JP2893335B1 - Cold water circulation feeder for physical and chemical equipment - Google Patents
Cold water circulation feeder for physical and chemical equipmentInfo
- Publication number
- JP2893335B1 JP2893335B1 JP2256298A JP2256298A JP2893335B1 JP 2893335 B1 JP2893335 B1 JP 2893335B1 JP 2256298 A JP2256298 A JP 2256298A JP 2256298 A JP2256298 A JP 2256298A JP 2893335 B1 JP2893335 B1 JP 2893335B1
- Authority
- JP
- Japan
- Prior art keywords
- water tank
- electrode
- water
- ice
- evaporator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
【要約】
【目的】 本発明は氷の融解熱を利用した理化学機器用
の冷水循環供給機を使い勝手よく改良することを目的と
するものである。
【構成】 本発明は水槽部内の水道水を介し通電する冷
凍機構の制御スイッチの一方の電極を該水槽部の外で冷
凍機構に接続するとともに他方の電極に接続する端子を
前記水槽部内の冷凍機構の蒸発器の周囲に成長する氷に
より被覆されて非導電状態となる該水槽部の底面または
側面位置にわずかに表出するようにして設け、さらに前
記他方の電極を2本に分配するとともに該2本の電極に
接続する各端子を蒸発器からの距離を遠近して設けて該
2個の端子が成長する氷に被覆され非導電(高抵抗)状
態となるまでに時間差が生ずるようにし、且つ遠距離位
置の電極が氷に被覆され非導電(高抵抗)状態となって
冷凍機構を停止した後は近距離の電極からの通電が開始
するまで該冷凍機構を再始動しないようにするリレー回
路を設けた理化学機器用の冷水循環供給機にある。An object of the present invention is to improve the convenience of a circulating water supply device for physics and chemistry equipment utilizing heat of melting of ice. The present invention relates to a refrigeration mechanism having a control switch, which is energized through tap water in a water tank section, to connect one electrode of the control switch to the refrigeration mechanism outside the water tank section and to connect a terminal connected to the other electrode to a refrigeration mechanism in the water tank section. The tank is covered with ice growing around the evaporator of the mechanism, and is provided so as to be slightly exposed at the bottom surface or side surface position of the water tank portion which is in a non-conductive state, and further, the other electrode is divided into two electrodes. Each terminal connected to the two electrodes is provided at a distance from the evaporator so that a time lag occurs between the two terminals being covered with the growing ice and becoming non-conductive (high resistance). After the electrode at a long distance is covered with ice and becomes non-conductive (high resistance) and the refrigerating mechanism is stopped, the refrigerating mechanism is not restarted until power supply from the electrode at a short distance is started. Physical and chemical machine with relay circuit In the dexterous cold water circulation feeder.
Description
【0001】[0001]
【産業上の利用分野】この発明は理化学機器用の冷水循
環供給機、詳しくは氷の融解熱が水の約80倍であるこ
とに着目して発明された冷水循環供給機の改良に関する
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chilled water circulating feeder for scientific instruments, and more particularly to an improvement of a chilled water circulating feeder invented by paying attention to the fact that the heat of melting of ice is about 80 times that of water. is there.
【0002】[0002]
【従来の技術】氷の融解熱が水の80倍であることに着
目して発明した理化学機器用の冷水循環供給機について
は本願出願人が特開平9−72644号の提案をしてい
る。該発明は水道水を貯溜する水槽部と該水槽部の貯溜
水道水を外部に強制循環供給する動力付の供給管路を設
けるとともに前記水槽部内の水道水の一部を冷却して氷
結させる冷凍機構を設け、該冷凍機構により氷結した一
部の水道水の融解熱により前記水槽内の貯溜水道水を0
℃近くに保持冷却するようにし、さらに冷凍機構の一部
として水槽部内の水道水液面下に配設する蒸発器を設
け、該蒸発器の外面に冷凍機構を入切制御する2本の電
極線スイッチを突き出し取付けした理化学機器用の冷水
循環供給機を開示している。2. Description of the Related Art The applicant of the present invention has proposed a chilled water circulating feeder for scientific instruments which was invented by paying attention to the fact that the heat of melting of ice is 80 times that of water. The invention provides a water tank for storing tap water and a supply pipe with a power supply for forcibly circulating the stored tap water in the water tank to the outside, and also cools and freezes a part of the tap water in the water tank. A mechanism is provided, and the tap water stored in the water tank is reduced by the melting heat of a part of the tap water frozen by the refrigeration mechanism.
2 ° C., and further provided with an evaporator disposed below the level of tap water in the water tank as a part of the refrigeration mechanism, and two electrodes for controlling the on / off of the refrigeration mechanism on the outer surface of the evaporator. A cold water circulating feeder for a physics and chemistry instrument having a wire switch protruded and mounted is disclosed.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、該発明
は蒸発器の外面に冷凍機構を入切制御する2本の電極線
スイッチを突き出し取付けしているため、長く突き出し
た電極線スイッチおよび槽内を引き回した電極線スイッ
チの配線ケーブルが清掃の妨げになるほか、該配線ケー
ブルが目視されることによって使用者に感電のおそれや
ケーブルの早期劣化などの不安を与えるという課題があ
った。However, in the present invention, since two electrode wire switches for controlling the on / off operation of the refrigeration mechanism are protrudingly mounted on the outer surface of the evaporator, the long protruding electrode wire switch and the inside of the tank are required. In addition to the problem that the wiring cable of the routed electrode wire switch hinders cleaning, there is a problem that visual observation of the wiring cable gives a user a fear of electric shock and early deterioration of the cable.
【0004】また2本の電極線スイッチ間の通電により
冷凍機構をON作動させる要領のため、成長した氷によ
り2本の電極線スイッチが被覆され非導電(高抵抗)状
態となって冷凍機構の作動を一旦OFFにした直後であ
っても氷が解けて2本の電極線スイッチ間が通電した途
端に再び冷凍機構をON作動してしまい、この境界の前
後でON,OFFを反復することとなるので、頻繁な冷
凍機構のON,OFFの繰返しによって冷凍機構を損傷
するおそれがあるという課題がある。Further, since the refrigeration mechanism is turned ON by energizing between the two electrode wire switches, the two electrode wire switches are covered with the grown ice and become non-conductive (high resistance) so that the refrigeration mechanism is turned off. Immediately after the operation is once turned off, the ice melts and the refrigeration mechanism is turned on again as soon as power is supplied between the two electrode wire switches, and the on / off operation is repeated around this boundary. Therefore, there is a problem that the refrigeration mechanism may be damaged by frequent repetition of ON / OFF of the refrigeration mechanism.
【0005】[0005]
【課題を解決するための手段】本発明は水道水を貯溜す
る水槽部と該水槽部の貯溜水道水を外部に強制循環供給
する動力付の供給管路を有し、前記水槽部内の水道水面
下に該水槽内の水道水の一部を冷却して氷結させる冷凍
機構の蒸発器を設けて該蒸発器の周囲に氷結した一部の
水道水の融解熱により前記水槽内の貯溜水道水を0℃近
くに保持冷却するようにした理化学機器用の冷水循環供
給機において、前記水槽部内の水道水を介し通電する前
記冷凍機の制御スイッチの一方の電極を該水槽部の外で
該冷凍機に接続するとともに他方の電極に接続する端子
を前記蒸発器の周囲に成長する氷により被覆されて非導
電(高抵抗)状態となる該水槽部の底面または側面位置
にわずかに表出するようにして設け、さらに前記他方の
電極を2本に分配するとともに該2本の電極に接続する
各端子を蒸発器からの距離を遠近して設けて該2個の端
子が成長する氷に被覆され非導電(高抵抗)状態になる
までに時間差が生ずるようにし、且つ遠距離位置の電極
が氷に被覆され非導電(高抵抗)状態となって冷凍機構
を停止した後は近距離の電極から通常の通電が開始する
まで該冷凍機構を再始動しないようにするリレー回路を
設けて、かかる課題を解決するようにしたのである。SUMMARY OF THE INVENTION The present invention has a water tank for storing tap water and a power supply line for forcibly circulating the stored tap water in the water tank to the outside. An evaporator of a refrigeration mechanism for cooling and freezing part of the tap water in the water tank is provided below, and the stored tap water in the water tank is melted by the heat of fusion of a part of the tap water frozen around the evaporator. In a chilled water circulating feeder for physics and chemistry equipment which is maintained and cooled at about 0 ° C., one electrode of a control switch of the refrigerator, which is energized through tap water in the water tank, is connected to the refrigerator outside the water tank. And a terminal connected to the other electrode is slightly exposed at the bottom or side position of the water tank portion which is covered with ice growing around the evaporator and becomes non-conductive (high resistance) state. And further distribute the other electrode into two In addition, the terminals connected to the two electrodes are provided at a distance from the evaporator, and a time difference occurs until the two terminals are covered with the growing ice and become non-conductive (high resistance). After the electrode at a long distance is covered with ice and becomes non-conductive (high resistance) and the refrigerating mechanism is stopped, the refrigerating mechanism is not restarted until normal energization from the electrode at a short distance is started. Such a problem is solved by providing a relay circuit to be used.
【0006】[0006]
【発明の実施の形態】以下図面に基づいて説明する。BRIEF DESCRIPTION OF THE DRAWINGS FIG.
【0007】図1は本発明の冷水循環供給機の構造図を
示すもので、箱形機体1と箱形機体1の上半部に水道水
Wを貯溜する水槽部2を設け、水槽部2の下方の機体1
内に冷凍機構3を設置する。4a,4bは冷凍機構3の一部
として水槽部2内の両側の液面下位置に配設するコイル
状(らせん状に巻いた)蒸発器、4bは蒸発器4aの水槽部
2の下で冷凍機構3に接続している部分である。FIG. 1 is a structural view of a chilled water circulation feeder according to the present invention. A box-shaped body 1 and a water tank 2 for storing tap water W are provided in the upper half of the box-shaped body 1. Aircraft 1 below
The refrigeration mechanism 3 is installed inside. Reference numerals 4a and 4b denote coil-shaped (spirally wound) evaporators disposed below the liquid surface on both sides of the water tank 2 as a part of the refrigeration mechanism 3, and 4b denotes a part below the water tank 2 of the evaporator 4a. This is a part connected to the refrigeration mechanism 3.
【0008】循環管路5の往路管5aはバルブ6を挟んで
水槽部2の外に配管設備するポンプ7付の吐出管8に接
続し、復路管5bの端部は水槽部2内に配管する。9はポ
ンプ7と水槽部2の底面間を連結する連結管である。な
お往路管5aは三方バルブ(図示してない)を備えて、一
方に戻し管(図示してない)を接続し、三方バルブの切
替によりポンプ7の吐出した水道水Wを往路管5aと戻し
管とに切替供給できるようにしてもよい。The outgoing pipe 5a of the circulation pipe 5 is connected to a discharge pipe 8 provided with a pump 7 provided outside the water tank 2 with a valve 6 interposed therebetween, and the end of the return pipe 5b is connected to the inside of the water tank 2. I do. 9 is a connecting pipe connecting between the pump 7 and the bottom of the water tank unit 2. The outgoing pipe 5a is provided with a three-way valve (not shown), and a return pipe (not shown) is connected to one side, and the tap water W discharged from the pump 7 is returned to the outgoing pipe 5a by switching the three-way valve. You may make it possible to switch supply to a pipe.
【0009】冷凍機構3のON,OFF制御スイッチを
構成する一方(−)の電極10を蒸発器4aの水槽部2下の部
分4bに接続する。なお蒸発器4a,4bを含む冷凍機構3は
一体の導電性を有すので水槽部2外の都合のよい位置の
どこに接続してもよい。他方(+)の電極は2本の電極11
a,11bに分配し、そのうちの1本の電極11aは図2に示
すように蒸発器4aのごく近くの水槽部2底面上に端子12
aがわずかに表出するようにして取付け、もう1本の電
極11bの端子12bは蒸発器4aの近くに、しかして蒸発器4a
と端子12a間の距離よりも遠い距離を置いて水槽部2底
面上にわずかに表出するようにして設ける。13は止水用
のパッキン、14は絶縁カラー、15は固定モールドであ
る。以上の配線手段により水槽部2内は配線ケーブル等
が引き回しされることなく整然としたものとなり、また
水槽部2の外側で行えるために作業能率がよく生産性が
向上する。そして一方の電極10と他方の電極11a,11bは
後述する図3乃至図4に示すリレー回路16に接続してい
る。One (-) electrode 10 constituting an ON / OFF control switch of the refrigeration mechanism 3 is connected to a portion 4b below the water tank 2 of the evaporator 4a. Since the refrigerating mechanism 3 including the evaporators 4a and 4b has integral conductivity, the refrigerating mechanism 3 may be connected to any convenient position outside the water tank 2. The other (+) electrode is two electrodes 11
a and 11b, one of the electrodes 11a is connected to the terminal 12 on the bottom of the water tank 2 very close to the evaporator 4a as shown in FIG.
a so that the terminal 12b of the other electrode 11b is close to the evaporator 4a, and
The terminal 12a is provided so as to be slightly exposed on the bottom surface of the water tank 2 at a distance greater than the distance between the terminal and the terminal 12a. 13 is a packing for stopping water, 14 is an insulating collar, and 15 is a fixed mold. With the above-described wiring means, the inside of the water tank unit 2 is neat without the wiring cable or the like being routed, and since it can be performed outside the water tank unit 2, work efficiency is improved and productivity is improved. The one electrode 10 and the other electrodes 11a and 11b are connected to a relay circuit 16 shown in FIGS.
【0010】本発明は水槽部2内に蒸発器4aが液面下に
没入する量の水道水Wを充填してスイッチをONする
と、制御スイッチを構成する電極10と11a,11b間に水道
水Wを介して通電が行われ冷凍機構3がON作動し蒸発
器4aがマイナス温度となって周囲の水道水Wを冷却して
徐々に氷結させてゆくのである。In the present invention, when the evaporator 4a is filled in the water tank 2 with tap water W in such an amount as to sink below the liquid level and the switch is turned on, the tap water is supplied between the electrodes 10 and 11a and 11b constituting the control switch. Electricity is supplied via W, the refrigeration mechanism 3 is turned ON, the evaporator 4a becomes a minus temperature, and the surrounding tap water W is cooled and gradually frozen.
【0011】蒸発器4a周囲の氷Iがそれぞれ同じように
外側に成長してゆくと、先づ図2(b)に示すように蒸発
器4a周囲の氷Iが近い距離の電極11aの端子12aを被覆し
て電極11aが非導電(高抵抗)状態となり、さらに蒸発
器4aの氷Iが成長するとやがて図2(c)に示すように成
長した氷Iが遠い距離にある電極11bの端子12bを被覆し
て非導電(高抵抗)状態となり、電極10と11a,11b間が
すべて非導電(高抵抗)状態になるとスイッチング作用
により冷凍機構3を自動停止するように制御するのであ
る。When the ice I around the evaporator 4a grows outward in the same manner, the ice I around the evaporator 4a first comes close to the terminal 12a of the electrode 11a at a short distance as shown in FIG. 2 (b). When the electrode 11a becomes non-conductive (high resistance) and the ice I of the evaporator 4a grows, the grown ice I eventually becomes a terminal 12b of the electrode 11b at a long distance as shown in FIG. 2 (c). Is controlled, so that the refrigeration mechanism 3 is automatically stopped by a switching action when all of the electrodes 10 and 11a and 11b are in a non-conductive (high resistance) state.
【0012】この間のリレー回路16の作動を図3に従っ
て説明する。図3(1)に示す運転開始前の状態より運転
開始にて電極11aの端子12aから水道水W,蒸発器4aり水
槽部2下の部分4bを経て電極10に電流が流れることによ
りトランス17にAC8Vの電圧が発生し図3(2)に示す
ようにリレーRLO1,RLO2がONしてリレー接点18,19が
閉じて冷凍機構3が作動を開始し、同時に電極11bの端
子12bからも電極10に電流が流れる。やがて図4(3)に示
すように端子12aは蒸発器4a周囲に成長した氷Iによっ
て被覆され蒸発器への電流が非導電(高抵抗)状態とな
るが、端子12bからの電流が引続き電極10に流れている
ために冷凍機構3はON状態を維持する。さらに図4
(4)に示すように氷Iが成長して端子12bも被覆すと端子
12a,12bのどちらからも電極10に通常の電流が流れなく
なるためにトランス17に生じていたAC8Vの電圧が低
下(非導電化)してリレー接点18,19が開き、このスイ
ッチング作用によって冷凍機構3は運転を停止するので
ある。冷凍機構3の運転が停止するとやがて氷Iが解け
始めて先づ図4(5)に示すように蒸発器4aからの距離の
遠い端子12bが表出するが、リレー接点18側はこの時
「開」状態のため、AC8Vに接続されておらず端子12
bから電極10に必要な電流は流れず、従ってこの状態で
は冷凍機構3の運転は再開しないままである。さらに図
4(6)に示すように氷Iが解けて端子12aが表出すると、
端子12a側の電極11aはダイレクトにトランス17側に接続
しているため運転開始時と同様にしてトランス17にAC
8Vの電圧が発生しリレーRLO1,RLO2が0Nしてリレー
接点18,19が閉じ、冷凍機構3が再びON作動して運転
を開始するのである。その後は前記図4(3)乃至(6)に示
す作用を繰返すこととなり、冷凍機構3の運転停止と運
転再開までの間に相当の時間差を設けたいわゆるヒステ
リシスが作られることとなる。このヒステリシスは2個
の端子12a,12bの蒸発器からの距離の差を調整すること
により可変することができる。The operation of the relay circuit 16 during this time will be described with reference to FIG. At the start of the operation from the state before the operation shown in FIG. 3A, the current flows from the terminal 12a of the electrode 11a to the electrode 10 via the tap water W, the evaporator 4a, and the portion 4b below the water tank portion 2 so that the transformer 17 is started. As shown in FIG. 3 (2), the relays RLO1 and RLO2 are turned on, the relay contacts 18 and 19 are closed, and the refrigerating mechanism 3 starts to operate. Current flows through 10. Eventually, as shown in FIG. 4 (3), the terminal 12a is covered with the ice I grown around the evaporator 4a and the current to the evaporator becomes non-conductive (high resistance), but the current from the terminal 12b continues to be Since the refrigeration mechanism 3 is flowing to 10, the ON state is maintained. FIG. 4
As shown in (4), when the ice I grows and covers the terminal 12b, the terminal
Since the normal current stops flowing through the electrode 10 from either of the electrodes 12a and 12b, the voltage of AC8V generated in the transformer 17 is reduced (made nonconductive), and the relay contacts 18 and 19 are opened. 3 stops the operation. When the operation of the refrigeration mechanism 3 is stopped, the ice I begins to melt soon, and the terminal 12b far from the evaporator 4a appears first as shown in FIG. 4 (5). Is not connected to AC8V and the terminal 12
The necessary current does not flow from b to the electrode 10, and therefore, in this state, the operation of the refrigeration mechanism 3 does not resume. Further, as shown in FIG. 4 (6), when the ice I melts and the terminal 12a appears,
Since the electrode 11a on the terminal 12a side is directly connected to the transformer 17 side, an AC
The voltage of 8 V is generated, the relays RLO1, RLO2 become 0N, the relay contacts 18, 19 are closed, the refrigeration mechanism 3 is turned ON again, and the operation is started. Thereafter, the operations shown in FIGS. 4 (3) to (6) are repeated, so that a so-called hysteresis with a considerable time difference between the stop of the operation of the refrigeration mechanism 3 and the restart of the operation is created. This hysteresis can be varied by adjusting the difference in distance between the two terminals 12a and 12b from the evaporator.
【0013】以上の作用により水槽部2内に一部の水道
水Wが氷結した一定量の氷Iが形成された状態にて待機
するのである。なお、これらの氷結作業は外部の機器に
冷却水を循環させる作業以前、例えば深夜の電気料金の
安い時間帯にあらかじめ行っておくのである。また環境
を考慮してタイマーを併用することにより運転開始を準
備に間に合う時刻に設定しておけば前記した(3)〜(6)の
繰返し回数をごく少なく抑えることができる。By the above operation, the apparatus stands by in a state where a certain amount of ice I formed by freezing a part of tap water W in the water tank 2 is formed. These icing operations are performed before the operation of circulating the cooling water to the external equipment, for example, in the middle of the night when electricity rates are low. If the start of operation is set to a time that is ready for preparation by using a timer in consideration of the environment, the number of repetitions of the above (3) to (6) can be suppressed to a very small value.
【0014】外部の、例えばロータリーエヴァポレータ
ー,ソックスレーなどの分析機器や試験装置などの機器
装置20を冷却するときは、循環管路5の往路管5aと復路
管5bのそれぞれを冷却する機器装置20の循環入出口にそ
れぞれ接続し、バルブ6を開放してポンプ7を作動させ
るのである。ポンプ7から吐出管8に吐出された水道水
Wは往路管5aより機器装置20に強制供給され、機器装置
20の内部で熱交換し、復路管5bを経て水槽部2内に戻り
氷Iの周囲を回流して氷Iの融解熱により0℃近くに冷
却されて再び外部機器装置20に強制循環供給されること
を繰返すのである。水槽部2内の水道水Wは氷Iがすべ
て解けてなくなるまでほぼ安定して0℃近くの水温を維
持することができる。When the external equipment 20 such as an analytical instrument such as a rotary evaporator or a Soxhlet or a test apparatus is cooled, the equipment which cools each of the forward pipe 5a and the return pipe 5b of the circulation pipe 5 is cooled. The pump 6 is operated by connecting to the circulation inlet and outlet 20 respectively, opening the valve 6. The tap water W discharged from the pump 7 to the discharge pipe 8 is forcibly supplied to the equipment 20 from the outward pipe 5a.
The heat is exchanged inside 20 and returned to the water tank 2 via the return pipe 5b, circulated around the ice I, cooled to near 0 ° C. by the heat of melting of the ice I, and forcedly supplied again to the external equipment 20. It repeats that. The tap water W in the water tank section 2 can maintain a water temperature near 0 ° C. almost stably until all the ice I is melted.
【0015】なお、水道水Wを外部の機器装置20に循環
供給しつつ冷凍機構3を作動して氷結作業を平行するこ
とも可能であるが、冷却のための熱量があらかじめ形成
しておいた氷の量で充分であるときは冷凍機構3はOF
F状態にしたまま使用することもできる。従って、この
場合は冷凍機構3を作動させないことにより消費電力を
きわめて少なくして限られた電源事情の設備環境の中で
複数台を同時に使用したり、また他の機器の使用を妨げ
たりしないこととなる。It is possible to operate the refrigerating mechanism 3 while circulating the tap water W to the external equipment 20 to perform the icing work in parallel, but the amount of heat for cooling is previously formed. When the amount of ice is sufficient, the refrigeration mechanism 3
It can be used in the F state. Therefore, in this case, the power consumption is extremely reduced by not operating the refrigeration mechanism 3 so that a plurality of units are not used at the same time in the facility environment under the limited power supply condition, and the use of other devices is not hindered. Becomes
【0016】図5は循環管路5を取外して低恒温水槽と
して使用できるようにした状態を示すものである。電極
線を水槽部2の外部に配線したので水槽部2内はすっき
り整然として低恒温水槽としても使い勝手のよいものと
なる。FIG. 5 shows a state in which the circulation line 5 has been removed so that it can be used as a low-temperature bath. Since the electrode wires are wired outside the water tank section 2, the inside of the water tank section 2 is neat and neat, so that it is easy to use as a low constant temperature water tank.
【0017】[0017]
【発明の効果】本発明は以上のようにして、冷凍機を入
切する制御スイッチの一方の電極を水槽部の外で冷凍機
構に接続するとともに他方の電極に接続する端子を冷凍
機構の蒸発器の周囲に成長した氷により被覆されて非導
電(高抵抗)状態となる該水槽部の底面または側面位置
にわずかに表出して設けるようにしたので、槽内に電極
線を設けて配線を行うに較べて配線作業の能率を上げて
生産性を向上し、さらに水槽部内に長く突き出した電極
線スイッチや槽内を引き回した配線ケーブルなどがなく
なるため水槽部内が整然として槽内の清掃が容易になる
ほか、配線ケーブルが目視されないことによって、使用
者に感電やケーブルの早期劣化などの不安を与えるおそ
れを解消するという効果を生ずる。As described above, according to the present invention, one electrode of the control switch for turning on / off the refrigerator is connected to the refrigerating mechanism outside the water tank and the terminal connected to the other electrode is connected to the terminal of the refrigerating mechanism. The electrode is slightly exposed on the bottom or side surface of the water tank part which is covered with ice grown around the vessel and becomes non-conductive (high resistance). The efficiency of wiring work is improved as compared to performing it, and the productivity is improved.Furthermore, there is no electrode wire switch protruding into the water tank or the wiring cable running around the tank, so the water tank is clean and the tank is easy to clean. In addition, since the wiring cable is not visually observed, there is an effect of eliminating the possibility of giving the user anxiety such as electric shock and early deterioration of the cable.
【0018】これにより水槽部内が広く使えるようにな
るので、装置より循環管路を取外すことによって低恒温
水槽として冷温保存の用途の使い勝手をよくするという
効果を生ずる。As a result, the inside of the water tank can be widely used, and by removing the circulation pipe from the apparatus, there is an effect that the low temperature constant water tank can be easily used for cold and hot storage.
【0019】他方の電極を2本に分配するとともに該2
本の電極に接続する各端子を蒸発器からの距離を遠近し
て設けて該2個の端子が成長する氷に被覆され非導電
(高抵抗)状態となるまでに時間差が生ずるようにし、
且つ遠距離位置の電極の端子が氷に被覆された非導電
(高抵抗)状態にて冷凍機構を停止した後は近距離の電
極の端子から通常の通電が開始するまで冷凍機構を再始
動しないようにするリレー回路を設けたことにより、冷
凍機構の停止と再始動の間に時間的な余裕を設けるヒス
テリシスを任意に設定できるようにしたので、冷凍機構
の頻繁なON,OFF繰返しによる冷凍機構の損傷のお
それを解消することができるという効果を生ずる。The other electrode is divided into two electrodes.
Providing each terminal connected to the two electrodes at a distance from the evaporator so as to provide a time lag until the two terminals are covered with growing ice and become non-conductive (high resistance);
In addition, after the refrigeration mechanism is stopped in a non-conductive (high resistance) state in which the terminal of the electrode at a long distance is covered with ice, the refrigeration mechanism is not restarted until normal energization starts from the terminal of the electrode at a short distance. With the provision of the relay circuit described above, it is possible to arbitrarily set a hysteresis for providing a time margin between the stop and restart of the refrigeration mechanism. Thus, an effect is obtained that the possibility of damage to the device can be eliminated.
【図1】 冷水循環循環機の構成例を示す断面図であ
る。FIG. 1 is a cross-sectional view illustrating a configuration example of a chilled water circulating machine.
【図2】 氷の形成時の状態を示す図で、(a)は形成の
初期、(b)は蒸発器に近い側の電極の端子が氷に被覆さ
れた状態、(c)は遠近両方の電極の端子がそれぞれ氷に
被覆された状態を示す部分拡大断面図である。FIG. 2 is a view showing a state of ice formation, (a) is an initial stage of formation, (b) is a state in which an electrode terminal on a side near an evaporator is covered with ice, and (c) is a perspective view. FIG. 4 is a partially enlarged cross-sectional view showing a state where the terminals of the electrodes are covered with ice.
【図3】 リレー回路の作用を示す図で、(1)は運転開
始前、(2)は運転開始時、(3)は蒸発器に近い側の電極の
端子が氷に被覆された時、(4)は遠近両方の電極の端子
がそれぞれ氷に被覆された時の作用を示すものである。FIG. 3 is a diagram showing the action of the relay circuit, (1) before starting operation, (2) at starting operation, (3) when the electrode terminal near the evaporator is covered with ice, (4) shows the operation when the terminals of both the far and near electrodes are covered with ice, respectively.
【図4】 同、(5)は遠い側の電極の端子が氷の被覆か
ら解かれた時、(6)は遠近両方の電極の端子が氷の被覆
から解かれた時の作用を示すものである。Fig. 4 (5) shows the operation when the terminal of the electrode on the far side is released from the ice coating, and (6) shows the operation when the terminal of both the far and near electrodes is released from the ice coating. It is.
【図5】 循環管路を取外して低恒温水槽として使用す
る状態を示す断面図である。FIG. 5 is a cross-sectional view showing a state in which a circulation pipeline is removed and used as a low-temperature bath.
1は箱形機体 2は水槽部 3は冷凍機構 4aは蒸発器 4bは蒸発器の水槽部下の部分 5は循環管路 5aは往路管 5bは復路管 6はバルブ 7はポンプ 8は吐出管 9は連結管 10は一方(−)の電極 11a,11bは2本に分配した他方の電極 12a,12bは端子 13は止水用のパッキン 14は絶縁カラー 15は固定モールド 16はリレー回路 17はトランス 18,19はリレー接点 20は外部の機器装置 1 is a box-shaped body 2 is a water tank part 3 is a refrigeration mechanism 4a is an evaporator 4b is a part below the water tank part of the evaporator 5 is a circulation pipe 5a is a forward pipe 5b is a return pipe 6 is a valve 7 is a pump 8 is a discharge pipe 9 Is a connecting pipe 10 is one (-) electrode 11a, 11b is divided into two, and the other electrode 12a, 12b is a terminal 13 is a packing for stopping water 14 is an insulating collar 15 is a fixed mold 16 is a relay circuit 17 is a transformer 18 and 19 are relay contacts 20 is external equipment
フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F25D 11/00 102 F25D 13/00 F25D 17/02 F25C 1/00 B01L 7/00 B01L 11/00 Continuation of the front page (58) Fields investigated (Int.Cl. 6 , DB name) F25D 11/00 102 F25D 13/00 F25D 17/02 F25C 1/00 B01L 7/00 B01L 11/00
Claims (2)
溜水道水を外部に強制循環供給する動力付の供給管路を
有し、前記水槽部内の水道水面下に該水槽内の水道水の
一部を冷却して氷結させる冷凍機構の蒸発器を設けて該
蒸発器の周囲に氷結した一部の水道水の融解熱により前
記水槽内の貯溜水道水を0℃近くに保持冷却するように
した理化学機器用の冷水循環供給機において、前記水槽
部内の水道水を介し通電する前記冷凍機の制御スイッチ
の一方の電極を該水槽部の外で該冷凍機構に接続すると
ともに他方の電極に接続する端子を前記蒸発器の周囲に
成長する氷により被覆されて非導電(高抵抗)状態とな
る該水槽部の底面または側面位置にわずかに表出するよ
うにして設けたことを特徴とする理化学機器用の冷水循
環供給機。1. A water tank for storing tap water, and a supply pipe with a power supply for forcibly circulating the stored tap water in the water tank to the outside, and a water supply pipe in the water tank below the level of the tap water in the water tank. An evaporator of a refrigeration mechanism for cooling and freezing part of the water is provided, and the stored tap water in the water tank is kept close to 0 ° C. and cooled by the heat of fusion of a part of the frozen tap water around the evaporator. In the chilled water circulating feeder for a physics and chemistry apparatus as described above, one electrode of a control switch of the refrigerator, which is energized through tap water in the water tank, is connected to the refrigeration mechanism outside the water tank and the other electrode. A terminal connected to the evaporator is provided so as to be slightly exposed at the bottom or side surface position of the water tank portion which is covered with ice growing around the evaporator and becomes non-conductive (high resistance) state. Cold water circulation feeder for scientific equipment.
2本の電極に接続する両端子を蒸発器からの距離を遠近
して設けて該2個の端子が成長する氷にそれぞれ被覆さ
れ非導電(高抵抗)状態になるまでに時間差が生ずるよ
うにし、且つ遠距離位置の電極が氷に被覆され非導電
(高抵抗)状態となったスイッチング作用にて冷凍機構
を停止した後は近距離の電極から通常の通電が開始する
まで該冷凍機構を再始動しないようにするリレー回路を
設けた請求項1記載の冷水循環供給機。2. The other electrode is distributed to two electrodes, and both terminals connected to the two electrodes are provided at a distance from the evaporator, and the two terminals are respectively coated with growing ice. A time difference is caused until the non-conductive (high resistance) state is reached, and after the refrigeration mechanism is stopped by the switching action of the non-conductive (high resistance) state where the electrode at a long distance is covered with ice, the near-end state is reached. 2. The chilled water circulating supply device according to claim 1, further comprising a relay circuit that prevents the refrigeration mechanism from restarting until normal energization starts from a distance electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2256298A JP2893335B1 (en) | 1998-01-21 | 1998-01-21 | Cold water circulation feeder for physical and chemical equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2256298A JP2893335B1 (en) | 1998-01-21 | 1998-01-21 | Cold water circulation feeder for physical and chemical equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2893335B1 true JP2893335B1 (en) | 1999-05-17 |
JPH11211310A JPH11211310A (en) | 1999-08-06 |
Family
ID=12086320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2256298A Expired - Lifetime JP2893335B1 (en) | 1998-01-21 | 1998-01-21 | Cold water circulation feeder for physical and chemical equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2893335B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102878740A (en) * | 2011-07-11 | 2013-01-16 | 上海酒店设备股份有限公司 | Ice-making machine with automatic cleaning function |
-
1998
- 1998-01-21 JP JP2256298A patent/JP2893335B1/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102878740A (en) * | 2011-07-11 | 2013-01-16 | 上海酒店设备股份有限公司 | Ice-making machine with automatic cleaning function |
Also Published As
Publication number | Publication date |
---|---|
JPH11211310A (en) | 1999-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3192726A (en) | Thermoelectric ice maker | |
US2221694A (en) | Ice-making apparatus | |
KR20080003217A (en) | Apparatus for supercooling | |
JP2011502240A (en) | Pulse electric heating and heat storage ice peeling apparatus and method | |
JPH05126446A (en) | Device for manufacturing clear ice piece and control circuit thereof | |
KR20090007924A (en) | Ice maker and the controlling method of the same | |
US2674101A (en) | Refrigeration control means | |
JP2893335B1 (en) | Cold water circulation feeder for physical and chemical equipment | |
US2959026A (en) | Ice cube making apparatus | |
US3459005A (en) | Selective control for an ice maker | |
JPH0972644A (en) | Cold water circulating and supplying machine for scientific device | |
JPH10238828A (en) | Ice heat reserve system and ice heat reserve cooling method using the system | |
JP2589161B2 (en) | Frozen dessert production equipment | |
KR100377771B1 (en) | Operating structure of a pipe heater for auto ice maker in refrigerator | |
JPH0245737Y2 (en) | ||
JPH1183272A (en) | Electronic water chiller | |
KR101033600B1 (en) | ice maker and the controlling method of the same | |
JPH10300312A (en) | Chilled water generating equipment | |
SU928149A1 (en) | Thermoelectric ice generator | |
JP2000056839A (en) | Method and unit for controlling temperature and ice thickness control unit | |
JP2004077031A (en) | Device and method for defrosting and deicing cooler in cooling facility | |
JPH11287541A (en) | Ice heat-storing device and method for controlling its operation | |
JPH08285430A (en) | Cold water feeder | |
JP3000907B2 (en) | Operation control method of ice storage type chiller | |
JP2004060936A (en) | Ice thickness controlling method of drink cooling apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090305 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100305 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110305 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130305 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140305 Year of fee payment: 15 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |