JP2891260B2 - Supporting device for vacuum vessel in fusion device - Google Patents

Supporting device for vacuum vessel in fusion device

Info

Publication number
JP2891260B2
JP2891260B2 JP1052068A JP5206889A JP2891260B2 JP 2891260 B2 JP2891260 B2 JP 2891260B2 JP 1052068 A JP1052068 A JP 1052068A JP 5206889 A JP5206889 A JP 5206889A JP 2891260 B2 JP2891260 B2 JP 2891260B2
Authority
JP
Japan
Prior art keywords
vacuum vessel
trunnion
support frame
external support
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1052068A
Other languages
Japanese (ja)
Other versions
JPH02232587A (en
Inventor
博正 二宮
正直 渋井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1052068A priority Critical patent/JP2891260B2/en
Publication of JPH02232587A publication Critical patent/JPH02232587A/en
Application granted granted Critical
Publication of JP2891260B2 publication Critical patent/JP2891260B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Plasma Technology (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明はプラズマを生成する核融合装置における真空
容器の支持装置を改良したものである。
DETAILED DESCRIPTION OF THE INVENTION [Purpose of the Invention] (Industrial application field) The present invention is an improved support device for a vacuum vessel in a nuclear fusion device for generating plasma.

(従来の技術) プラズマを生成する核融合装置における真空容器にお
いては、内部で生成されるプラズマが急速に消滅すると
真空容器には大きな渦電流が流れ、この渦電流はプラズ
マを閉じ込めたり、プラズマを閉じ込め制御するための
外部磁界と電磁気的に干渉して真空容器には非常に大き
な電磁力を発生する。この電磁力は核融合装置の半径方
向成分と核融合装置の装置中心軸(垂直)方向成分に分
解することができる。
(Prior art) In a vacuum vessel of a nuclear fusion device for generating plasma, when the plasma generated inside disappears rapidly, a large eddy current flows in the vacuum vessel, and this eddy current confines the plasma or generates the plasma. Electromagnetic interference with an external magnetic field for controlling confinement generates a very large electromagnetic force in the vacuum vessel. This electromagnetic force can be decomposed into a radial component of the fusion device and a component central (vertical) component of the fusion device.

ところで、このような電磁力が作用するプラズマ真空
容器において、電磁力の半径方向成分に対しては真空容
器自身で耐え得る支持構造とすることが可能であるが、
電磁力の垂直方向の成分に対して真空容器を支持するた
めには外部に特別に支持体を設ける必要がある。また、
電磁力の半径方向成分は主に真空容器のトロイダル方向
に流れる渦電流に起因するため、これを小さくするため
には真空容器のトロイダル方向の電気抵抗を大きくする
必要がある。
By the way, in a plasma vacuum vessel in which such an electromagnetic force acts, it is possible to use a support structure that can withstand the radial component of the electromagnetic force by the vacuum vessel itself.
In order to support the vacuum container against the vertical component of the electromagnetic force, it is necessary to provide a special support outside. Also,
Since the radial component of the electromagnetic force is mainly caused by an eddy current flowing in the toroidal direction of the vacuum vessel, it is necessary to increase the electrical resistance of the vacuum vessel in the toroidal direction in order to reduce the eddy current.

これらの観点から核融合装置における真空容器として
は薄肉シェル構造の真空容器がよく使用されており、特
に大型の核融合装置にあっては重量軽減等の点からも有
利である。
From these viewpoints, a vacuum container having a thin shell structure is often used as a vacuum container in a nuclear fusion device, and is particularly advantageous in terms of weight reduction in a large-scale fusion device.

一方、真空容器の内部ではプラズマを生成するために
高真空状態を実現する必要があり、このため一般に真空
容器に対しベーキングが行なわれている。この場合、真
空容器はベーキングにより熱膨張するが、真空容器の材
料強度の観点からこの熱膨脹を拘束することはできな
い。
On the other hand, it is necessary to realize a high vacuum state in order to generate plasma inside the vacuum vessel, and therefore, the vacuum vessel is generally baked. In this case, the vacuum container thermally expands by baking, but this thermal expansion cannot be restrained from the viewpoint of the material strength of the vacuum container.

そこで、従来ではこのような熱膨脹を逃がし、かつ前
記した電磁力に対して真空容器を支持する支持装置とし
て、第4図乃至第6図に示すようなトラニオン支持方式
がある。
Therefore, conventionally, a trunnion supporting system as shown in FIGS. 4 to 6 has been used as a supporting device for releasing such thermal expansion and supporting the vacuum vessel against the above-mentioned electromagnetic force.

第4図は核融合装置右半分の真空容器のポロイダル断
面図、第5図は第4図の“X"部(トラニオン支持部)の
拡大斜視断面図、第6図は第5図のVI−VI線に沿う矢視
断面図である。第4図乃至第6図において、1はトロイ
ダル状の真空容器で、この真空容器1の内部ではプラズ
マ2が生成される。3は真空容器1の外周部を覆うよう
に適宜の間隙を存して設けられた外部支持枠で、この外
部支持枠3にはポロイダルコイル4が配設されている。
また、この外部支持枠3の外側部に設けられた真空容器
側に抜ける貫通穴に球面軸受体5とその内側に設けられ
る偏心リング6からなる外部支持枠側トラニオン軸受7
が取付けられ、また真空容器1側にもこの外部支持枠側
トラニオン軸受7に対応させて真空容器側トラニオン軸
受8が取付けられ、これら両軸受7,8間にトラニオン軸
9を挿入してトラニオン支持方式による支持装置を構成
して真空容器1を支持している。この場合、トラニオン
軸9は外部支持枠3の側方から一対のトラニオン軸受7,
8に挿入され、偏心リング6によりトラニオン軸9の軸
心設定後、このトラニオン軸9と偏心リング6および球
面軸受5は溶接部10にて一体的に取付けられている。
FIG. 4 is a sectional view of a poloidal section of the vacuum vessel in the right half of the fusion device, FIG. 5 is an enlarged perspective sectional view of an "X" portion (trunnion support section) in FIG. 4, and FIG. It is arrow sectional drawing which follows the VI line. 4 to 6, reference numeral 1 denotes a toroidal vacuum vessel, in which a plasma 2 is generated. Reference numeral 3 denotes an external support frame provided with an appropriate gap so as to cover the outer peripheral portion of the vacuum vessel 1. The external support frame 3 is provided with a poloidal coil 4.
An external support frame-side trunnion bearing 7 formed of a spherical bearing body 5 and an eccentric ring 6 provided inside the through-hole formed on the outside of the external support frame 3 and extending toward the vacuum vessel.
A vacuum vessel-side trunnion bearing 8 is also attached to the vacuum vessel 1 side so as to correspond to the external support frame-side trunnion bearing 7. A trunnion shaft 9 is inserted between the two bearings 7 and 8 to support the trunnion. The vacuum vessel 1 is supported by constituting a supporting device according to the method. In this case, the trunnion shaft 9 is provided with a pair of trunnion bearings 7 from the side of the external support frame 3.
After the trunnion shaft 9 is set in the center of the trunnion shaft 9 by the eccentric ring 6, the trunnion shaft 9, the eccentric ring 6 and the spherical bearing 5 are integrally attached at the welded portion 10.

このような構成の支持装置においては、トラニオン軸
9が真空容器側トラニオン軸受8に対してその軸方向に
滑ることができるため、真空容器1がベーキングにより
熱膨脹してもその熱変形はトラニオン支持部で吸収され
る。また、真空容器1に作用する電磁力の垂直方向成分
はトラニオン軸9を介して外部支持枠3に伝達され、支
持される。
In the support device having such a configuration, since the trunnion shaft 9 can slide in the axial direction with respect to the vacuum vessel side trunnion bearing 8, even if the vacuum vessel 1 is thermally expanded by baking, its thermal deformation is reduced by the trunnion support portion. Is absorbed by. The vertical component of the electromagnetic force acting on the vacuum vessel 1 is transmitted to the external support frame 3 via the trunnion shaft 9 and is supported.

(発明が解決しようとする課題) しかし、このような核融合装置の支持装置においては
次のような問題がある。
(Problems to be Solved by the Invention) However, such a support device for a fusion device has the following problems.

(a)真空容器1と外部支持枠3とが電気的に絶縁され
ていないため、真空容器以外にも大きな電流パスが生じ
てしまい、プラズマ消滅時には更に大きな電磁力が発生
するばかりでなく、プラズマの制御にも問題が生じ、信
頼性に欠ける。
(A) Since the vacuum vessel 1 and the external support frame 3 are not electrically insulated, a large current path is generated other than in the vacuum vessel. Control also causes problems and lacks reliability.

(b)トラニオン軸9は外部支持枠3の側方からしか挿
入できないため、設置場所に制限があり、耐震等を考慮
して任意の場所に設置することは困難である。
(B) Since the trunnion shaft 9 can be inserted only from the side of the external support frame 3, the installation place is limited, and it is difficult to install the trunnion shaft 9 at an arbitrary place in consideration of earthquake resistance or the like.

(c)トラニオン支持構造が真空容器のアウトボード側
のみに設けられているため、薄肉シェル構造の真空容器
で、しかもプラズマが移動消滅して真空容器のインボー
ド側に発生する電磁力が大きい場合には真空容器の構造
上の機械的強度が不足し、信頼性が極端に低下する。
(C) Since the trunnion support structure is provided only on the outboard side of the vacuum vessel, when the vacuum vessel has a thin shell structure and the plasma moves and disappears and the electromagnetic force generated on the inboard side of the vacuum vessel is large. However, the structural mechanical strength of the vacuum vessel is insufficient, and the reliability is extremely reduced.

(d)トラニオン軸9が外部支持枠3側のトラニオン受
軸7と一体化されているため、地震等何らかの原因で真
空容器1が過度に半径方向に変形した場合、トラニオン
軸9の軸端が真空容器1の真空境界壁が破壊して大事故
を招く虞れがある。
(D) Since the trunnion shaft 9 is integrated with the trunnion receiving shaft 7 on the side of the external support frame 3, if the vacuum vessel 1 is excessively deformed in the radial direction due to some reason such as an earthquake, the shaft end of the trunnion shaft 9 is There is a possibility that the vacuum boundary wall of the vacuum vessel 1 is broken and a large accident is caused.

本発明は信頼性が高く、組立てが容易で、しかも適用
場所に制限されることのない核融合装置における真空容
器の支持装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a device for supporting a vacuum vessel in a fusion device which is highly reliable, easy to assemble, and is not limited to an application place.

[発明の構成] (課題を解決するための手段) 本発明は上記の目的を達成するため、プラズマを生成
する真空容器と、この真空容器の外周部に設けられた外
部支持枠との間をトラニオン軸により接続して真空容器
を外部支持枠に支持させるようにした真空容器の支持装
置において、前記真空容器のインボード側およびアウト
ボード側の両方に偏心リングと球面軸受体から構成され
る真空容器側トラニオン軸受を配設し、前記外部支持枠
にも真空容器側トラニオン軸受に対応させて球面軸受体
とこの球面軸受体に内挿して設けられた電気絶縁体から
構成される外部支持枠側トラニオン軸受を配設し、これ
ら真空容器側トラニオン軸受および外部支持枠側トラニ
オン軸受に前記真空容器の内側からトラニオン軸を挿入
してその真空容器側トラニオン軸受の偏心リングと球面
軸受体およびトラニオン軸を一体的に接合したものであ
る。
[Constitution of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention provides a method in which a vacuum vessel for generating plasma and an external support frame provided on an outer peripheral portion of the vacuum vessel are provided. In a vacuum vessel supporting device connected by a trunnion shaft to support the vacuum vessel on an external support frame, a vacuum comprising an eccentric ring and a spherical bearing body on both the inboard side and the outboard side of the vacuum vessel. A container-side trunnion bearing is provided, and the external support frame also includes a spherical bearing body corresponding to the vacuum vessel-side trunnion bearing and an electric insulator provided by being inserted into the spherical bearing body. A trunnion bearing is provided, and a trunnion shaft is inserted into the vacuum vessel side trunnion bearing and the external support frame side trunnion bearing from the inside of the vacuum vessel, and the vacuum vessel side trunnion is provided. Eccentric ring and the spherical bearing body down bearing and the trunnion shaft are integrally joined.

(作用) したがって、このような構成の核融合装置における真
空容器の支持装置にあっては、真空容器の内部から真空
容器側トラニオン軸受および外部支持枠側トラニオン軸
受にトラニオン軸の挿入が可能となるので、トラニオン
支持部の組立が容易になるばかりでなく、その設置場所
に制約されることもない。これにより、トラニオン支持
部を真空容器のインボード側の真空容器中央面近傍に設
けることができるので、真空容器内で生成されるプラズ
マが移動消滅して真空容器のインボード側の電磁力が大
きくなっても真空容器の構造上の強度を十分確保し得、
信頼性の高いものとなる。また、真空容器のインボード
側を支持することによって、真空容器の固有振動数を高
めることができ、耐震上有利であるばかりでなく、トラ
ニオン軸の平均せん断力及び軸受球面の平均面圧を低減
することができる。
(Operation) Accordingly, in the vacuum vessel supporting device of the nuclear fusion device having such a configuration, the trunnion shaft can be inserted into the vacuum vessel side trunnion bearing and the external support frame side trunnion bearing from inside the vacuum vessel. Therefore, not only is it easy to assemble the trunnion support portion, but also there is no restriction on the installation location. Thereby, the trunnion support portion can be provided near the center surface of the vacuum vessel on the inboard side of the vacuum vessel, so that the plasma generated in the vacuum vessel moves and disappears, and the electromagnetic force on the inboard side of the vacuum vessel increases. Even after that, sufficient structural strength of the vacuum vessel can be secured,
It will be highly reliable. In addition, by supporting the inboard side of the vacuum vessel, the natural frequency of the vacuum vessel can be increased, which is not only advantageous for earthquake resistance, but also reduces the average shear force of the trunnion shaft and the average surface pressure of the bearing spherical surface. can do.

一方、トラニオン軸は組立後真空容器側で球面軸受体
や偏心リングと一体的に接合されているため、何らかの
原因で真空容器が過大に変形した場合でもトラニオン軸
が真空容器の真空環境壁を破壊することはない。更に、
外部支持枠にはトラニオン軸回りに球面軸受体と、この
球面軸受体に内挿して電気絶縁物が設けられるので、真
空容器と外部支持枠とは電気的に接続されておらず、従
って電磁力やプラズマの制御に不都合な電流パスを生ず
ることがない。
On the other hand, the trunnion shaft is integrated with the spherical bearing and eccentric ring on the vacuum vessel side after assembly, so even if the vacuum vessel is excessively deformed for any reason, the trunnion shaft destroys the vacuum environment wall of the vacuum vessel I will not do it. Furthermore,
Since the external support frame is provided with a spherical bearing around the trunnion axis and an electrical insulator inserted inside the spherical bearing, the vacuum vessel and the external support frame are not electrically connected to each other. Also, there is no current path that is inconvenient for controlling the plasma.

(実施例) 以下本発明の一実施例を図面を参照して説明する。Embodiment An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明による核融合装置における真空容器の
支持装置の構成例を示すポロイダル断面図であり、第2
図は第1図の“A"部を拡大して示す断面図、第3図は第
2図のIII−III線に沿う矢視断面図である。なお、第4
図乃至第6図と同一部分には同一記号を付して説明す
る。
FIG. 1 is a poloidal sectional view showing a configuration example of a vacuum vessel supporting device in a fusion device according to the present invention.
FIG. 3 is an enlarged cross-sectional view showing the “A” part of FIG. 1, and FIG. 3 is a cross-sectional view taken along line III-III of FIG. The fourth
6 to FIG. 6 will be described with the same reference numerals.

第1図乃至第3図において、1はトロイダル状の真空
容器で、この真空容器1の内部ではプラズマ2が生成さ
れる。3は真空容器1の外周部を覆うように適宜の間隙
を存して設けられた外部支持枠で、この外部支持枠3に
はポロイダルコイル4が配設されている。
In FIGS. 1 to 3, reference numeral 1 denotes a toroidal vacuum vessel in which a plasma 2 is generated. Reference numeral 3 denotes an external support frame provided with an appropriate gap so as to cover the outer peripheral portion of the vacuum vessel 1. The external support frame 3 is provided with a poloidal coil 4.

ここで、本実施例では真空容器1を外部支持枠3に以
下のような構成にして支持させるものである。すなわ
ち、真空容器1の中央面近傍のインボード側とアウトボ
ード側には容器内外を貫通する穴が設けられており、こ
の穴に偏心リング22とその外周に設けられた球面軸受体
21により構成された真空容器側トラニオン軸受20が挿入
されている。また、外部支持枠3にも真空容器1側の穴
と対応する位置に穴が設けられており、この穴に冷却配
管23が埋設された貫通穴を有するブロック体24が嵌着さ
れ、このブロック体24の貫通穴に同心円筒26,その外周
面に形成されたモールド絶縁層27を介して設けられた球
面軸受体28から構成された外部支持枠側トラニオン軸受
25が挿入されている。一方、これら真空容器側トラニオ
ン軸受20および外部支持枠側トラニオン軸受25には表面
にTiNをコーティングしたトラニオン軸29が真空容器1
の内側から挿入され、所定の位置関係に設定した後、真
空容器側トラニオン軸受20の偏心リング22とトラニオン
軸29の端部を溶接30により固着し、さらに偏心リング22
と球面軸受体21の端部を溶接30により固着する。そし
て、真空容器1の内側から穴の開口部を塞ぐように蓋31
を当てがいその周縁部を溶接30により固着して真空境界
壁を構成する。
Here, in the present embodiment, the vacuum vessel 1 is supported by the external support frame 3 in the following configuration. That is, the inboard side and the outboard side near the center plane of the vacuum vessel 1 are provided with holes penetrating the inside and outside of the vessel, and the eccentric ring 22 and the spherical bearing body provided on the outer periphery thereof are provided in these holes.
A vacuum vessel side trunnion bearing 20 constituted by 21 is inserted. The external support frame 3 is also provided with a hole at a position corresponding to the hole on the vacuum vessel 1 side, and a block 24 having a through hole in which a cooling pipe 23 is embedded is fitted into this hole. An external support frame side trunnion bearing composed of a concentric cylinder 26 in a through hole of a body 24 and a spherical bearing body 28 provided through a mold insulating layer 27 formed on the outer peripheral surface thereof.
25 has been inserted. On the other hand, a trunnion shaft 29 whose surface is coated with TiN is provided on the vacuum vessel side trunnion bearing 20 and the external support frame side trunnion bearing 25 with the vacuum vessel 1.
After being inserted from the inside and setting a predetermined positional relationship, the eccentric ring 22 of the vacuum vessel side trunnion bearing 20 and the end of the trunnion shaft 29 are fixed by welding 30, and the eccentric ring 22 is further fixed.
And the end of the spherical bearing body 21 are fixed by welding 30. Then, the lid 31 is closed from the inside of the vacuum vessel 1 so as to close the opening of the hole.
The peripheral edge is fixed by welding 30 to form a vacuum boundary wall.

このような構成の真空容器の支持装置にあっては、外
部支持枠側トラニオン軸受25の球面軸受体28の内周側に
はモールド絶縁層27を介して同心円筒26が配設されてい
るので、真空容器1と外部支持枠3とは電気的に切れた
状態にあり、従ってプラズマ運転や真空容器1の強度上
望ましくない電流パスをしゃ断することができる。ま
た、トラニオン軸29は真空容器1の内部から真空容器側
トラニオン軸受20および外部支持枠側トラニオン軸受25
に挿入して真空容器1を外部支持枠3に支持させる支持
構造としているので、その組立てが容易になるばかりで
なく、支持構造の設置場所が制限されることもない。従
って、真空容器1の中央面近傍のアウトボード側のみな
らずインボード側にも設けることができるので、プラズ
マが移動消滅して真空容器側のインボード側の電磁力が
大きい場合でも真空容器1を健全に支持することができ
る。そして、真空容器1のインボード側を支持すること
によって真空容器1の固有振動数を高めることができ、
耐震上有利になるばかりでなく、トラニオン軸29の平均
せん断応力および球面軸受体21,28の平均面圧を低減す
ることができ、支持構造としての信頼性を向上させるこ
とができる。
In the vacuum vessel support device having such a configuration, the concentric cylinder 26 is disposed on the inner peripheral side of the spherical bearing body 28 of the external support frame side trunnion bearing 25 via the mold insulating layer 27. Since the vacuum vessel 1 and the external support frame 3 are electrically disconnected from each other, it is possible to cut off an undesired current path in terms of plasma operation and the strength of the vacuum vessel 1. The trunnion shaft 29 is connected to the vacuum vessel side trunnion bearing 20 and the external support frame side trunnion bearing 25 from inside the vacuum vessel 1.
And the support structure for supporting the vacuum vessel 1 on the external support frame 3 not only facilitates its assembly, but also does not limit the installation location of the support structure. Therefore, the vacuum vessel 1 can be provided not only on the outboard side near the center plane of the vacuum vessel 1 but also on the inboard side, so that even when the plasma moves and disappears and the electromagnetic force on the vacuum vessel side on the inboard side is large, the vacuum vessel 1 Can be supported soundly. By supporting the inboard side of the vacuum vessel 1, the natural frequency of the vacuum vessel 1 can be increased,
Not only is it advantageous in terms of seismic resistance, but also the average shear stress of the trunnion shaft 29 and the average surface pressure of the spherical bearing bodies 21 and 28 can be reduced, and the reliability of the support structure can be improved.

一方、真空容器1をベーキングすると、熱はトラニオ
ン軸29,外部支持枠側トラニオン軸受25を介して外部支
持枠3に伝導されるが、このように伝導した熱はブロッ
ク体24に埋設された冷却配管23の部分で除かれるので、
ポロイダルコイル4が真空容器1のベーキングにより損
傷を受けることはない。また、トラニオン軸29TiNがコ
ーティングされているので、トラニオン軸29がその摺動
部でかじりを生ずる虞れはない。さらに、トラニオン軸
29は真空容器1の内側からトラニオン軸受20に溶接によ
り一体化されるので、万一真空容器1が過大に変形して
もトラニオン軸29により蓋31が破壊されるようなことも
ない。
On the other hand, when the vacuum vessel 1 is baked, heat is transmitted to the external support frame 3 via the trunnion shaft 29 and the external support frame-side trunnion bearing 25, and the heat thus transmitted is cooled by the cooling unit embedded in the block body 24. Since it is removed at the pipe 23,
The poloidal coil 4 is not damaged by the baking of the vacuum vessel 1. Further, since the trunnion shaft 29TiN is coated, there is no possibility that the trunnion shaft 29 will be galled at its sliding portion. In addition, trunnion shaft
Since the tube 29 is integrated with the trunnion bearing 20 by welding from the inside of the vacuum vessel 1, even if the vacuum vessel 1 is excessively deformed, the lid 31 is not broken by the trunnion shaft 29.

[発明の効果] 以上述べたように本発明によれば、真空容器のインボ
ード側およびアウトボード側のトラニオン軸回りに偏心
リングと球面軸受体からなる真空容器側トラニオン軸受
を配し、外部支持枠にはトラニオン軸回りに球面軸受体
とこの球面軸受体に内挿して設けられた電気絶縁物から
なる外部支持枠側トラニオン軸受を配設するようにした
ので、支持構造に対する信頼性が高く、組立が容易で、
しかも適用場所に制限されることのない核融合装置にお
ける真空容器の支持装置が提供できる。
[Effects of the Invention] As described above, according to the present invention, a vacuum vessel side trunnion bearing composed of an eccentric ring and a spherical bearing body is arranged around a trunnion axis on an inboard side and an outboard side of a vacuum vessel, and external support Since the frame is provided with a spherical bearing around the trunnion axis and an external supporting frame side trunnion bearing made of an electrical insulator interposed in the spherical bearing, the reliability of the supporting structure is high, Easy to assemble,
In addition, it is possible to provide a vacuum vessel supporting device in a fusion device which is not limited to an application place.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明による核融合装置における真空容器の支
持装置の構成例を示すポロイダル断面図であり、第2図
は第1図の“A"部を拡大して示す断面図、第3図は第2
図のIII−III線に沿う矢視断面図、第4図は従来の核融
合装置右半分の真空容器のポロイダル断面図、第5図は
第4図の“X"部の拡大斜視断面図、第6図は第5図のVI
−VI線に沿う矢視断面図である。 1……真空容器、2……プラズマ、3……外部支持枠、
4……ポロイダルコイル、20……真空容器側トラニオン
軸受、21……球面軸受体、22……偏心リング、23……冷
却配管、24……ブロック体、25……外部支持枠側トラニ
オン軸受、26……同心円筒、27……絶縁層、28……球面
軸受体、29……トラニオン軸、30……溶接、31……蓋。
FIG. 1 is a poloidal sectional view showing a configuration example of a vacuum vessel supporting device in a nuclear fusion device according to the present invention. FIG. 2 is an enlarged sectional view of a portion "A" in FIG. 1, and FIG. Is the second
FIG. 4 is a sectional view taken along the line III-III in FIG. 4, FIG. 4 is a poloidal sectional view of a vacuum vessel in the right half of the conventional fusion device, FIG. 5 is an enlarged perspective sectional view of “X” part in FIG. FIG. 6 is VI of FIG.
It is arrow sectional drawing which follows the VI line. 1 ... vacuum container, 2 ... plasma, 3 ... external support frame,
4 poloidal coil, 20 trunnion bearing on vacuum vessel side, 21 spherical bearing body, 22 eccentric ring, 23 cooling pipe, 24 block body, 25 trunnion bearing on external support frame side, 26 ... concentric cylinder, 27 ... insulating layer, 28 ... spherical bearing body, 29 ... trunnion shaft, 30 ... welding, 31 ... lid.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】プラズマを生成する真空容器と、この真空
容器の外周部に設けられた外部支持枠との間をトラニオ
ン軸により接続して真空容器を外部支持枠に支持させる
ようにした真空容器の支持装置において、前記真空容器
のインボード側およびアウトボード側の両方に偏心リン
グと球面軸受体から構成される真空容器側トラニオン軸
受を配設し、前記外部支持枠にも真空容器側トラニオン
軸受に対応させて球面軸受体とこの球面軸受体に内挿し
て設けられた電気絶縁物から構成される外部支持枠側ト
ラニオン軸受を配設し、これら真空容器側トラニオン軸
受および外部支持枠側トラニオン軸受に前記真空容器の
内側からトラニオン軸を挿入してその真空容器側トラニ
オン軸受の偏心リングと球面軸受体およびトラニオン軸
を一体的に接合したことを特徴とする核融合装置におけ
る真空容器の支持装置。
1. A vacuum vessel in which a vacuum vessel for generating plasma and an external support frame provided on an outer peripheral portion of the vacuum vessel are connected by a trunnion shaft to support the vacuum vessel on the external support frame. In the supporting device, a vacuum vessel side trunnion bearing composed of an eccentric ring and a spherical bearing is disposed on both the inboard side and the outboard side of the vacuum vessel, and the vacuum vessel side trunnion bearing is also provided on the external support frame. The external support frame-side trunnion bearing composed of a spherical bearing body and an electrical insulator interposed in the spherical bearing body is disposed in correspondence with the above, and these vacuum vessel-side trunnion bearing and external support frame-side trunnion bearing A trunnion shaft is inserted from the inside of the vacuum vessel into the above, and the eccentric ring of the vacuum vessel side trunnion bearing, the spherical bearing body and the trunnion shaft are integrally joined. Supporting apparatus for a vacuum vessel in nuclear fusion apparatus, characterized in that.
JP1052068A 1989-03-06 1989-03-06 Supporting device for vacuum vessel in fusion device Expired - Fee Related JP2891260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1052068A JP2891260B2 (en) 1989-03-06 1989-03-06 Supporting device for vacuum vessel in fusion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1052068A JP2891260B2 (en) 1989-03-06 1989-03-06 Supporting device for vacuum vessel in fusion device

Publications (2)

Publication Number Publication Date
JPH02232587A JPH02232587A (en) 1990-09-14
JP2891260B2 true JP2891260B2 (en) 1999-05-17

Family

ID=12904498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1052068A Expired - Fee Related JP2891260B2 (en) 1989-03-06 1989-03-06 Supporting device for vacuum vessel in fusion device

Country Status (1)

Country Link
JP (1) JP2891260B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2713216C2 (en) * 2017-03-02 2020-02-04 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Device for attachment of blanket module on vacuum housing of thermonuclear reactor

Also Published As

Publication number Publication date
JPH02232587A (en) 1990-09-14

Similar Documents

Publication Publication Date Title
EP1016815A2 (en) Superconducting magnet suspension assembly
JP2891260B2 (en) Supporting device for vacuum vessel in fusion device
US3920518A (en) Pressure vessels having thermal insulsation
US5406448A (en) Capacitor hanger and attachment method
US4625192A (en) Superconducting apparatus with improved current lead-in
CN217681994U (en) Thermal-insulated structure under compact space
JPH0417308B2 (en)
US2996632A (en) Stator can support
JPH02150793A (en) Vacuum vessel supporting device
CN211609250U (en) Heat-preservation electric kettle
JPH0256005B2 (en)
JPH0319516B2 (en)
JPS645325Y2 (en)
JPS6230992A (en) Annular vessel for nuclear fusion device
JPS6244502Y2 (en)
JPS6059558B2 (en) Vacuum vessel for nuclear fusion
JPS58184775A (en) Heat insulating container for superconductive magnet
JP2684921B2 (en) Penetration structure of inorganic insulated cable to fixed plate for shielding
JPS6366043B2 (en)
JPS6256472B2 (en)
JPH0582337A (en) Superconducting magnet
JPS6038686A (en) Nuclear fusion device
JPS6288378A (en) Cryogenic container
JPS62112304A (en) Heat resistant electromagnetic coil
JP2809825B2 (en) Electromagnetic force support device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees