JP2894894B2 - Water treatment method - Google Patents

Water treatment method

Info

Publication number
JP2894894B2
JP2894894B2 JP4147845A JP14784592A JP2894894B2 JP 2894894 B2 JP2894894 B2 JP 2894894B2 JP 4147845 A JP4147845 A JP 4147845A JP 14784592 A JP14784592 A JP 14784592A JP 2894894 B2 JP2894894 B2 JP 2894894B2
Authority
JP
Japan
Prior art keywords
liquid
treated
granular medium
water
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4147845A
Other languages
Japanese (ja)
Other versions
JPH05337484A (en
Inventor
良晴 田中
教雄 加洲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUNICHIKA KK
Original Assignee
YUNICHIKA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUNICHIKA KK filed Critical YUNICHIKA KK
Priority to JP4147845A priority Critical patent/JP2894894B2/en
Publication of JPH05337484A publication Critical patent/JPH05337484A/en
Application granted granted Critical
Publication of JP2894894B2 publication Critical patent/JP2894894B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は比較的汚濁の進行した河
川水や湖沼水または地下水などを取水源とする水道原水
を生物処理する水処理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water treatment method for biologically treating raw tap water whose source is relatively polluted river water, lake water or groundwater.

【0002】[0002]

【従来の技術】近年、水道原水に富栄養化の影響や溶存
性有機物濃度などの上昇が見られ、主として凝集沈澱と
急速砂濾過から構成される従来の浄水処理プロセスでは
水道水の異臭味問題やトリハロメタンを始めとする微量
有機物、アンモニア性窒素などの窒素化合物の増加に対
して十分な対応ができなかった。このため、水質の悪化
した水道原水のアンモニア性窒素、臭気物質などの除去
を目的としてハニコームチューブや回転円板を用いた接
触酸化方式の生物処理による水質改善が実用化されてい
る。さらに、生物処理の効率を上げるために、砂、砂
利、アンスラサイト、活性炭、セラミック、プラスチッ
クなどの様々な材質の粒状媒体を用いた生物濾過方式が
検討されている(特公平1−54115 号公報、第42回全国
水道研究発表会4−10参照)。
2. Description of the Related Art In recent years, the effects of eutrophication and an increase in the concentration of dissolved organic substances have been observed in raw tap water, and in the conventional water purification treatment process mainly composed of coagulation sedimentation and rapid sand filtration, the problem of unpleasant taste of tap water has been raised. It was not possible to sufficiently cope with the increase in nitrogen compounds such as ammonia and nitrogen, trace organic substances including trihalomethane. Therefore, for the purpose of removing ammonia nitrogen, odorous substances, and the like of tap water having deteriorated water quality, water quality improvement has been put to practical use by biological treatment of a catalytic oxidation method using a honeycomb tube or a rotating disk. Furthermore, in order to increase the efficiency of biological treatment, a biological filtration method using a granular medium of various materials such as sand, gravel, anthracite, activated carbon, ceramics, and plastics has been studied (Japanese Patent Publication No. 1-54115). , 42nd National Water Research Conference 4-10).

【0003】[0003]

【発明が解決しようとする課題】生物濾過方式は粒状媒
体から成る充填層に生物膜を形成させるため、ハニコー
ムチューブや回転円板を用いた接触酸化方式に比べ系内
の保持生物量が多く、原水の負荷変動に強く、また溶解
性物質の除去と同時に懸濁性物質の除去も行なえるとい
う特徴がある。しかしながら、懸濁性物質は除去される
ときに粒状媒体の表面に生息し、浄化に有用な微生物の
表面を被覆し新たな表面を形成するため、既に生息して
いた微生物と被処理液の接触を妨げる。このため被処理
液中の懸濁性物質がある程度以上の濃度になった場合、
生物濾過方式の生物処理機能は低下するという欠点があ
った。一方、粒状媒体の形成する充填層は懸濁性物質を
捕捉蓄積するに従い損失水頭が増加し、水位が上昇する
ため容易に通水速度を大きくすることができないという
欠点もあった。特に、砂、活性炭、アンスラサイトなど
の粒径の小さな粒状媒体はその傾向が大きい。さらに、
砂、砂利、アンスラサイト、活性炭、セラミック、プラ
スチックなどの粒状媒体では粒状媒体表面に付着生息す
る微生物が被処理液の浄化に寄与するが、粒状媒体の固
体内部までは被処理液が流通しないため、粒状媒体の内
部は有効に利用されず、その結果処理装置の大半を占め
る充填層の大部分の体積が有効に利用されていないなど
様々な問題があった。
The biofiltration system forms a biofilm on a packed bed composed of a granular medium, so that the amount of retained organisms in the system is larger than that of a catalytic oxidation system using a honeycomb tube or a rotating disk. It is characterized by being resistant to load fluctuation of raw water and capable of removing suspended substances simultaneously with the removal of soluble substances. However, the suspended substances inhabit the surface of the granular medium when they are removed, and cover the surface of microorganisms useful for purification and form a new surface. Hinder. For this reason, when the concentration of the suspending substance in the liquid to be treated reaches a certain level or more,
There is a disadvantage that the biological treatment function of the biological filtration system is reduced. On the other hand, the packed bed formed by the granular medium has a drawback that the head loss increases as the suspended substance is trapped and accumulated, and the water level rises, so that the flow rate cannot be easily increased. In particular, a granular medium having a small particle size such as sand, activated carbon, and anthracite has a large tendency. further,
In the case of granular media such as sand, gravel, anthracite, activated carbon, ceramics, and plastics, microorganisms attached to the surface of the granular media contribute to purification of the liquid to be treated, but the liquid to be treated does not flow to the solid inside of the granular medium. However, there are various problems such that the inside of the granular medium is not effectively used, and as a result, most of the volume of the packed bed that occupies most of the processing apparatus is not effectively used.

【0004】本発明はこのような課題を解決するもの
で、粒状媒体の個体内部までも被処理液の浄化に有効に
利用でき、処理時間が短くて装置の設置面積を小さくで
きる水処理方法を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and provides a water treatment method which can be effectively used for purifying a liquid to be treated even inside a solid granular medium, and which can shorten the treatment time and reduce the installation area of the apparatus. It is something to offer.

【0005】[0005]

【課題を解決するための手段】本発明者らは上記課題を
解決するために鋭意研究した結果、被処理水中の懸濁性
物質を除去して浸透流通性が高く被処理液を内部流通で
きる粒状媒体の充填層に高速で通水することにより問題
なく短時間で被処理液を浄化できることを見出し、この
知見に基づいて本発明に到達した。すなわち、本発明は
図2及び図3において、反応槽1内に微生物を担持させ
るための粒状媒体2の充填層3を液面下に形成し、被処
理液4を反応槽1の上部から下向流で通液し、懸濁性物
質の除去と生物処理とを同時に行なう生物濾過法におい
て、前記反応槽1に被処理液4を流入させる前に予じめ
被処理液4中の懸濁性物質を固液分離装置5で除去し、
次いで微生物を担持させるための浸透流通性が高く被処
理液を内部流通させ得る粒状媒体2の充填層3を水面下
に形成してなる反応槽1内に被処理液4を反応槽1の上
部から通水速度600m/日以上の高速で通過させる水
処理方法である。前記懸濁性物質を除去する方法として
は、反応槽1に被処理液を流入させる前に沈澱、砂濾
過、生物濾過、精密濾過膜などの固液分離工程を置くこ
とが考えられる。前記粒状媒体2は特公昭62−11637 号
公報に記載された方法に準じて製造することができ、図
1に得られた粒状媒体を示す。この粒状媒体2は長さ20
mm以下の短繊維6の塊状集合体で構成されている。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, the suspension liquid in the water to be treated has been removed, so that the liquid to be treated has a high permeation flowability and can be internally circulated. It has been found that the liquid to be treated can be purified in a short time without any problem by passing water through the packed bed of the granular medium at high speed, and based on this finding, the present invention has been reached. That is, in the present invention, in FIGS. 2 and 3, the packed layer 3 of the granular medium 2 for supporting the microorganisms in the reaction tank 1 is formed below the liquid level, and the liquid 4 to be treated is placed below the reaction tank 1 from above. In the biological filtration method in which the liquid is passed in countercurrent and the removal of the suspending substance and the biological treatment are performed simultaneously, the suspension in the liquid to be treated 4 is preliminarily performed before flowing the liquid 4 to be treated into the reaction tank 1. Substances are removed by the solid-liquid separation device 5,
Next, the liquid to be treated 4 is placed in the upper part of the reaction vessel 1 in a reaction vessel 1 in which a packed layer 3 of a granular medium 2 having a high permeation flow rate for carrying microorganisms and capable of internally flowing the liquid to be treated is formed below the water surface. This is a water treatment method in which water is passed at a high speed of 600 m / day or more. As a method for removing the suspending substance, a solid-liquid separation step such as precipitation, sand filtration, biological filtration, or microfiltration membrane may be provided before the liquid to be treated flows into the reaction tank 1. The granular medium 2 can be produced according to the method described in JP-B-62-11637, and the resulting granular medium is shown in FIG. This granular medium 2 has a length of 20
It is composed of a lump aggregate of short fibers 6 of mm or less.

【0006】なお、図3において7は気体吹き込み管、
8は処理された水である。ところで、前記通水速度が6
00m/日以上の高速であるのは、微生物を担持させる
ための浸透流通性が高く被処理液を内部流通させ得る粒
状媒体2を充填層3に設けたためであって、前記従来の
粒状媒体であると600m/日以上の通水速度にしても
前記の効果が得られない。
In FIG. 3, reference numeral 7 denotes a gas blowing pipe,
8 is treated water. By the way, when the water flow speed is 6
The reason for the high speed of not less than 00 m / day is that the granular medium 2 having a high permeation flow rate for carrying microorganisms and capable of internally flowing the liquid to be treated is provided in the packed bed 3. In some cases, the above effects cannot be obtained even if the water flow speed is 600 m / day or more.

【0007】[0007]

【作用】生物濾過法による溶解性成分の分解除去は粒状
媒体に付着生息する微生物の作用であるが、従来の粒状
媒体は表面のみ利用されているだけで、内部は有効利用
されていない。そのため反応槽内の微生物濃度を高め、
処理効率を高める方法として、生物濾過法に用いる粒状
媒体は、表面に細かい凹凸の付いたものや細孔を有した
もの、あるいは粒径の細かいものを使用することが考え
られたが、これらの粒状媒体は表面のみを利用するもの
で、その点では従来と変わらず反応槽内の体積の大きな
部分が有効利用されていない。本発明によると、被処理
液中の懸濁性物質を除去したのち浸透流通性が高く被処
理液を内部流通させ得る粒状媒体からなる充填層を用い
て水処理を行なうため、反応槽の体積を有効に使え、従
来よりも容積負荷や処理速度を大きく設定することがで
き、処理装置の小型化が図れる。
[Action] Decomposition and removal of soluble components by the biological filtration method is the action of microorganisms attached and inhabiting the granular medium. However, the conventional granular medium uses only the surface but does not effectively use the inside. Therefore, increase the concentration of microorganisms in the reaction tank,
As a method for increasing the treatment efficiency, the granular media used in the biological filtration method, those having fine irregularities on the surface, those having pores, or those having a fine particle size were considered, The granular medium uses only the surface, and in that respect, a large part of the volume in the reaction tank is not effectively used as in the related art. According to the present invention, the water treatment is carried out using a packed bed made of a granular medium having a high permeability and a high permeability after the removal of the suspending substances in the liquid to be treated, so that the volume of the reaction tank can be reduced. Can be used effectively, the volume load and the processing speed can be set higher than in the past, and the size of the processing apparatus can be reduced.

【0008】[0008]

【実施例】次に、実施例および比較例によって本発明を
具体的に説明する。 実施例1 塩化ビニール製で内径30cm、高さ約2mのカラムに、5
mm長に切断した直径約20μmのポリエステル繊維から成
る粒状媒体(平均径5.8mm 、比重1.38)、アンスラサイ
ト(平均径5.1mm ,比重1.45)、セラミックボール(平
均径5.5mm 、比重2.25,主成分SiO2 ,Al23
をそれぞれ高さ1m(充填量約70リットル)に充填し、
下向流方式で通水して以下のような実験結果を得た。 (1) 原水…河川水を砂濾過して懸濁性物質を除去し、NH4 + −N濃度をNH4 Clで2.0mg /リットルに調整したもの NH4 + −N: 2.0mg /リットル SS : 3.6mg /リットル アルカリ度 : 34.0mg /リットル (2) 通水条件 窒素負荷 : 0.4 〜4.0 kg−NH4 + −N/m3 /日 通水速度 : 200 〜2000 m/日 空間速度 : 8.3 〜83 1/時 (3) 結果 硝化率 硝化率 (通水速度 (通水速度 600 m/日) 2000m/日) ポリエステル繊維から 成る粒状媒体 98(%) 94(%) アンスラサイト 83(%) 56(%) セラミックボール 79(%) 53(%) 実施例1では通水速度を600 から2000m/日に上げ、か
つ窒素負荷も0.4 から4.0kg −N/m3 /Dと過大と考
えられる大きさに上げたにもかかわらずポリエステル繊
維から成る粒状媒体の硝化率は94%以上で安定してい
る。一方、アンスラサイトとセラミックボールは通水速
度および窒素負荷の上昇に従い、硝化率は大きく低下
し、粒状媒体の構造の差異による処理結果の差が顕著に
現れている。
Next, the present invention will be specifically described with reference to Examples and Comparative Examples. Example 1 In a column made of vinyl chloride and having an inner diameter of 30 cm and a height of about 2 m, 5
Granular media (average diameter 5.8mm, specific gravity 1.38) made of polyester fiber of about 20μm diameter cut into mm length, anthracite (average diameter 5.1mm, specific gravity 1.45), ceramic ball (average diameter 5.5mm, specific gravity 2.25, main component) SiO 2 , Al 2 O 3 )
Is filled to a height of 1m (filled amount of about 70 liters)
The following experimental results were obtained by passing water in a downward flow mode. (1) raw water ... river water to remove suspended material and sand filtration, NH 4 + and -N concentration NH 4 Cl those that have been adjusted to 2.0 mg / l NH 4 + -N: 2.0mg / l SS : 3.6 mg / l alkalinity: 34.0 mg / liter (2) passing water condition nitrogen load: 0.4 ~4.0 kg-NH 4 + -N / m 3 / day water flow rate: 200 to 2000 m / day space velocity: 8.3 8383 1 / hour (3) Result Nitrification rate Nitrification rate (water flow rate (water flow rate 600 m / day) 2000 m / day) Granular medium made of polyester fiber 98 (%) 94 (%) Anthracite 83 (%) It believed 56 (%) ceramic balls 79 (%) 53 (%) example 1 in water flow rate increased from 600 to 2000 m / day, and nitrogen load even excessive and 4.0kg -N / m 3 / D 0.4 Despite the increase in size, the nitrification rate of the granular medium composed of polyester fibers is stable at 94% or more. On the other hand, as for the anthracite and the ceramic balls, the nitrification rate is greatly reduced as the water flow rate and the nitrogen load are increased, and the difference in the treatment results due to the difference in the structure of the granular medium is remarkably apparent.

【0009】 比較例1 塩化ビニール製で内径30cm、高さ約2mのカラムに、5
mm長に切断した直径約20μmのポリエステル繊維から成
る粒状媒体(平均径5.8mm 、比重1.38)、アンスラサイ
ト(平均径5.1mm ,比重1.45)、セラミックボール(平
均径5.5mm 比重2.25,主成分Sio2 ,Al23 )を
それぞれ高さ1m(充填量約70リットル)に充填し下向
流方式で通水して以下のような実験結果を得た。 (1) 原水…河川水中の懸濁性物質はそのままにしてNH4 + −N濃度をNH4 Clで2.0mg /リットルに調整したもの NH4 + −N: 2.0mg /リットル SS : 21.0mg /リットル アルカリ度 : 36.6mg /リットル (2) 通水条件 窒素負荷 : 0.4 〜1.6 kg−NH4 + −N/m3 /日 通水速度 : 200 〜800 m/日 空間速度 : 8.3 〜33.3 1/時 (3) 結果 硝化率 硝化率 (通水速度 (通水速度 200 m/日) 800 m/日) ポリエステル繊維から 成る粒状媒体 94(%) 77(%) アンスラサイト 94(%) 71(%) セラミックボール 93(%) 72(%) 比較例1では通水速度を200 m/日と800 m/日の硝化
率を比較した。原水中の懸濁性物質(SS)を除去せず
に通水した場合、ポリエステル繊維から成る粒状媒体も
通水速度を200 m/日から800 m/日に増大したとき、
アンスラサイトやセラミックボールと同様に硝化率の大
幅な低下が生じた。粒状媒体によって硝化率に僅かの差
はあるが実施例1のように、懸濁性物質を除去して反応
槽に被処理液を入れた場合に比べ粒状媒体の構造の違い
による硝化率の顕著な差は見られない。すなわち、前記
内部に被処理液が流通できる構造となった粒状媒体から
なる充填槽は懸濁性物質を除去してから通水することに
より初めて効果を発揮する。
Comparative Example 1 A column made of vinyl chloride and having an inner diameter of 30 cm and a height of about 2 m
Granular media (average diameter 5.8mm, specific gravity 1.38), anthracite (average diameter 5.1mm, specific gravity 1.45), ceramic balls (average diameter 5.5mm, specific gravity 2.25, main component Sio) made of polyester fibers of about 20μm in diameter cut into mm length 2 , Al 2 O 3 ) were each filled to a height of 1 m (filling amount: about 70 liters), and water was passed in a downward flow system to obtain the following experimental results. (1) raw water ... suspended substances in river water NH 4 + -N those adjusted to 2.0 mg / liter NH 4 Cl and NH 4 + -N concentration in the intact: 2.0 mg / l SS: 21.0 mg / Liters Alkalinity: 36.6 mg / L (2) Water flow conditions Nitrogen load: 0.4 to 1.6 kg-NH 4 + -N / m 3 / day Water flow speed: 200 to 800 m / day Space velocity: 8.3 to 33.3 1 / Time (3) Result Nitrification rate Nitrification rate (water flow rate (water flow rate 200 m / day) 800 m / day) Granular medium made of polyester fiber 94 (%) 77 (%) Anthracite 94 (%) 71 (% ) Ceramic balls 93 (%) 72 (%) In Comparative Example 1, the nitrification rates of 200 m / day and 800 m / day were compared. When water is passed without removing the suspended solids (SS) in the raw water, the granular medium made of polyester fiber also increases the water flow speed from 200 m / day to 800 m / day,
As in the case of anthracite and ceramic balls, the nitrification rate was greatly reduced. Although there is a slight difference in the nitrification rate depending on the granular medium, the nitrification rate is remarkable due to the difference in the structure of the granular medium as compared with the case where the suspending substance is removed and the liquid to be treated is placed in the reaction tank as in Example 1. There is no significant difference. In other words, the filling tank made of a granular medium having a structure in which the liquid to be treated can flow through the inside of the tank only exhibits an effect by removing suspended substances and then passing water through the tank.

【0010】[0010]

【発明の効果】以上のように本発明によれば、被処理液
中の懸濁性物質を予め除去した後、内部流路が存在する
粒状媒体を用いて反応槽内に充填層を形成させて生物濾
過するという方法を用いることにより、粒状媒体の内部
まで処理に活用でき、反応槽内において粒状媒体の内部
体積が占める大きな空間を有効に活用できる。その結果
従来法より相当大きな負荷をかけても安定した処理水質
を得ることができる。また、処理装置はかなり小型化で
きるため設置面積が少なくて済む。また、装置の高さも
低くできるため、揚水に要するエネルギーをも削減する
ことができるという利点を有する。
As described above, according to the present invention, after a suspended substance in a liquid to be treated is removed in advance, a packed bed is formed in a reaction tank using a granular medium having an internal flow path. By using the biological filtration method, the inside of the granular medium can be utilized for the treatment, and the large space occupied by the internal volume of the granular medium in the reaction tank can be effectively utilized. As a result, a stable treated water quality can be obtained even when a considerably larger load is applied than in the conventional method. Further, since the processing apparatus can be considerably reduced in size, the installation area can be reduced. Further, since the height of the apparatus can be reduced, there is an advantage that the energy required for pumping can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の粒状媒体の一例を示す説明図である。FIG. 1 is an explanatory diagram showing an example of a granular medium of the present invention.

【図2】本発明における処理フローを示す説明図であ
る。
FIG. 2 is an explanatory diagram showing a processing flow in the present invention.

【図3】本発明における反応槽の断面図である。FIG. 3 is a sectional view of a reaction tank in the present invention.

【符号の説明】[Explanation of symbols]

1 反応槽 2 粒状媒体 3 充填層 4 被処理液 5 固液分離工程 6 短繊維 7 気体吹き込み管 8 処理された水 DESCRIPTION OF SYMBOLS 1 Reaction tank 2 Granular medium 3 Packing layer 4 Liquid to be treated 5 Solid-liquid separation step 6 Short fiber 7 Gas blowing pipe 8 Treated water

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C02F 3/06 C02F 3/10 C02F 3/34 101 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) C02F 3/06 C02F 3/10 C02F 3/34 101

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 微生物を担持させるための粒状媒体で構
成される充填層を液面下に形成し、被処理液を反応槽の
上部から下向流で通液し、懸濁性物質の除去と溶解性成
分の生物分解処理とを充填層内で同時に行なう生物濾過
法において、前記反応槽に被処理液を流入させる前に被
処理液中の懸濁性物質を除去し、微生物を担持させるべ
く内部に被処理液が流通できる構造となった粒状媒体か
ら成る充填層を液面下に形成させた反応槽内に、被処理
液を反応槽の上部から通水速度600m/日以上の高速
で通過させることを特徴とする水処理方法。
1. A packed bed composed of a granular medium for supporting microorganisms is formed below the liquid surface, and the liquid to be treated is passed downward from the upper part of the reaction tank to remove suspended substances. In the biological filtration method in which the biodegradation of the soluble component and the biodegradation of the soluble component are simultaneously performed in the packed bed, the suspended substance in the liquid to be treated is removed before the liquid to be treated flows into the reaction tank, and the microorganisms are supported. The liquid to be treated is flowed from the upper part of the reaction tank at a high flow rate of 600 m / day or more into a reaction tank in which a packed layer composed of a granular medium having a structure through which the liquid to be treated can flow is formed below the liquid level. A water treatment method characterized by passing through.
【請求項2】 粒状媒体は短繊維の塊状集合体からなる
請求項1記載の水処理方法。
2. The water treatment method according to claim 1, wherein the granular medium comprises a mass of short fibers.
JP4147845A 1992-06-09 1992-06-09 Water treatment method Expired - Fee Related JP2894894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4147845A JP2894894B2 (en) 1992-06-09 1992-06-09 Water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4147845A JP2894894B2 (en) 1992-06-09 1992-06-09 Water treatment method

Publications (2)

Publication Number Publication Date
JPH05337484A JPH05337484A (en) 1993-12-21
JP2894894B2 true JP2894894B2 (en) 1999-05-24

Family

ID=15439559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4147845A Expired - Fee Related JP2894894B2 (en) 1992-06-09 1992-06-09 Water treatment method

Country Status (1)

Country Link
JP (1) JP2894894B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6216174B2 (en) * 2013-07-26 2017-10-18 水ing株式会社 Method and apparatus for circulating purification of breeding water

Also Published As

Publication number Publication date
JPH05337484A (en) 1993-12-21

Similar Documents

Publication Publication Date Title
JP2584386B2 (en) Biological filtration method and device
JP2894894B2 (en) Water treatment method
JP2003290784A (en) Iron and manganese remover and method for the same
JPS644835B2 (en)
JP2684495B2 (en) Advanced purification equipment for organic wastewater
JPS5876182A (en) Biological water purifier
JPH10202280A (en) Biological treatment of organic sewage using light weight activated carbon
JP3127631B2 (en) Nitrate and nitrite nitrogen removal equipment
JPH0647399A (en) Water purifying treatment method
JPS59105894A (en) Purification of water containing organic substance and apparatus therefor
JPH0221315B2 (en)
JP2879897B2 (en) Method and apparatus for removing suspended matter using expanded plastic particles
JP4181501B2 (en) Biofilm filtration apparatus and method
JPH0631283A (en) Purifying treatment of eutrophicated untreated water
JP4302411B2 (en) Seawater and brackish water purification method and apparatus
JPH0338289A (en) Biologically activated carbon water-treatment apparatus
JPS61287494A (en) Method for continuously filtering water
JPH0641677Y2 (en) Upflow type continuous biofilm filter
JP2005177601A (en) Method and apparatus for cleaning water
JPH02122894A (en) Method and equipment for clarifying liquid utilizing foamed plastic particle
JPH04193398A (en) Treatment of sewage
JPS61287493A (en) Filtration method by granular filter medium
JPS5849492A (en) Removing method for bod and ss from organic waste water
JPH0884998A (en) Organic sewage treatment device
JP2805418B2 (en) Organic wastewater purification treatment method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees