KR20110137774A (en) Ice breaking system for floating bodies
KR20130073783A (en) Method of isolating carbon dioxide contained in the exhaust gas in the bottom of the sea depths using sea water
JP2016084683A (en) Methane hydrate sampling method using horizontal well and calcium oxide
JP2004113924A (en) System for throwing carbon dioxide into shallow sea
JP6338978B2 (en) Method and apparatus for volume reduction of stray foamed polystyrene
Warzinski et al. Observations of CO2 clathrate hydrate formation and dissolution under deep-ocean disposal conditions
Aya et al. Proposal of slurry type CO2 sending system to the ocean floor, new COSMOS
RU2203831C2 (en) Method of facilitating procedure of raising sunken object
JPH04118046A (en) Method for fixing carbon dioxide
JP3786595B2 (en) CO2 deep sea feeding device and clathrate generation method
CA3176710A1 (en) Method and system for extracting methane gas, converting the gas to clathrates, and transporting the gas for use

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term