JP2885871B2 - Method for measuring purification rate of catalyst using air-fuel ratio sensor - Google Patents

Method for measuring purification rate of catalyst using air-fuel ratio sensor

Info

Publication number
JP2885871B2
JP2885871B2 JP2096935A JP9693590A JP2885871B2 JP 2885871 B2 JP2885871 B2 JP 2885871B2 JP 2096935 A JP2096935 A JP 2096935A JP 9693590 A JP9693590 A JP 9693590A JP 2885871 B2 JP2885871 B2 JP 2885871B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
purification rate
catalyst
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2096935A
Other languages
Japanese (ja)
Other versions
JPH03293548A (en
Inventor
康生 伊藤
暢博 早川
哲正 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tokushu Togyo KK
Original Assignee
Nippon Tokushu Togyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tokushu Togyo KK filed Critical Nippon Tokushu Togyo KK
Priority to JP2096935A priority Critical patent/JP2885871B2/en
Publication of JPH03293548A publication Critical patent/JPH03293548A/en
Priority to US08/001,225 priority patent/US5357750A/en
Application granted granted Critical
Publication of JP2885871B2 publication Critical patent/JP2885871B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02T10/47

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、空燃比センサによる触媒の浄化率測定方法
に関する。
Description: TECHNICAL FIELD The present invention relates to a method for measuring a purification rate of a catalyst using an air-fuel ratio sensor.

〔従来の技術〕[Conventional technology]

従来の触媒の劣化時期検知方法としては、上流側及び
下流側に酸素センサを各々配設して、この各出力電圧の
極大値の差により劣化時期を検知するものが知られてい
る(特開昭63−231252号公報)。
As a conventional method for detecting the deterioration time of a catalyst, there is known a method in which oxygen sensors are provided on the upstream side and the downstream side, respectively, and the deterioration time is detected based on a difference between the maximum values of the respective output voltages (Japanese Patent Laid-Open No. 2000-157421). JP-A-63-231252).

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

理論空燃比を検出する酸素センサは、λ=1近辺で出
力特性が急激な立ち上がりを示すので、主として第7図
に示すように、リーン側とリッチ側で交互に振れる出力
波形を示すにすぎず、その中間値に相当する波形は示さ
ない。従って、前記2本の酸素センサを用いた触媒の劣
化時期検知方法は、両波形を比較して行うシステム処理
が煩雑であり、しかも、第8図に示すように、浄化率が
70%以下においては十分な精度をもって検知することが
困難である。
Since the output characteristic of the oxygen sensor that detects the stoichiometric air-fuel ratio shows a sharp rise near λ = 1, it only shows an output waveform that fluctuates alternately on the lean side and the rich side as shown mainly in FIG. , A waveform corresponding to the intermediate value is not shown. Therefore, in the method for detecting the deterioration time of the catalyst using the two oxygen sensors, the system processing performed by comparing the two waveforms is complicated, and the purification rate is reduced as shown in FIG.
If it is less than 70%, it is difficult to detect with sufficient accuracy.

本発明は、前記観点に鑑みてなされたものであり、広
い浄化率範囲において精度よく測定できる浄化率測定方
法を提供することを目的とする。
The present invention has been made in view of the above-described viewpoints, and has as its object to provide a purification rate measuring method capable of accurately measuring in a wide purification rate range.

〔課題を解決するための手段〕[Means for solving the problem]

本第1発明の浄化率測定方法は、排気ガス中の有害成
分を浄化する触媒の上流側に酸素センサを、下流側には
空燃比センサを各々配設し、排気ガス中の炭化水素(H
C)、一酸化炭素(CO)及び窒素酸化物(NOx)の三成分
の平均浄化率が100〜30%の領域における該平均浄化率
と前記空燃比センサの出力幅との直線的関係を測定して
おき、該直線的関係を利用して前記空燃比センサの出力
幅から前記触媒の前記平均浄化率を測定するものであ
る。
According to the first aspect of the present invention, there is provided a method of measuring a purification rate, wherein an oxygen sensor is disposed upstream of a catalyst for purifying harmful components in exhaust gas, and an air-fuel ratio sensor is disposed downstream of the catalyst.
C) measuring the linear relationship between the average purification rate of the three components of carbon monoxide (CO) and nitrogen oxide (NOx) in the range of 100 to 30% and the output width of the air-fuel ratio sensor. The average purification rate of the catalyst is measured from the output width of the air-fuel ratio sensor using the linear relationship.

この出力幅は、通常、電圧幅であるが、これに相当す
る電流幅であってもよい。
This output width is usually a voltage width, but may be a current width corresponding to this.

ここで、本明細書における「空燃比センサ」とは、酸
素センサのうち、特に排ガス中の酸素分圧、酸素比率又
は酸素量を測定するものをいう。
Here, the “air-fuel ratio sensor” in this specification refers to an oxygen sensor that measures an oxygen partial pressure, an oxygen ratio, or an oxygen amount in exhaust gas, among others.

〔作用〕[Action]

触媒の上流側には、酸素センサが配設される。従っ
て、運転条件の変動に応じて、このセンサによるフィー
ドバックが行われ、常に、理論空燃比(λ=1)近辺の
運転条件になるように設定される。そのため、出力電圧
波形が振れる幅を一定にしておくことができる。
An oxygen sensor is provided upstream of the catalyst. Therefore, feedback is performed by this sensor according to the fluctuation of the operating condition, and the operating condition is always set so as to be near the stoichiometric air-fuel ratio (λ = 1). Therefore, the width in which the output voltage waveform swings can be kept constant.

一方、下流側に配設された空燃比センサは、第6図に
示すように、空燃比と出力特性の関係が所定のカーブ曲
線を示し、従来の酸素センサのように、空燃比A/F=14.
6での急な立ち上がりもない。従って、例えば、第3図
に示すように、劣化程度に応じて、波形Aにおけるa1
幅、完全に浄化される場合の波形(この場合は実質上、
直線)Bにおける幅(=0)等、種々の値をとる。
On the other hand, as shown in FIG. 6, the air-fuel ratio sensor disposed downstream has a predetermined curve curve in which the relationship between the air-fuel ratio and the output characteristic shows, and the air-fuel ratio A / F = 14.
There is no sudden rise at 6. Therefore, for example, as shown in FIG.
Width, waveform when completely purified (in this case, in effect,
It takes various values, such as the width (= 0) in B).

以上より、空燃比センサの出力幅と触媒のHC/CO/NOx
平均浄化率は例えば、第4図に示すように、ほぼ直線の
関係を示し、全ての浄化率において良好な関係を示す。
From the above, the output width of the air-fuel ratio sensor and the HC / CO / NOx of the catalyst
For example, as shown in FIG. 4, the average purification rate shows a substantially linear relationship, and shows a good relationship for all the purification rates.

〔実施例〕〔Example〕

以下、実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be described specifically with reference to examples.

(1)劣化時期検知装置の概要 第1図は本実施例の空燃比センサによる触媒の劣化時
期検知方法及び浄化率測定方法を実施しうる内燃エンジ
ンの空燃比測定装置の概略構成図、及び第2図は試験の
ためのセンサ配置場所等を示す装置の説明図を示す。
(1) Overview of Deterioration Timing Detector FIG. 1 is a schematic configuration diagram of an air-fuel ratio measuring device of an internal combustion engine capable of implementing a catalyst degradation timing detecting method and a purification rate measuring method using an air-fuel ratio sensor of the present embodiment, and FIG. 2 is an explanatory view of an apparatus showing a sensor arrangement place and the like for a test.

これらの図に示すように、内燃エンジン1の排気通路
2には、三元触媒3が取付られており、この三元触媒3
の上流側の排気通路には酸素センサ(制御用λセンサ)
4、下流側の排気通路には空燃比センサ5が取付けられ
ている。センサ4、5は、各々電子制御装置6、センサ
制御装置7に各々電気的に接続され、センサ出力をこれ
らから得る。そして、この電子制御装置6は前記内燃エ
ンジン1の吸気通路8に配設された燃料噴射弁9に電気
的に接続され、前記酸素センサ4からの出力電圧に応じ
てこの燃料噴射弁9の燃料噴射量を制御する。即ち、電
子制御装置6のセンサ出力内容がフィードバックされ
て、ほぼ一定の空燃比とし、センサ出力をほぼ一定とす
る。
As shown in these figures, a three-way catalyst 3 is attached to the exhaust passage 2 of the internal combustion engine 1.
Sensor (λ sensor for control) in the exhaust passage upstream of
4. An air-fuel ratio sensor 5 is attached to the exhaust passage on the downstream side. The sensors 4 and 5 are electrically connected to the electronic control device 6 and the sensor control device 7, respectively, and obtain sensor outputs from them. The electronic control unit 6 is electrically connected to a fuel injection valve 9 disposed in an intake passage 8 of the internal combustion engine 1, and controls the fuel of the fuel injection valve 9 according to an output voltage from the oxygen sensor 4. Control the injection volume. That is, the sensor output content of the electronic control unit 6 is fed back to make the air-fuel ratio substantially constant, and the sensor output is made substantially constant.

この空燃比センサ5は、公知のものを用いることがで
きる。例えば、その原理を第5図に基づいて簡単に説明
すれば、以下の通りである。まず、Ipセル51とVs/Icpセ
ル52との間に形成された拡散室53に流入した排気ガス中
の酸素分圧が、一定になるようにポンプアップをする。
そして、この拡散室53内の酸素分圧と酸素基準室54内と
の酸素分圧の比に起因して生じる電圧(例えば450mV)
を一定とするための出力電流値(又は電圧値)を読み取
るものである。尚、45はヒータを示す。
As the air-fuel ratio sensor 5, a known sensor can be used. For example, the principle will be briefly described with reference to FIG. First, pump-up is performed so that the oxygen partial pressure in the exhaust gas flowing into the diffusion chamber 53 formed between the Ip cell 51 and the Vs / Icp cell 52 becomes constant.
A voltage (for example, 450 mV) generated due to the ratio of the oxygen partial pressure in the diffusion chamber 53 to the oxygen partial pressure in the oxygen reference chamber 54
Is to read an output current value (or a voltage value) for keeping the constant. Incidentally, 45 indicates a heater.

また、前記酸素センサ4としては、特に限定されるも
のではないが、例えば、ジルコニア酸素センサ、チタニ
ア酸素センサ等を用いることができる。
The oxygen sensor 4 is not particularly limited. For example, a zirconia oxygen sensor, a titania oxygen sensor, or the like can be used.

更に、比較例としては前記空燃比センサの代わりに同
じ酸素センサを取付けた。
Further, as a comparative example, the same oxygen sensor was attached instead of the air-fuel ratio sensor.

三元触媒3は通常のPt、Rh、Pd等を担持したものでよ
く、その構造もハニカム等のモノリス型、又はぺレット
形、円筒形、球形等の粒子型等を適宜選択することがで
きる。
The three-way catalyst 3 may be one supporting ordinary Pt, Rh, Pd, or the like, and the structure thereof may be appropriately selected from a monolith type such as a honeycomb or a particle type such as a pellet, cylindrical, or spherical shape. .

(2)HC/CO/NOx平均浄化率の測定及び劣化時期の検知 この装置を用いて、エンジン運転条件(1.5L×4気
筒、エンジン回転数;1900rpm、ブースト圧;−40mmHg)
にて、空燃比センサ5の出力幅(a1)を種々の浄化率の
もとで求めておき、検量線用とする。尚、この空燃比セ
ンサ5の出力波形は、一例を示せば、第3図に示すよう
に、新品触媒を用いた場合、ほぼ完全に浄化されている
ので、ほぼ直線Bとなった。劣化触媒を用いた場合、劣
化程度に応じて所定の出力幅をもった波形Aを示した。
この所定の出力幅を示す時の浄化率は、第2図に示す2
か所の位置にて各排気ガスをサンプリングして、その各
成分(HC、CO、NOx)量を各分析計にて測定して求めた
ものである。
(2) Measurement of HC / CO / NOx average purification rate and detection of deterioration time Using this device, engine operating conditions (1.5L x 4 cylinders, engine speed; 1900rpm, boost pressure; -40mmHg)
Then, the output width (a1) of the air-fuel ratio sensor 5 is obtained under various purification rates and used for a calibration curve. The output waveform of the air-fuel ratio sensor 5 is, as shown in FIG. 3, substantially straight line B when a new catalyst is used, since the air-fuel ratio sensor 5 is almost completely purified. When the deteriorated catalyst was used, a waveform A having a predetermined output width was shown according to the degree of deterioration.
The purification rate at the time when the predetermined output width is shown is 2% shown in FIG.
Each exhaust gas is sampled at each position, and the amount of each component (HC, CO, NOx) is measured and measured by each analyzer.

以上の結果を第4図に示した。この結果によれば、出
力幅と平均浄化率とに良好な直線関係が、約30%以上の
浄化率範囲において得られたので、出力幅の所定値を持
って劣化時期とすれば、容易に且つ精度よく、この劣化
時期を検知することができる。
The results are shown in FIG. According to this result, a good linear relationship between the output width and the average purification rate was obtained in a purification rate range of about 30% or more. In addition, it is possible to accurately detect the deterioration time.

尚、この劣化時期の目安となる出力幅は、目的等によ
り種々設定される。また、エンジン回転数、負荷等のよ
り平均浄化率と空燃比センサの出力幅との関係が変化す
るので、これらの関係をセンサ制御装置に学習させてお
けば、これらの変化があっても触媒劣化の検知は可能で
ある。
It should be noted that the output width, which is a guide for the deterioration timing, is set variously depending on the purpose and the like. Further, the relationship between the average purification rate and the output width of the air-fuel ratio sensor changes depending on the engine speed, the load, and the like. Deterioration can be detected.

更に、第4図に示すように、出力幅と平均浄化率に直
線関係があるので、出力幅が判れば、その触媒の浄化率
が精度よく判ることとなる。特に、同図では約30%以上
の浄化率しか求められていないが、それ以下についても
測定可能である。従って、本測定方法によれば、全ての
浄化率範囲において、精度良く浄化率を測定できる。
Further, as shown in FIG. 4, since the output width and the average purification rate have a linear relationship, if the output width is known, the purification rate of the catalyst can be accurately determined. In particular, although only a purification rate of about 30% or more is required in the figure, it is possible to measure a purification rate of less than about 30%. Therefore, according to the present measuring method, the purification rate can be accurately measured in all the purification rate ranges.

一方、比較例の従来の酸素センサにおいて、センサ出
力幅と浄化率との関係を求めると、第8図に示すよう
に、70%以下においては浄化率を精度よく求めることが
できない。
On the other hand, when the relationship between the sensor output width and the purification rate is obtained in the conventional oxygen sensor of the comparative example, as shown in FIG. 8, the purification rate cannot be accurately obtained at 70% or less.

尚、本発明においては、前記具体的実施例に示すもの
に限られず、目的、用途に応じて本発明の範囲内で種々
変更した実施例とすることができる。
It should be noted that the present invention is not limited to the specific embodiments described above, but can be variously modified within the scope of the present invention according to the purpose and application.

〔発明の効果〕〔The invention's effect〕

本発明の浄化率測定方法は、簡便に、精度よく、安価
に且つ大規模な装置も必要とせずに触媒の浄化率を測定
できる。特に劣化程度も判る点において従来の2本の酸
素センサを用いる方法に比べて、大変有用である。ま
た、本測定方法によれば、従来の2本の酸素センサの場
合のように測定範囲が限定されることもなく、70%以下
の浄化率においても精度よく測定できる。
ADVANTAGE OF THE INVENTION The purification rate measuring method of this invention can measure the purification rate of a catalyst simply, accurately, inexpensively, and without requiring a large-scale apparatus. In particular, the degree of deterioration can be determined, which is very useful as compared with the conventional method using two oxygen sensors. Further, according to the present measurement method, the measurement range is not limited as in the case of the conventional two oxygen sensors, and the measurement can be performed accurately even at a purification rate of 70% or less.

【図面の簡単な説明】[Brief description of the drawings]

第1図は実施例で用いた空燃比測定装置の概略構成図、
第2図は実施例で用いた空燃比測定装置の説明図、第3
図は空燃比センサにおける出力波形を示すグラフ、第4
図は実施例において出力幅とHC/CO/NOxの平均浄化率と
の関係を示すグラフ、第5図は実施例で用いた空燃比セ
ンサの原理を示す説明図、第6図は第5図図示の空燃比
センサにおいて空燃比とセンサ出力特性の関係を示すグ
ラフ、第7図は比較例における酸素センサの出力波形を
示すグラフ、第8図は比較例においてセンサ出力幅と平
均浄化率との関係を示すグラフである。 1;エンジン、2;排気通路、3;三元触媒、4;酸素センサ、
5;空燃比センサ、51;Ipセル、52;Vs/Icpセル、53;拡散
室、54;酸素基準室、55;ヒータ、6;電子制御装置、7;セ
ンサ制御装置、8;吸気通路、9;燃料噴射弁。
FIG. 1 is a schematic configuration diagram of an air-fuel ratio measuring device used in the embodiment,
FIG. 2 is an explanatory view of an air-fuel ratio measuring device used in the embodiment, and FIG.
The graph shows the output waveform of the air-fuel ratio sensor.
FIG. 5 is a graph showing the relationship between the output width and the average purification rate of HC / CO / NOx in the embodiment, FIG. 5 is an explanatory diagram showing the principle of the air-fuel ratio sensor used in the embodiment, and FIG. FIG. 7 is a graph showing the relationship between the air-fuel ratio and the sensor output characteristic in the illustrated air-fuel ratio sensor, FIG. 7 is a graph showing the output waveform of the oxygen sensor in the comparative example, and FIG. 8 is a graph showing the relationship between the sensor output width and the average purification rate in the comparative example. It is a graph which shows a relationship. 1; engine, 2; exhaust passage, 3; three-way catalyst, 4; oxygen sensor,
5; air-fuel ratio sensor, 51; Ip cell, 52; Vs / Icp cell, 53; diffusion chamber, 54; oxygen reference chamber, 55; heater, 6; electronic control device, 7; sensor control device, 8; intake passage, 9; fuel injection valve.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−74540(JP,A) 特開 昭62−153546(JP,A) 特開 平3−281960(JP,A) 特開 昭61−286550(JP,A) (58)調査した分野(Int.Cl.6,DB名) F01N 3/20 F01N 41/14 G01N 27/00 G01N 27/12 ────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-3-74540 (JP, A) JP-A-62-153546 (JP, A) JP-A-3-281960 (JP, A) JP-A 61-153960 286550 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) F01N 3/20 F01N 41/14 G01N 27/00 G01N 27/12

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】排気ガス中の有害成分を浄化する触媒の上
流側に酸素センサを、下流側には空燃比センサを各々配
設し、 排気ガス中の炭化水素(HC)、一酸化炭素(CO)及び窒
素酸化物(NOx)の三成分の平均浄化率が100〜30%の領
域における該平均浄化率と前記空燃比センサの出力幅と
の直線的関係を測定しておき、 該直線的関係を利用して前記空燃比センサの出力幅から
前記触媒の前記平均浄化率を測定することを特徴とする
空燃比センサによる触媒の浄化率測定方法。
An oxygen sensor is disposed upstream of a catalyst for purifying harmful components in exhaust gas, and an air-fuel ratio sensor is disposed downstream of the catalyst. Hydrocarbon (HC) and carbon monoxide (HC) in exhaust gas are provided. The linear relationship between the average purification rate and the output width of the air-fuel ratio sensor in a region where the average purification rate of the three components of CO) and nitrogen oxide (NOx) is 100 to 30% is measured. A method for measuring a purification rate of a catalyst by an air-fuel ratio sensor, wherein the average purification rate of the catalyst is measured from an output width of the air-fuel ratio sensor using the relationship.
JP2096935A 1990-04-12 1990-04-12 Method for measuring purification rate of catalyst using air-fuel ratio sensor Expired - Fee Related JP2885871B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2096935A JP2885871B2 (en) 1990-04-12 1990-04-12 Method for measuring purification rate of catalyst using air-fuel ratio sensor
US08/001,225 US5357750A (en) 1990-04-12 1993-01-06 Method for detecting deterioration of catalyst and measuring conversion efficiency thereof with an air/fuel ratio sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2096935A JP2885871B2 (en) 1990-04-12 1990-04-12 Method for measuring purification rate of catalyst using air-fuel ratio sensor

Publications (2)

Publication Number Publication Date
JPH03293548A JPH03293548A (en) 1991-12-25
JP2885871B2 true JP2885871B2 (en) 1999-04-26

Family

ID=14178197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2096935A Expired - Fee Related JP2885871B2 (en) 1990-04-12 1990-04-12 Method for measuring purification rate of catalyst using air-fuel ratio sensor

Country Status (1)

Country Link
JP (1) JP2885871B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5022879B2 (en) * 2007-11-29 2012-09-12 ユーテック株式会社 Gas detection device and gas detection method

Also Published As

Publication number Publication date
JPH03293548A (en) 1991-12-25

Similar Documents

Publication Publication Date Title
JP2984312B2 (en) Method for measuring catalyst purification rate using air-fuel ratio sensor and method for detecting its deterioration time
US5357750A (en) Method for detecting deterioration of catalyst and measuring conversion efficiency thereof with an air/fuel ratio sensor
US4177787A (en) Deteriorated condition detecting apparatus for an oxygen sensor
US20190128833A1 (en) Gas sensor, and method for measuring concentrations of plurality of target components in gas to be measured
US6301878B1 (en) Method and apparatus for exhaust gas cleaning with trim control
EP3029290B1 (en) Catalyst deterioration diagnosis system and catalyst deterioration diagnosis method
US20190128166A1 (en) Exhaust gas purification system and exhaust gas purification method
JPH0719032A (en) Method and device for evaluating nox purifying catalyst and method for controlling nox purifying catalyst efficiency
EP3029292B1 (en) Catalyst deterioration diagnosis method
JPH11507123A (en) Configuration for exhaust gas analysis
GB2315868A (en) Method for checking the efficiency of a catalytic converter.
JPH0989830A (en) Deterioration detector for catalyst
US5974787A (en) Method for testing the functional capability of a catalytic converter with an oxygen sensor
JP2000008920A (en) Exhaust emission control device for internal combustion engine
EP0909364A1 (en) Method for monitoring the performance of a catalytic converter using post catalyst methane measurements
US5339627A (en) Method and apparatus for regulating and testing
Kato et al. Performance of thick film NOx sensor on diesel and gasoline engines
US11060439B2 (en) Catalyst deterioration diagnosis system and catalyst deterioration diagnosis method
US4844788A (en) Wide-range air/fuel ratio sensor and detector using the same
JP3316066B2 (en) Failure diagnosis device for exhaust gas purification device
JP2885871B2 (en) Method for measuring purification rate of catalyst using air-fuel ratio sensor
JP7057741B2 (en) Gas sensor diagnostic device
JP2501643B2 (en) Catalyst deterioration detection device
CN112392615B (en) Method for controlling operation of vehicle engine and vehicle system
JP4092485B2 (en) Exhaust gas purification catalyst deterioration diagnosis device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees