JP2889082B2 - Method and apparatus for predicting entry into prohibited areas - Google Patents

Method and apparatus for predicting entry into prohibited areas

Info

Publication number
JP2889082B2
JP2889082B2 JP5151757A JP15175793A JP2889082B2 JP 2889082 B2 JP2889082 B2 JP 2889082B2 JP 5151757 A JP5151757 A JP 5151757A JP 15175793 A JP15175793 A JP 15175793A JP 2889082 B2 JP2889082 B2 JP 2889082B2
Authority
JP
Japan
Prior art keywords
area
detection
prohibited
intrusion
detection area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5151757A
Other languages
Japanese (ja)
Other versions
JPH0721386A (en
Inventor
進 菊地
卓也 村上
仁一 菊地
豊 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP5151757A priority Critical patent/JP2889082B2/en
Publication of JPH0721386A publication Critical patent/JPH0721386A/en
Application granted granted Critical
Publication of JP2889082B2 publication Critical patent/JP2889082B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Closed-Circuit Television Systems (AREA)
  • Burglar Alarm Systems (AREA)
  • Image Analysis (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は禁止区域への侵入予測方
法及び装置に関し、とくに禁止区域を含む被監視域の画
像監視により動き対象物の前記禁止区域への侵入を予測
する方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for predicting entry into a prohibited area, and more particularly to a method and apparatus for predicting the entry of a moving object into the prohibited area by monitoring an image of a monitored area including the prohibited area. .

【0002】[0002]

【従来の技術】従来の画像による禁止区域の侵入監視方
法の一例を図7に示す。TVカメラ等の画像入力部50に
より禁止区域Zを含む被監視域の画像Iを順次取込み、
予め用意した正常状態の被監視域の参照画像52と画像I
と間の輝度変化を差分画像として抽出し、差分画像を所
定の閾値に基づいて二値化し、二値化画像の各連結成分
の形状特徴から監視対象物を識別する。異常判定部55に
より識別された連結成分と禁止区域画像Izとの重なり
を検出し、重なる場合に異常ありと判定する。
2. Description of the Related Art FIG. 7 shows an example of a conventional method for monitoring the intrusion of a prohibited area using an image. The image I of the monitored area including the prohibited area Z is sequentially captured by the image input unit 50 such as a TV camera,
Reference image 52 and image I of the monitored area in a normal state prepared in advance
Is extracted as a difference image, the difference image is binarized based on a predetermined threshold, and the monitoring target is identified from the shape characteristics of each connected component of the binarized image. Detecting the overlap of identified by the abnormality determining unit 55 connected component and the prohibited area image I z, a malfunction occurs when overlapping the judges.

【0003】また本発明者等は、画像Iの動きベクトル
に基づく侵入監視方法を特願平3−306445号に開
示した。本発明の理解に必要な程度において、動きベク
トルによる監視方法を図8により説明する。図8の動き
ベクトル画像形成手段1は、画像入力手段5が連続的に
生成する監視域画像例えば図9の画像Itを一定画素数
のブロックBに分割し、各ブロックの現画像Bt内画像
を当該ブロックの前画像Bt-1から現画像Btへの動きベ
クトルへ置換し、図10のベクトル画像Ivを出力する。
ここに前画像Bt-1は、前画像It-1における前記ブロッ
クと同一画素数の画像であって現画像Btとの輝度差分
が最小のものである。即ち動きベクトルは、前記各ブロ
ックの前画像から現画像への移動量に相当する。二値化
手段2による画像Ivの二値化後、識別手段3が各連結
成分の形状特徴及び動き特徴から監視対象物を識別し、
例えば図11の画像Igを出力する。異常判定手段8は、
画像Igと図12に示す禁止区域画像Izの重複ブロックを
数え、重複ブロックが予め設定した値を超えた時に異常
ありと判定する。
Further, the present inventors have disclosed an intrusion monitoring method based on a motion vector of an image I in Japanese Patent Application No. 3-306445. To the extent necessary for understanding the present invention, a monitoring method using a motion vector will be described with reference to FIG. Motion vector image forming means 8 1, divides the image I t of the surveillance area image example 9 image input unit 5 is continuously generated blocks B fixed number of pixels, the current image B in t of each block the image replacing the previous image B t-1 of the block to the motion vector of the current image B t, and outputs the vector image I v in FIG.
Here before image B t-1, the luminance difference between the previous image I t-1 a the block of the same number of pixels of the image in and the current image B t is smallest. That is, the motion vector corresponds to the moving amount of each block from the previous image to the current image. After the binarization of the image I v by the binarization unit 2, the identification unit 3 identifies the monitoring target from the shape feature and the motion feature of each connected component,
For example outputs the image I g of FIG. 11. The abnormality determination means 8
The number of overlapping blocks between the image Ig and the prohibited area image Iz shown in FIG. 12 is counted, and when the number of overlapping blocks exceeds a preset value, it is determined that there is an abnormality.

【0004】更に図13及び図14は、動きベクトルによる
監視対象物の侵入予測方法を示す。識別手段3の出力画
像Igの連結成分を変換手段30においてブロック毎の動
きベクトルに変換し、予測状態記憶手段32内の第一予測
処理手段34aが各ブロックの現在位置(図14に斜線ブロッ
クで示す)及び動きベクトルから所定時間(τ)後の連結
成分位置を予測する。予測結果は記憶手段30に記憶さ
れ、予測一致判定手段38により所定時間(τ)後の画像I
gと比較され、連続して的中した回数Nがカウンタ39に
記憶される。異常判定手段40の第二予測処理手段34b
は、第一予測処理手段34aの予測処理と同様に、前記所
定時間(τ)を前記連続的中回数N以下の整数(α)倍した
時間(ατ)後の連結成分の予測位置(図14に点ブロック
で示す)を求め、重複検出手段42が予測位置と禁止区域
画像Iz(図12)との重複を検出する。即ち図13及び図14
の侵入予測は、過去N回連続して予想が的中したときは
爾後N回も同様に移動するという仮定に基づき、各ブロ
ックの現在位置から現時点の動きベクトルのN倍だけ移
動した位置を予測位置とするものである。尚、図14にお
いて現在位置と予測位置の連結成分形状が異なるのは、
前記予測がブロック毎に行われるからである。
FIG. 13 and FIG. 14 show a method of predicting the intrusion of a monitored object using a motion vector. The connected component of the output image Ig of the identification unit 3 is converted into a motion vector for each block by the conversion unit 30, and the first prediction processing unit 34a in the prediction state storage unit 32 stores the current position of each block (the hatched block in FIG. 14). ) And the motion vector to predict the connected component position after a predetermined time (τ). The prediction result is stored in the storage means 30, and the image I after a predetermined time (τ) is
g, and the number N of consecutive hits is stored in the counter 39. Second prediction processing means 34b of abnormality determination means 40
The predicted position of the connected component after a time (ατ) obtained by multiplying the predetermined time (τ) by an integer (α) equal to or smaller than the continuous medium number N, similarly to the prediction processing of the first prediction processing means 34a (FIG. 14). , And a duplication detection means 42 detects duplication between the predicted position and the prohibited area image I z (FIG. 12). 13 and 14
Is based on the assumption that, if the prediction is successful consecutively N times in the past, the same movement will be performed N times thereafter, and the position predicted by the current position of each block by N times the current motion vector is predicted. Position. In FIG. 14, the connected component shape between the current position and the predicted position is different.
This is because the prediction is performed for each block.

【0005】[0005]

【発明が解決しようとする課題】従来の侵入監視方法は
何れも、監視対象物の画像と禁止区域画像との重複から
異常を判定するので、監視対象物が禁止区域に侵入した
後にはじめて異常が検出される。しかし、禁止区域が工
事現場等生命にかかわる危険区域である場合は、侵入後
の異常検出では手後れとなりかねない。よって、監視対
象物が禁止区域へ侵入する前に異常を検出する必要があ
る。
In any of the conventional intrusion monitoring methods, an abnormality is determined from the overlap between the image of the monitored object and the image of the prohibited area. Therefore, the abnormality is detected only after the monitored object enters the prohibited area. Is detected. However, if the banned area is a dangerous area such as a construction site that is life-threatening, detection of an abnormality after intrusion may be too late. Therefore, it is necessary to detect an abnormality before the monitored object enters the prohibited area.

【0006】上記動きベクトルによる侵入予測方法は、
確かに監視対象物の動きを追尾し、過去の移動軌跡から
禁止区域への侵入を予測する。しかし、侵入予測のため
ブロック単位での予測・確認処理が発生するので多大な
画像処理を必要とする。また、多くの場合監視対象物は
動きの複雑な人間等であるため、その予測は蛇行、移動
の突然停止及び再開、形状の変形、物体の重なり等多く
の認識処理を要求し、認識処理の複雑化は更なる画像処
理の増加を招く。予測処理時間には限度があるため、余
りに多くの画像処理及び認識処理の要求される場合は予
測確率に一定の限界が生じてしまう。
[0006] The intrusion prediction method using the motion vector is as follows.
Certainly, the movement of the monitored object is tracked, and the intrusion into the prohibited area is predicted from the past trajectory. However, since prediction / confirmation processing is performed in block units for intrusion prediction, a large amount of image processing is required. In many cases, the object to be monitored is a person or the like having a complicated movement, and its prediction requires many recognition processes such as meandering, sudden stop and restart of movement, shape deformation, and overlapping of objects. The complication causes a further increase in image processing. Since there is a limit to the prediction processing time, a certain limit is imposed on the prediction probability when too much image processing and recognition processing are required.

【0007】そこで本発明の目的は、禁止区域への監視
対象物の侵入を少ない画像処理で予測する侵入予測方法
及び装置を提供するにある。
It is an object of the present invention to provide an intrusion prediction method and apparatus for predicting the intrusion of a monitored object into a prohibited area with a small amount of image processing.

【0008】[0008]

【課題を解決するための手段】図1を参照するに、本発
明の禁止区域への侵入予測方法は、禁止区域Zを含む被
監視域の画像Iの監視により動き対象物9の禁止区域Z
への侵入を予測する方法であって、禁止区域Zの周囲に
禁止区域Zを層状に取り巻く複数の検知エリアEを設定
し、禁止区域Z及び各検知エリアEに対し最外端の検知
エリアを1とし禁止区域Zへ近付くに従い1ずつ増える
エリア番号Ni(Niは自然数)を付し、検知エリアEごと
に当該検知エリアEの連続侵入度C(Ni)を記憶するカ
ウンタ17を設ける。対象物9の検出時に当該検出があっ
た検知エリアE(エリア番号Na)の今回連続侵入度C
t(Na)を当該検知エリアEの外側隣接検知エリアE(エ
リア番号Na-1)のカウンタ17に記憶された前回連続侵入
度Ct-1(Na-1)へ1を加えること(Ct(Na)=Ct-1(N
a-1)+1)により算出して当該検知エリアE(エリア番号
a)のカウンタ17に記憶し、検出があった検知エリアE
のエリア番号Naと当該検知エリアEの今回連続侵入度
t(Na)とから対象物9の侵入が予測される検知エリア
Eのうちエリア番号が最大のものを予測侵入エリア番号
P(Na)として求め、予測侵入エリア番号P(Na)と禁止
区域Zのエリア番号Nmaxとの比較により対象物9の禁
止区域Zへの侵入を予測する。
Referring to FIG. 1, the method for predicting entry into a prohibited area according to the present invention is based on the monitoring of an image I of a monitored area including the prohibited area Z, and the movement object 9 is prohibited.
A plurality of detection areas E surrounding the prohibited area Z in a layered manner around the prohibited area Z, and the outermost detection areas for the prohibited area Z and each detection area E are set. An area number N i (N i is a natural number) that increases by one as the vehicle approaches the prohibited area Z is set to 1, and a counter 17 is provided for each detection area E to store the continuous penetration C (N i ) of the detection area E. . The degree of continuous penetration C in the detection area E (area number N a ) where the object 9 was detected at the time of detection of the object 9
t (N a) adding a 1 to the outer adjacent detection area E (area number N a-1) the previous consecutive penetration stored in the counter 17 of C t-1 of the detection area E (N a-1) (C t (N a) = C t-1 (N
a-1 ) +1) and stores it in the counter 17 of the detection area E (area number N a ).
This continuous penetration depth C t (N a) because the prediction penetration area number what area number, the largest of the detection area E of penetration of the object 9 is predicted P of the area number N a and the detection area E ( calculated as N a), to predict entry into prohibited area Z of the object 9 by comparison with the area number N max of the predicted penetration area number P (N a) and prohibited area Z.

【0009】好ましくは、対象物9の検出時に当該検出
があった検知エリアE以外の検知エリアE(エリア番号
i、i≠a)の今回連続侵入度Ct(Ni)を零とし、零とし
た今回連続侵入度Ct(Ni)を検出があった検知エリアE
以外の検知エリアE(エリア番号Ni、i≠a)のカウンタ1
7へ記憶する。更に好ましくは、検出があった検知エリ
アE(エリア番号Na)において算出された今回連続侵入
度Ct(Na)が当該検知エリアEのカウンタ17に記憶され
た前回連続侵入度Ct-1(Na)より小さい場合、今回連続
侵入度Ct(Na)を前回連続侵入度Ct-1(Na)により置換
える。
Preferably, the current continuous penetration degree C t (N i ) of the detection area E (area number N i , i ≠ a) other than the detection area E in which the object 9 was detected is set to zero, Detection area E where the continuous penetration degree C t (N i ) was detected this time as zero.
Counter 1 of the detection area E (area number N i , i ≠ a) other than
Remember in 7. More preferably, the previous continuous penetration time is calculated continuously penetration C t (N a) is stored in the counter 17 of the detection area E in there is detected the detection area E (area number N a) C t- 1 if (N a) less than replaced by this continuous penetration C t (N a) of the previous continuous penetration C t-1 (N a) .

【0010】図1を参照するに、本発明の禁止区域への
侵入予測装置は、禁止区域Zを含む被監視域の画像Iか
ら動き対象物9を識別する画像変化識別手段10;禁止区
域Zの周囲に禁止区域Zを層状に取り巻く複数の検知エ
リアEを設定し、禁止区域Z及び各検知エリアEに対し
最外端を1とし禁止区域Zへ近付くに従い1ずつ増える
エリア番号Ni(Niは自然数)を付し、画像Iにおける禁
止区域Z及び検知エリアEの位置及びエリア番号を記憶
する被監視域記憶手段12;対象物9の位置と禁止区域Z
及び検知エリアEの位置とを比較して対象物9の検出が
あった検知エリアEを求める位置比較手段11;検知エリ
アEごとの連続侵入度C(Ni)を記憶するカウンタ17を
有し、検出があった検知エリアE(エリア番号Na)の今
回連続侵入度Ct(Na)を当該検知エリアEの外側隣接検
知エリアE(エリア番号Na-1)のカウンタ17に記憶され
た前回連続侵入度Ct-1(Na-1)へ1を加えること(C
t(Na)=Ct-1(Na-1)+1)により算出して当該検知エ
リアEのカウンタ17に記憶し、検出があった検知エリア
Eのエリア番号Naと当該検知エリアEの今回連続侵入
度Ct(Na)とから対象物9の侵入が予測される検知エリ
アEのうちエリア番号が最大のものを予測侵入エリア番
号P(Na)として求める予測処理手段16;及び予測侵入
エリア番号P(Na)と禁止区域Zのエリア番号Nmaxとを
比較して侵入予測信号を出力する最終判定手段18を備え
てなる。好ましくは、予測処理手段16が全ての検知エリ
アE(エリア番号Ni)の今回連続侵入度Ct(Ni)を求め
て各検知エリアEのカウンタ17へ記憶する。
Referring to FIG. 1, the apparatus for predicting entry into a prohibited area according to the present invention includes an image change identifying means 10 for identifying a moving object 9 from an image I of a monitored area including a prohibited area Z; A plurality of detection areas E surrounding the prohibited area Z in a layered manner are set around the area, and the outermost end is set to 1 for the prohibited area Z and each detection area E, and the area number N i (N i is a natural number) and the monitored area storage means 12 stores the position and area number of the prohibited area Z and the detection area E in the image I; the position of the object 9 and the prohibited area Z
And a position comparing means 11 for comparing the position of the detection area E with the position of the detection area E to obtain the detection area E where the object 9 has been detected; and having a counter 17 for storing the continuous penetration degree C (N i ) for each detection area E. The degree of continuous penetration C t (N a ) of the detection area E (area number N a ) in which detection has been performed is stored in the counter 17 of the detection area E adjacent to the detection area E (area number N a-1 ). Adding 1 to the previous continuous penetration degree Ct-1 (Na -1 )
t (N a) = C t -1 (N a-1) +1) is calculated by and stored in the counter 17 of the detection area E, area number had detected the detection area E N a and the detection area E Prediction processing means 16 for obtaining, as the predicted intrusion area number P (N a ), the detection area E in which the intrusion of the object 9 is predicted from the current continuous intrusion degree C t (N a ) from the current detection area E; and it becomes comprise final determination means 18 for outputting an intrusion prediction signal by comparing the area number N max of the predicted penetration area number P (N a) and prohibited area Z. Preferably, the prediction processing means 16 obtains the current continuous penetration degrees C t (N i ) of all the detection areas E (area number N i ) and stores them in the counter 17 of each detection area E.

【0011】[0011]

【作用】図2は禁止区域Zの周囲を8層からなる検知エ
リアEに分け、各検知エリアEを外側から内側へ連続し
て大きくなるエリア番号Ni(=1、2、・・・)により
特定している。即ち、最外端の検知エリアEをエリア番
号1とし、禁止区域Zをエリア番号9(以下、禁止区域
Zのエリア番号をNmaxと表すことがある)とする。但
し、各検知エリアEは禁止区域Zを層状に取り巻くエリ
アであれ足り、その形状及び数は図示例に限定されな
い。各検知エリアE及び禁止区域Zの位置及びエリア番
号は被監視域記憶手段12に記憶される。またカウンタ17
を禁止区域Z及び各検知エリアEに対応させて設け、以
下に述べる手順で求めた連続侵入度C t(Ni)を記憶す
る。図2(A)は初期状態(t=0)において各カウンタ17の
内容Ct(Ni)が零であることを示す。尚、図2では連続
侵入度の算出を容易にするため、全ての検知エリアEの
外側をエリア番号0とし、そのエリア番号0に対応する
カウンタ17を設けている。
FIG. 2 is a diagram showing a detection area consisting of eight layers around the prohibited area Z.
Divided into rear E, each detection area E continues from the outside to the inside
Area number Ni(= 1, 2, ...)
I have identified. That is, the outermost detection area E is set to the area number.
No. 1 and prohibited area Z is designated as area number 9 (hereinafter referred to as prohibited area).
N is the area number of ZmaxIn some cases). However
Each detection area E is an area surrounding the prohibited area Z in a layered manner.
The shape and number are not limited to the illustrated examples.
No. Position and area number of each detection area E and prohibited area Z
The signal is stored in the monitored area storage means 12. Also counter 17
Are provided corresponding to the prohibited zone Z and each detection area E.
Degree of continuous penetration C obtained by the procedure described below t(Ni)
You. FIG. 2A shows the state of each counter 17 in the initial state (t = 0).
Content Ct(Ni) Is zero. In FIG. 2, continuous
In order to facilitate calculation of the intrusion degree, all detection areas E
The outside is defined as area number 0, which corresponds to area number 0.
A counter 17 is provided.

【0012】連続的に生成される画像Iから画像変化識
別手段10(図1)が検知対象物9の位置を検出し、位置比
較手段11(図1)が対象物9の位置と被監視域記憶手段12
の各検知エリアEの位置とを比較して、検出があった検
知エリア(エリア番号Na、以下検出エリア番号というこ
とがある)を求める。図2(B)はt=1において検出され
たエリア番号が1であることを示す。この検知対象物9
は被監視域内で始めて検出されたものであるから、エリ
ア番号1の今回連続侵入度C1(1)を1とする。この場
合、常に零である検知エリア外(エリア番号0)のカウン
タ17の内容に1を加えることにより今回連続侵入度C
1(1)を算出すると考えてもよい。図2(C)はt=2にお
ける検出エリア番号が2であることを示す。この検知対
象物9は、前時点(t=1)にエリア番号1で検出された検
知対象物9がエリア境界を超えて侵入したものとみなす
ことができる。よってエリア番号2の今回連続侵入度C
2(2)は、エリア番号1の前回連続侵入度C1(1)に1を
加えること(C2(2)=C1(1)+1)により算出される。
図3(D)はt=3における検出エリア番号が3であること
を示し、上記と同様に前時点(t=2)にエリア番号2で検
出された検知対象物9が侵入した結果とみなされるの
で、今回連続侵入度C3(3)はエリア番号2の前回連続
侵入度C2(2)に1を加えること(C3(3)=C2(2)+
1)により求められる。要するに連続侵入度は、検知対
象物9が検知エリアの境界を外側から内側へ横切った連
続回数を意味し、対象物9が禁止区域Zへ継続して近付
いていることを表す。検出エリアNaの今回連続侵入度
t(Na)は、一般的に次式により求めることができる。
The image change identification means 10 (FIG. 1) detects the position of the detection target 9 from the continuously generated image I, and the position comparison means 11 (FIG. 1) determines the position of the detection target 9 and the area to be monitored. Storage means 12
Is compared with the position of each detection area E to determine the detection area where the detection was made (area number N a , hereinafter sometimes referred to as the detection area number). FIG. 2B shows that the area number detected at t = 1 is 1. This detection target 9
Is detected for the first time in the monitored area, so that the current continuous penetration degree C 1 (1) of area number 1 is set to 1. In this case, by adding 1 to the content of the counter 17 outside the detection area (area number 0) which is always zero, the continuous penetration degree C
1 It may be considered that (1) is calculated. FIG. 2C shows that the detection area number at t = 2 is 2. This detection target 9 can be regarded as the detection target 9 detected at area number 1 at the previous point in time (t = 1) having entered beyond the area boundary. Therefore, this time continuous penetration degree C of area number 2
2 (2) is calculated by adding 1 to the previous continuous penetration degree C 1 (1) of area number 1 (C 2 (2) = C 1 (1) +1).
FIG. 3D shows that the detection area number at t = 3 is 3, which is regarded as a result of the intrusion of the detection target 9 detected by the area number 2 at the previous time point (t = 2) in the same manner as described above. Therefore, this time continuous penetration degree C 3 (3) is obtained by adding 1 to the previous continuous penetration degree C 2 (2) of area number 2 (C 3 (3) = C 2 (2) +
It is determined by 1). In short, the continuous intrusion degree means the number of continuous times that the detection target 9 crosses the boundary of the detection area from outside to inside, and indicates that the target 9 continuously approaches the prohibited zone Z. Detection area N a of this continuous penetration C t (N a) can be generally obtained by the following equation.

【0013】 Ct(Na)=Ct-1(Na-1)+1 ………(1)C t (N a ) = C t-1 (N a-1 ) +1 (1)

【0014】過去に継続して禁止区域へ近付くときは爾
後も同様に接近すると仮定すれば、上記今回連続侵入度
t(Na)から未来の侵入度を予測することができる。例
えば次式に示すように、今回連続侵入度Ct(Na)に予測
係数kを乗じた積と当該検出エリアのエリア番号(Na)
とを加算して予測侵入エリア番号P(Na)を算出するこ
とができる。
If it is assumed that when the vehicle continuously approaches the prohibited area in the past, the vehicle will approach in the future, the future intrusion degree can be predicted from the above continuous intrusion degree C t (N a ). For example, as shown in the following equation, this continuous penetration C t (N a) the prediction coefficient k obtained by multiplying the product and the area number of the detection area (N a)
It is possible to calculate the predicted penetration area number P (N a) by adding and.

【0015】 P(Na)=kCt(Na)+Na ………(2) 但し、0≦k≦1[0015] P (N a) = kC t (N a) + N a ......... (2) However, 0 ≦ k ≦ 1

【0016】ここに予測係数kは予測における今回連続
侵入度Ct(Na)の重みづけを調整するものであり、1に
近ければ予測が大きくなり0のときは予測を含まない。
予測侵入エリア番号P(Na)が禁止区域Zのエリア番号
max以上のときは禁止区域Zへの侵入の可能性が高
く、例えば次式により侵入を予測することができる。
Here, the prediction coefficient k adjusts the weight of the current intrusion degree C t (N a ) in the prediction. When the prediction coefficient k is close to 1, the prediction is large, and when the value is 0, the prediction is not included.
Prediction penetration area number P (N a) is when the above area number N max of prohibited zone Z likely from entering the prohibited area Z, it is possible to predict the penetration, for example, by the following equation.

【0017】 P(Na)≧Nmax :侵入が予測される ………(3) P(Na)<Nmax :侵入が予測されない ………(4)P (N a ) ≧ N max : Intrusion is predicted... (3) P (N a ) <N max : Intrusion is not predicted... (4)

【0018】図2(E)は、検出されたエリア番号Na
5であり、当該検知エリアで算出された今回連続侵入度
t(Na)が5であることを示す。この場合、予測係数k
を0.8とすれば式(2)によりエリア番号5における予測侵
入エリア番号P(Na)が9(=0.8×5+5)と算出され、
禁止区域Zのエリア番号9と等しくなるので、式(3)か
ら侵入の可能性ありと予測できる。今回連続侵入度C
t(Na)は、予測侵入エリア番号P(Na)を算出した後、
次回予測処理のために検出があった検知エリア(エリア
番号Na)のカウンタ17へ記憶される。
FIG. 2 (E) is detected area number N a is 5, indicating that this continuous penetration was calculated in the detection area C t (N a) is 5. In this case, the prediction coefficient k
The calculated and predicted penetration area number P (N a) is 9 (= 0.8 × 5 + 5) in 0.8 Tosureba area number 5 by the equation (2),
Since it is equal to the area number 9 of the prohibited area Z, it can be predicted from equation (3) that there is a possibility of intrusion. This time continuous penetration degree C
t (N a), after calculating the predicted penetration area number P (N a),
It is stored in the counter 17 of the detection area (area number N a ) detected for the next prediction process.

【0019】本発明は、検知対象物9自体を追尾するの
ではなく禁止区域Z周囲の各検知エリアEにおける対象
物9の検出に基づいて侵入予測を行うので、検知対象物
の運動軌跡、動きや形状の時間変化に対する複雑な画像
処理及び認識処理を必要とせず、検知エリアNiの連続
侵入度Ct(Ni)を記憶するカウンタ17と簡単な条件判断
処理により本質的に重要な対象物9の禁止区域Zへの接
近を継続的に予測することができる。
According to the present invention, since the intrusion prediction is performed based on the detection of the object 9 in each detection area E around the prohibited area Z instead of following the detection object 9 itself, the motion trajectory and the motion of the detection object 9 are determined. and without requiring a complicated image processing and recognition processing on the time variation of the shape, essentially important subject by continuous penetration C t (N i) simple conditional judgment processing counter 17 that stores the detection area N i The approach of the object 9 to the prohibited zone Z can be continuously predicted.

【0020】よって本発明の目的である「禁止区域への
監視対象物の侵入を少ない画像処理で予測する侵入予測
方法及び装置」の提供を達成することができる。
Accordingly, the object of the present invention is to provide "an intrusion prediction method and apparatus for predicting the intrusion of a monitored object into a prohibited area with a small amount of image processing".

【0021】好ましくは、検出があった検知エリアE以
外の検知エリアE(エリア番号Ni、i≠a)の今回連続侵
入度Ct(Ni)を零とする。即ち、各検知エリアEにおけ
る今回連続侵入度を次式により求める。
Preferably, the current continuous penetration degree C t (N i ) of the detection area E (area number N i , i ≠ a) other than the detection area E in which the detection was performed is set to zero. That is, the present continuous intrusion degree in each detection area E is obtained by the following equation.

【0022】 Ct(Na)=Ct-1(Na-1)+1:対象物の検出ありのとき =0 :対象物の検出なしのとき ………(5)C t (N a ) = C t-1 (N a-1 ) +1: When an object is detected = 0: When no object is detected (5)

【0023】このように対象物9を検出しない検知エリ
アEの今回連続侵入度Ct(Ni)を零とすることにより、
検知対象物9が検知エリアの境界を内側から外側へ横切
って禁止区域Zから遠ざかったときに連続侵入度の累積
を止め、検出があった検知エリアNaの今回連続侵入度
t(Na)を1に戻すことができる。更に、零とした今回
連続侵入度Ct(Ni)をカウンタ17へ記憶して次回以降の
予測処理に備える。例えば図3(A)に示すように対象物
9が禁止区域Zへの接近・離隔を繰返しながら検知され
た場合おいて、検出があった検知エリア6の今回連続侵
入度Ct(6)を、禁止区域Z方向への継続的な侵入を開
始した検知エリア4から検知エリア6までの連続侵入度
3として求めることが可能となる。
As described above, by setting the current continuous penetration degree C t (N i ) of the detection area E in which the object 9 is not detected to zero,
Stopping the accumulation of successive penetration depth when the detection object 9 moves away the boundary detection area from prohibition zone Z across from the inside to the outside, this continuous penetration depth C t of had detected detection area N a (N a ) Can be returned to 1. Further, the current continuous penetration degree C t (N i ), which is set to zero, is stored in the counter 17 to prepare for the next and subsequent prediction processing. For example, as shown in FIG. 3A, when the object 9 is detected while repeatedly approaching / separating from the prohibited area Z, the continuous penetration degree C t (6) in the detection area 6 where the detection was made is calculated. , The continuous intrusion degree 3 from the detection area 4 where the continuous intrusion in the prohibited area Z direction has started to the detection area 6 can be obtained.

【0024】この場合、更に好ましくは、検出があった
検知エリアNaにおいて算出されたの今回連続侵入度Ct
(Na)が、当該検知エリアNaの前回連続侵入度Ct-1(N
a)より小さい場合、今回連続侵入度Ct(Na)を前回連続
侵入度Ct-1(Na)によって置換える。即ち、今回連続侵
入度Ct(Na)を次式により求める。
[0024] In this case, more preferably, this calculated in had detected detection area N a continuous penetration depth C t
(N a) is the previous continuous penetration depth of the detection area N a C t-1 (N
a) it is smaller than, replaces this continuous penetration C t a (N a) by a previous continuous penetration C t-1 (N a). That is, the degree of continuous penetration C t (N a ) is obtained by the following equation.

【0025】 Ct(Na)=Ct-1(Na-1)+1:検出あり且つCt(Na)>Ct-1(Na)のとき =Ct-1(Na) :検出あり且つCt(Na)≦Ct-1(Na)のとき =0 :検出なしのとき ………(6)C t (N a ) = C t-1 (N a-1 ) +1: When detection is performed and C t (N a )> C t-1 (N a ) = C t-1 (N a) ): Detected and when C t (N a ) ≦ C t-1 (N a ) = 0: When not detected ……… (6)

【0026】これは、図3(B)及び図3(C)に示すよう
に検知エリアEの幅が広い場合、継続して禁止区域Zへ
接近しているにもかかわらず前時点の検知エリアNa
現時点の検知エリアNaが同一である場合の対策であ
る。前時点において、検出があった検知エリアNaの連
続侵入度Ct-1(Na)は検知エリアNa-1のカウンタ17に
記憶された前々回連続侵入度Ct-2(Na-1)から算出さ
れ、検知エリアNa-1は対象物9を検出しないのでその
連続侵入度Ct-1(Na-1)は零となる。現時点において、
検知エリアNa-1のカウンタ17には零が記録されている
ので、検知エリアNaの今回連続侵入度Ct(Na)を式(5)
から算出すると1となってしまう。従って、検知エリア
aのカウンタ17に記憶された前回連続侵入度C
t-1(Na)をそのまま保持して今回連続侵入度Ct(Na)と
することにより、対象物9の接近継続情報である連続侵
入度の消失を回避する。
This is because, when the width of the detection area E is large as shown in FIGS. N a and the current detection area N a is a measure of the case is the same. Before time, continuous intrusion of C t-1 of a detection detection area N a (N a) before last consecutive penetration stored in the detection area N a-1 of counter 17 is C t-2 (N a- 1 ), the detection area Na -1 does not detect the target 9, and therefore the continuous penetration Ct-1 (Na -1 ) becomes zero. At this time,
Since zero is recorded in the counter 17 of the detection area N a-1, the continuous penetration degree C t (N a ) of the detection area N a this time is calculated by the equation (5).
Calculate from this to be 1. Therefore, the previous continuous penetration depth stored in the counter 17 of the detection area N a C
With t-1 (N a) was held as it is this continuous penetration C t (N a), to avoid the loss of consecutive penetration is approaching continuation information of the object 9.

【0027】[0027]

【実施例】図1は、本発明による侵入予測装置の実施例
を示す。カメラ等の画像入力手段5により禁止区域周囲
の画像Iを取得し、画像I中の通常とは異なる監視すべ
き変化を画像変化識別手段10により識別抽出する。図1
の画像変化識別手段10は、例えば図8の動きベクトル形
成手段1、二値化手段2、及び識別手段3から構成され
る。但し、図7に示す輝度変化の差分画像から変化を識
別する装置とすることもできる。
FIG. 1 shows an embodiment of an intrusion prediction apparatus according to the present invention. An image I around the prohibited area is acquired by an image input unit 5 such as a camera, and a change in the image I to be monitored that is different from normal is identified and extracted by an image change identification unit 10. FIG.
The image change identifying means 10 is composed of, for example, the motion vector forming means 1, the binarizing means 2, and the identifying means 3 in FIG. However, an apparatus for identifying a change from the difference image of the luminance change shown in FIG. 7 may be used.

【0028】図1の被監視域記憶手段12は表示部14及び
操作部15を有する検知エリア設定手段13と接続され、例
えば画像入力手段5の画像Iを表示部14に表示して、ラ
イトペンやマウス等の設定手段により検知エリアEを設
定することができる。更に図4に示すように、禁止区域
Zのみを操作部15から設定し、検知エリア設定手段13に
よって禁止区域Zの周囲に所定間隔で検知エリアEを適
宜自動設定することも可能である。最終的に設定された
検知エリアEの位置及びエリア番号は被監視域記憶手段
12に記憶される。
The monitored area storage means 12 shown in FIG. 1 is connected to a detection area setting means 13 having a display section 14 and an operation section 15, and displays an image I of the image input means 5 on the display section 14, for example. The detection area E can be set by setting means such as a mouse and a mouse. Further, as shown in FIG. 4, it is also possible to set only the prohibited area Z from the operation unit 15 and automatically set the detection area E around the prohibited area Z at predetermined intervals by the detection area setting means 13 as appropriate. The finally set position and area number of the detection area E are stored in the monitored area storage means.
Stored in 12.

【0029】位置比較手段11は、画像変化識別手段10に
よる対象物9の位置と被監視域記憶手段12に記憶された
検知エリアEの位置とを比較し、例えば対象物9の検出
された位置をエリア番号Naとして出力する。予測処理
手段16は、各検知エリアEに対するカウンタ17を有し、
位置比較手段11からのエリア番号Naと前記式(6)及び式
(2)とに基づいて、算出手段16aが予測侵入エリア番号P
(Na)を算出する。図5に予測侵入エリア番号算出の流
れ図の一例を示す。ステップ501において対象物9の侵
入が検出された検知エリアであるか否かを判断し、検出
された検知エリアNaの場合はステップ502へ進み、今回
連続侵入度Ct(Na)が式(6)に基づいて算出される。求
めた今回連続侵入度Ct(Na)は、同一検知エリアNa
前回連続侵入度Ct-1(Na)とステップ504で比較され、
前回連続侵入度Ct-1(Na)の方が大きい場合は今回連続
侵入度Ct(Na)を前回連続侵入度Ct-1(Na)で置換える
(ステップ505)。検出のない検知エリアEの場合はステ
ップ503へ進み、今回連続侵入度Ct(Na)は常に零とさ
れる。式(2)に基づきステップ506で予測侵入エリア番号
P(Na)が算出され、上記サイクルを全検知エリアEに
対して繰返す。全検知エリアEに対する予測処理が終了
した後、各検知エリアEの今回連続侵入度C t(Na)がそ
れぞれ対応するカウンタ17へ記憶され、例えば各検知エ
リアEで算出された予測侵入エリア番号P(Na)の最大
値が、最終判定手段18へ出力される。
The position comparing means 11 is provided to the image change identifying means 10.
The position of the object 9 and the information stored in the monitored area storage means 12
The position of the detection area E is compared with, for example, the detection of the object 9
Area number NaOutput as Prediction processing
The means 16 has a counter 17 for each detection area E,
Area number N from position comparing means 11aAnd the formula (6) and the formula
Based on (2), the calculating means 16a calculates the predicted intrusion area number P
(Na) Is calculated. Figure 5 shows the flow of calculating the predicted intrusion area number.
An example of the drawing is shown. In step 501, the target 9 is invaded.
Is detected in the detection area where the
Detection area NaIf so, proceed to step 502, this time
Continuous penetration Ct(Na) Is calculated based on equation (6). Request
This time continuous penetration degree Ct(Na) Indicates the same detection area Naof
Previous continuous penetration Ct-1(Na) And step 504,
Previous continuous penetration Ct-1(NaIf) is larger, continue this time
Penetration Ct(Na) To the previous continuous penetration degree Ct-1(NaReplace with)
(Step 505). If the detection area E is not detected,
Go to 503, this time continuous penetration degree Ct(Na) Is always zero
It is. Predicted intrusion area number in step 506 based on equation (2)
P (Na) Is calculated, and the above cycle is applied to all the detection areas E.
Repeat for Prediction processing for all detection areas E is completed
After this, the degree of continuous penetration C of this detection area E t(Na)
Each is stored in the corresponding counter 17, for example, each detection error
The predicted intrusion area number P (Na) Maximum
The value is output to the final determination means 18.

【0030】図6は最終判定の流れ図の一例を示す。ま
ずステップ601で検出があった検知エリアのエリア番号
aと禁止区域Zのエリア番号Nmaxとが比較され、両者
が等しい場合は侵入ありの警報音又はメッセージ信号を
出力する(ステップ603)。ステップ602で予測処理手段16
が求めた予測侵入エリア番号P(Na)と禁止区域Zのエ
リア番号Nmaxが比較され、予測侵入エリア番号P(Na)
の方が大きい場合は例えば前記侵入ありの警報音とは異
なる侵入予測ありの警報音又はメッセージ信号を出力す
る(ステップ604)。
FIG. 6 shows an example of a flowchart of the final judgment. First the area number N a detection area where there is detected at step 601 and the area number N max of prohibited zone Z are compared, if they are equal to output a warning sound or message signal has intrusion (step 603). In step 602, the prediction processing means 16
Prediction penetration area number P determined (N a) and prohibited area Z area number N max of are compared, predicted penetration area number P (N a)
If is larger, for example, an alarm sound or a message signal with intrusion prediction different from the alarm sound with intrusion is output (step 604).

【0031】[0031]

【発明の効果】以上詳細に説明したように、本発明の禁
止区域への侵入予測方法及び装置は、禁止区域周囲に禁
止区域を層状に取り巻く複数の検知エリアを設定し、各
検知エリアにおける侵入検知結果から監視対象物の危険
域への侵入を予測するので、以下に述べる顕著な効果を
奏する。
As described above in detail, the method and apparatus for predicting entry into a prohibited area according to the present invention sets a plurality of detection areas surrounding the prohibited area in a layered manner around the prohibited area, and intrudes into each detection area. Since the intrusion of the monitored object into the dangerous area is predicted from the detection result, the following remarkable effects are obtained.

【0032】(1)検知対象物の運動軌跡の予測等の複
雑な画像処理及び認識処理を必要としないので、少ない
画像処理で禁止区域への侵入予測が可能である。 (2)検知対象物自体を追尾することなく、禁止区域周
囲の各検知エリアでの検出から禁止区域への接近を予測
することができる。 (3)各検知エリア毎のカウンタと簡単な条件判断処理
により禁止区域への接近を継続的に予測することができ
る。 (4)禁止区域の危険度や形状等に応じ、周囲の検知エ
リアの形状及び数を自在に調節することが可能である。 (5)コンピュータを使用することにより、禁止区域へ
の侵入を自動予測することが可能である。
(1) Since complicated image processing and recognition processing such as prediction of the motion trajectory of the detection target are not required, it is possible to predict intrusion into the prohibited area with a small amount of image processing. (2) The approach to the prohibited area can be predicted from the detection in each detection area around the prohibited area without tracking the detection target itself. (3) The approach to the prohibited area can be continuously predicted by the counter for each detection area and the simple condition judgment processing. (4) It is possible to freely adjust the shape and number of surrounding detection areas according to the degree of danger and the shape of the prohibited area. (5) By using a computer, it is possible to automatically predict entry into a prohibited area.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、本発明の構成を示す図式的ブロック図であ
る。
FIG. 1 is a schematic block diagram showing a configuration of the present invention.

【図2】は、本発明の原理を示す説明図である。FIG. 2 is an explanatory diagram showing the principle of the present invention.

【図3】は、本発明の原理を示す他の説明図である。FIG. 3 is another explanatory diagram showing the principle of the present invention.

【図4】は、本発明の検知エリアを示す説明図である。FIG. 4 is an explanatory diagram showing a detection area according to the present invention.

【図5】は、本発明の予測処理の流れ図である。FIG. 5 is a flowchart of a prediction process according to the present invention.

【図6】は、本発明の最終判定の流れ図である。FIG. 6 is a flowchart of the final judgment of the present invention.

【図7】は、従来の監視装置の説明図である。FIG. 7 is an explanatory diagram of a conventional monitoring device.

【図8】は、従来の動きベクトルによる監視装置の説明
図である。
FIG. 8 is an explanatory diagram of a conventional monitoring apparatus using a motion vector.

【図9】は、被監視域画像Iの説明図である。FIG. 9 is an explanatory diagram of a monitored area image I.

【図10】は、動きベクトル画像Ivの説明図である。FIG. 10 is an explanatory diagram of a motion vector image Iv .

【図11】は、二値検出画像Igの説明図である。FIG. 11 is an explanatory diagram of a binary detection image Ig .

【図12】は、禁止区域画像Izの説明図である。FIG. 12 is an explanatory diagram of a prohibited area image Iz .

【図13】は、従来の予測付監視装置の説明図である。FIG. 13 is an explanatory diagram of a conventional monitoring device with prediction.

【図14】は、従来の予測処理の説明図である。FIG. 14 is an explanatory diagram of a conventional prediction process.

【符号の説明】[Explanation of symbols]

1 動きベクトル画像形成手段 2
二値化手段 3 識別手段 5 画像入力手段 7
禁止区域記憶手段 8 異常判定手段 9 検知対象物 10
画像変化識別手段 11 位置比較手段 12 被監視域記憶手段 13
検知エリア設定手段 14 表示部 15 操作部 16
予測処理手段 16a 計算手段 17 カウンタ 18
最終判定手段 20 収縮拡散手段 22 ラベリング手段 24
形状特徴抽出手段 26 動き特徴抽出手段 28 比較手段 30 動きベクトル変換手段 32
予測状態記憶手段 34a、34b 予測処理手段 36 記憶手段 38
予測一致判定手段 40 異常判定手段 42 重複検出手段 50
画像入力部 51 差分画像抽出部 52 参照画像 53
輝度変化二値化部 54 対象物識別部 55 異常判定部 56
禁止区域記憶部。
1 motion vector image forming means 2
Binarization means 3 Identification means 5 Image input means 7
Prohibited area storage means 8 Abnormality judgment means 9 Detection target 10
Image change identification means 11 Position comparison means 12 Monitored area storage means 13
Detection area setting means 14 Display section 15 Operation section 16
Prediction processing means 16a Calculation means 17 Counter 18
Final judgment means 20 Shrink diffusion means 22 Labeling means 24
Shape feature extraction means 26 Motion feature extraction means 28 Comparison means 30 Motion vector conversion means 32
Prediction state storage means 34a, 34b Prediction processing means 36 Storage means 38
Prediction match judgment means 40 Abnormality judgment means 42 Duplication detection means 50
Image input unit 51 Difference image extraction unit 52 Reference image 53
Brightness change binarization unit 54 Object identification unit 55 Abnormality judgment unit 56
Prohibited area storage.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菊地 仁一 東京都杉並区成田西3丁目20番8号 大 倉電気株式会社内 (72)発明者 前田 豊 東京都杉並区成田西3丁目20番8号 大 倉電気株式会社内 (56)参考文献 特開 平5−143737(JP,A) 特開 平5−14892(JP,A) 特開 昭62−136988(JP,A) (58)調査した分野(Int.Cl.6,DB名) G06T 7/20 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Jinichi Kikuchi 3-20-8 Narita Nishi, Suginami-ku, Tokyo Inside Okura Electric Co., Ltd. (72) Inventor Yutaka Maeda 3--20 Narita Nishi, Suginami-ku, Tokyo No. 8 Okura Electric Co., Ltd. (56) References JP-A-5-143737 (JP, A) JP-A-5-14892 (JP, A) JP-A-62-136988 (JP, A) (58) Survey Field (Int.Cl. 6 , DB name) G06T 7/20

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 禁止区域を含む被監視域の画像監視によ
り動き対象物の前記禁止区域への侵入を予測する方法に
おいて、前記禁止区域の周囲に前記禁止区域を層状に取
り巻く複数の検知エリアを設定し、前記禁止区域及び各
検知エリアに対し最外端の検知エリアを1とし前記禁止
区域へ近付くに従い1ずつ増えるエリア番号Ni(Ni
自然数)を付し、前記検知エリアごとに当該検知エリア
の連続侵入度C(Ni)を記憶するカウンタを設け、前記
対象物の検出時に当該検出があった検知エリア(エリア
番号Na)の今回連続侵入度Ct(Na)を当該検知エリアの
外側隣接検知エリア(エリア番号Na-1)の前記カウンタ
に記憶された前回連続侵入度Ct-1(Na-1)へ1を加える
こと(Ct(Na)=Ct-1(Na-1)+1)により算出して当該
検知エリアのカウンタに記憶し、前記検出があった検知
エリアのエリア番号Naと当該検知エリアの今回連続侵
入度Ct(Na)とから前記対象物の侵入が予測される検知
エリアのうちエリア番号が最大のものを予測侵入エリア
番号P(Na)として求め、前記予測侵入エリア番号P(N
a)と前記禁止区域のエリア番号Nmaxとの比較により前
記対象物の前記禁止区域への侵入を予測してなる禁止区
域への侵入予測方法。
1. A method for predicting the intrusion of a moving object into a prohibited area by monitoring an image of a monitored area including a prohibited area, wherein a plurality of detection areas surrounding the prohibited area in a layered manner around the prohibited area. The outermost detection area is set to 1 for the prohibited area and each detection area, and an area number N i (N i is a natural number) that increases by one as approaching the prohibited area is assigned. A counter that stores the continuous penetration degree C (N i ) of the detection area is provided, and the current continuous penetration degree C t (N a ) of the detection area (area number N a ) where the object was detected at the time of detection of the target object is used as the counter. Adding 1 to the previous continuous penetration degree C t-1 (N a-1 ) stored in the counter of the detection area adjacent to the outside of the detection area (area number N a-1 ) (C t (N a ) = C t-1 (N a-1 ) +1) and the counter of the detection area And the area number N a of the detection area where the intrusion of the object is predicted from the area number N a of the detection area where the detection has been performed and the current continuous penetration degree C t (N a ) of the detection area. the determined as the prediction penetration area number P (N a) those of the predicted penetration area number P (N
a ) A method for predicting entry into a prohibited area by comparing the object with the area number Nmax of the prohibited area by predicting entry of the object into the prohibited area.
【請求項2】 請求項1の侵入予測方法において、前記
予測侵入エリア番号P(Na)を前記検出があった検知エ
リアのエリア番号Naと当該検知エリアの今回連続侵入
度Ct(Na)に予測係数kを乗じた積kCt(Na)とを加え
ること(P(Na)=kCt(Na)+Na)により求めてなる禁
止区域への侵入予測方法。
2. The intrusion prediction method according to claim 1, wherein the predicted intrusion area number P (N a ) is the area number N a of the detection area in which the detection was performed and the current continuous intrusion degree C t (N a) to (adding and N a) (P (N a) prediction coefficient k obtained by multiplying the product kC t = kC t (N a ) + N a) penetration method of predicting the prohibited zone formed by 5101.
【請求項3】 請求項1又は請求項2の侵入予測方法に
おいて、前記対象物の検出時に当該検出があった検知エ
リア以外の検知エリア(エリア番号Ni,i≠a)の今回連続
侵入度Ct(Ni)を零とし、零とした今回連続侵入度C
t(Ni)を前記検出があった検知エリア以外の検知エリア
(エリア番号Ni,i≠a)の前記カウンタへ記憶してなる禁
止区域への侵入予測方法。
3. The intrusion prediction method according to claim 1 or 2, wherein the current intrusion degree of a detection area (area number Ni, i ≠ a) other than the detection area in which the object was detected when the object was detected. C t (N i ) is set to zero, and the continuous penetration degree C is set to zero this time.
t (N i ) is the detection area other than the detection area where the detection was made
A method of predicting entry into a prohibited area stored in the counter of (area number Ni, i ≠ a).
【請求項4】 請求項3の侵入予測方法において、前記
検出があった検知エリア(エリア番号Na)において算出
された今回連続侵入度Ct(Na)が当該検知エリアの前記
カウンタに記憶された前回連続侵入度Ct-1(Na)より小
さい場合、前記今回連続侵入度Ct(Na)を前記前回連続
侵入度Ct-1(Na)により置換えてなる禁止区域への侵入
予測方法。
4. A penetration prediction method of claim 3, wherein the detection there was detection area (the area number N a) this continuous penetration C t calculated in (N a) is the counter for storing the detection area If has been last continuous penetration C t-1 (N a) smaller than said to this continuous penetration C t (N a) the previous continuous penetration C t-1 (N a) by replacing and becomes prohibited area Intrusion prediction method.
【請求項5】 禁止区域を含む被監視域の画像から動き
対象物を識別する画像変化識別手段;前記禁止区域の周
囲に前記禁止区域を層状に取り巻く複数の検知エリアを
設定し、前記禁止区域及び各検知エリアに対し最外端を
1とし前記禁止区域へ近付くに従い1ずつ増えるエリア
番号Ni(Niは自然数)を付し、前記画像における前記禁
止区域及び各検知エリアの位置及びエリア番号を記憶す
る被監視域記憶手段;前記対象物の位置と前記禁止区域
及び各検知エリアの位置とを比較して前記対象物の検出
があった検知エリア(エリア番号Na)を求める位置比較
手段;前記検知エリアごとの連続侵入度C(Ni)を記憶
するカウンタを有し、前記検出があった検知エリア(エ
リア番号Na)の今回連続侵入度Ct(Na)を当該検知エリ
アの外側隣接検知エリア(エリア番号Na-1)の前記カウ
ンタに記憶された前回連続侵入度Ct-1(Na-1)へ1を加
えること(Ct(Na)=Ct-1(Na-1)+1)により算出して
当該検知エリアのカウンタに記憶し、前記検出があった
検知エリアのエリア番号Naと当該検知エリアの今回連
続侵入度Ct(Na)とから前記対象物の侵入が予測される
検知エリアのうちエリア番号が最大のものを予測侵入エ
リア番号P(Na)として求める予測処理手段;及び前記
予測侵入エリア番号P(Na)と前記禁止区域のエリア番
号Nmaxとを比較して侵入予測信号を出力する最終判定
手段を備えてなる禁止区域への侵入予測装置。
5. An image change identification unit for identifying a moving object from an image of a monitored area including a prohibited area; a plurality of detection areas surrounding the prohibited area in a layered manner around the prohibited area; And an area number N i (N i is a natural number) that is incremented by one as the outermost end is set to 1 for each detection area and approaches the prohibited area, and the position and area number of the prohibited area and each detection area in the image Monitored area storage means for comparing the position of the object with the positions of the prohibited area and each of the detection areas to obtain a detection area (area number N a ) where the object was detected A counter for storing the continuous penetration degree C (N i ) for each of the detection areas, and the present continuous penetration degree C t (N a ) of the detection area (area number N a ) where the detection has been made is used as the detection area. Outside adjacency detection Adding 1 to the previous continuous penetration degree C t-1 (N a-1 ) stored in the counter of the rear (area number N a-1 ) (C t (N a ) = C t-1 (N a -1) +1) is calculated by and stored in the counter of the detection area, the object from this continuous penetration C t (N a) of area number N a and the detection area of the detection area where there is the detection and predicted invasion area number P (N a) and the area number of the prohibited area; predictive processing unit area number of the detection area intrusion is expected seek the maximum of those predicted penetration area number P (N a) A device for predicting intrusion into a forbidden area, comprising a final determination means for outputting an intrusion prediction signal by comparing with Nmax .
【請求項6】 請求項5の侵入予測装置において、前記
予測処理手段が全ての前記検知エリア(エリア番号Ni)
の今回連続侵入度Ct(Ni)を求めて各検知エリアの前記
カウンタへ記憶してなる禁止区域への侵入予測装置。
6. The intrusion prediction device according to claim 5, wherein said prediction processing means is provided for all said detection areas (area number N i ).
A device for predicting intrusion into a forbidden area, which is obtained by calculating the degree of continuous intrusion C t (N i ) this time and storing it in the counter of each detection area.
JP5151757A 1993-06-23 1993-06-23 Method and apparatus for predicting entry into prohibited areas Expired - Fee Related JP2889082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5151757A JP2889082B2 (en) 1993-06-23 1993-06-23 Method and apparatus for predicting entry into prohibited areas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5151757A JP2889082B2 (en) 1993-06-23 1993-06-23 Method and apparatus for predicting entry into prohibited areas

Publications (2)

Publication Number Publication Date
JPH0721386A JPH0721386A (en) 1995-01-24
JP2889082B2 true JP2889082B2 (en) 1999-05-10

Family

ID=15525634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5151757A Expired - Fee Related JP2889082B2 (en) 1993-06-23 1993-06-23 Method and apparatus for predicting entry into prohibited areas

Country Status (1)

Country Link
JP (1) JP2889082B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001216519A (en) * 2000-02-04 2001-08-10 Fujitsu Ltd Traffic monitor device
JP4318724B2 (en) 2007-02-14 2009-08-26 パナソニック株式会社 Surveillance camera and surveillance camera control method
JP2011227680A (en) * 2010-04-19 2011-11-10 Secom Co Ltd Suspicious person monitoring device and suspicious person monitoring system
US10202135B2 (en) 2013-05-17 2019-02-12 International Electronic Machines Corp. Operations monitoring in an area

Also Published As

Publication number Publication date
JPH0721386A (en) 1995-01-24

Similar Documents

Publication Publication Date Title
CN113034541B (en) Target tracking method and device, computer equipment and storage medium
KR101910542B1 (en) Image Analysis Method and Server Apparatus for Detecting Object
CN110443833A (en) Method for tracing object and equipment
JP2022506905A (en) Systems and methods for assessing perceptual systems
CN113205659B (en) Fire disaster identification method and system based on artificial intelligence
Nguyen et al. Multistage real-time fire detection using convolutional neural networks and long short-term memory networks
KR101979375B1 (en) Method of predicting object behavior of surveillance video
CN114821414A (en) Smoke and fire detection method and system based on improved YOLOV5 and electronic equipment
KR101207225B1 (en) Method for detecting and tracking pointlike targets, in an optronic surveillance system
JP2889082B2 (en) Method and apparatus for predicting entry into prohibited areas
Andersson et al. Estimation of crowd behavior using sensor networks and sensor fusion
KR20210013865A (en) Abnormal behavior detection system and method using generative adversarial network
Priya et al. Abnormal activity detection techniques in intelligent video surveillance: A survey
US11210775B1 (en) Gradient-embedded video anomaly detection
CN112070033A (en) Video carry-over detection method based on finite-state machine analysis
US20050128298A1 (en) Method for following at least one object in a scene
AU662560B2 (en) Image analyser
JP2622538B2 (en) Leak detection method and apparatus by image
JP2005284652A (en) Video monitoring method and apparatus using moving vector
JP2003143593A (en) Monitor method and system utilizing picture processing
CN112990153A (en) Multi-target behavior identification method and device, storage medium and electronic equipment
CN112507757B (en) Vehicle behavior detection method, device and computer readable medium
WO2012074352A1 (en) System and method to detect loitering event in a region
Leo et al. Real‐time smart surveillance using motion analysis
JPH09107540A (en) Monitor camera system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees