JP2883928B2 - Area type flow meter - Google Patents

Area type flow meter

Info

Publication number
JP2883928B2
JP2883928B2 JP4206022A JP20602292A JP2883928B2 JP 2883928 B2 JP2883928 B2 JP 2883928B2 JP 4206022 A JP4206022 A JP 4206022A JP 20602292 A JP20602292 A JP 20602292A JP 2883928 B2 JP2883928 B2 JP 2883928B2
Authority
JP
Japan
Prior art keywords
float
magnet
flow
axis
symmetry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4206022A
Other languages
Japanese (ja)
Other versions
JPH0626900A (en
Inventor
時夫 杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiso Co Ltd
Original Assignee
Tokyo Keiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiso Co Ltd filed Critical Tokyo Keiso Co Ltd
Priority to JP4206022A priority Critical patent/JP2883928B2/en
Publication of JPH0626900A publication Critical patent/JPH0626900A/en
Application granted granted Critical
Publication of JP2883928B2 publication Critical patent/JP2883928B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は流路管内に備えられた浮
子の位置によって被測定流体の流量を測定する面積式流
量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an area type flow meter for measuring a flow rate of a fluid to be measured by a position of a float provided in a flow pipe.

【0002】[0002]

【従来の技術】垂直に置かれた管状の流路内に、被測定
流体よりも比重が大なるもので構成された移動子、すな
わち浮子を上下方向へ可動に設け、浮子が上昇するにつ
れて流路の断面積が増加するような構造とし、流路の下
方から上方に流体を流して浮子の位置から流量を求める
流量計は面積式流量計と呼ばれ、広く実用に供せられて
いる。
2. Description of the Related Art In a vertically disposed tubular flow path, a movable element, that is, a floating element having a specific gravity higher than that of a fluid to be measured, is provided in a vertically movable manner. A flow meter that has a structure in which the cross-sectional area of a passage is increased and flows a fluid from below to above a flow passage to obtain a flow rate from the position of a float is called an area flow meter, and is widely used in practice.

【0003】これらは構造的に図8と図9の二方式に大
別され、図8のものは上に開いたテーパー状の流路管1
内に浮子2があり、図9のものはストレートな流路管3
内にリング状の絞り部4があり、浮子5はテーパー状に
構成してある。両方式とも流量が増加するにつれて浮子
が上昇し、浮子の高さによって流量を測定する。
[0003] These are structurally broadly classified into two types shown in Figs. 8 and 9, and the type shown in Fig. 8 is a tapered flow pipe 1 having an open top.
There is a float 2 inside, and the one shown in FIG.
There is a ring-shaped throttle 4 inside, and the float 5 is formed in a tapered shape. In both types, the float rises as the flow increases, and the flow is measured by the height of the float.

【0004】流路管が透光性のものでない場合、流路管
の外部より浮子の高さを知る手段が必要となり、また流
量を電気信号として出力するためには、浮子の高さを電
気信号に変換する手段が要求される。浮子の高さを電気
信号に変換する従来の手段は、浮子の上下移動量を磁気
的な結合によって流路管外のメカニズムに連結されたト
ランスデューサにより電気信号に変換する間接的な方法
が一般的である。
If the flow passage tube is not translucent, a means for knowing the height of the float from the outside of the flow tube is required, and in order to output the flow rate as an electric signal, the height of the float is measured by an electric signal. Means for converting to signals are required. The conventional means for converting the height of the float into an electric signal is generally an indirect method of converting the amount of vertical movement of the float into an electric signal by a transducer connected to a mechanism outside the channel pipe by magnetic coupling. It is.

【0005】図10、図11はその代表的な例で、図1
0はテーパー流路管1内の浮子取付軸6の上端、すなわ
ち流路管の上端に設けたリードパイプ7内に臨でいる上
端にマグネット8を設け、このマグネットの上下の動き
に磁気結合で追従して回転するアーム9を流路管外に設
け、アーム9の回転角によって流量を把握する構成のも
のであり、図11は浮子5内にマグネット10を設け、
このマグネットが作る磁力線11の向きに追従して回転
する回転子12の回転角に変換する構成のものである。
FIGS. 10 and 11 show typical examples, and FIG.
Numeral 0 designates a magnet 8 provided at the upper end of the float mounting shaft 6 in the tapered flow pipe 1, that is, at the upper end facing the lead pipe 7 provided at the upper end of the flow pipe. An arm 9 that follows and rotates is provided outside the flow path tube, and the flow rate is grasped by the rotation angle of the arm 9. FIG.
It is configured to convert the rotation angle of the rotor 12 that follows the direction of the line of magnetic force 11 created by the magnet into the rotation.

【0006】一方、アームや回転子などのメカニズムは
用いず、浮子の高さを直接電気信号として取り出す手段
のものも何種類か考案されている。その例を挙げると、
図12はテーパー流路管1の上部リードパイプ7の外側
にコイル13を巻き、浮子軸6におけるリードパイプ内
上端の磁性体14を可動コアとして差動トランスを構成
したものである。
On the other hand, several types of means for directly extracting the height of the float as an electric signal without using a mechanism such as an arm or a rotor have been devised. To give an example,
FIG. 12 shows a differential transformer in which a coil 13 is wound around the upper lead pipe 7 of the tapered flow pipe 1 and a magnetic core 14 at the upper end of the lead pipe in the floating shaft 6 is a movable core.

【0007】図13はストレート流路管3の外側方に多
数の磁気感応スイッチ15を流路管と平行に配設し、各
スイッチを、上下動する浮子5内のマグネット16によ
り開閉し、閉成されたスイッチの位置をスキャンニング
によって検出することにより浮子の高さを求める構成の
ものである。
FIG. 13 shows that a number of magnetically responsive switches 15 are arranged outside the straight flow pipe 3 in parallel with the flow pipe, and each switch is opened and closed by a magnet 16 in the float 5 which moves up and down, and is closed. In this configuration, the height of the float is obtained by detecting the position of the formed switch by scanning.

【0008】[0008]

【発明が解決しようとする課題】図10、11の構成の
ものでは、浮子の高さをアームまたは回転子の軸の角変
位として目視できる長所はあるが、浮子の高さを電気信
号として得るためには、アームまたは回転子の軸に角変
位を電気信号に変換するトランスデューサを設ける必要
があり、その構造は複雑となる。またアームや回転子が
マグネット同士の吸引力によって浮子の動きに追従する
構成であるため、浮子が上下に動く際に吸引力による摩
擦力が浮子に作用し、浮子の高さと流量の関係の再現性
を劣化させるという問題がある。また、図12の構成の
ものは流路管のリードパイプの径ごとにコイルの径が異
なり、生産性が悪いこと、また流体の種類や温度によっ
て実質的な透磁率が変化し、高精度を得るには複雑な補
正が必要となるなどの欠点があり、図13の構成のもの
では高い分解能を得るのに多数の磁気感応スイッチが必
要となり、実装が難しく、コストも高いことなどが欠点
として挙げられる。
The structure shown in FIGS. 10 and 11 has an advantage that the height of the float can be visually observed as the angular displacement of the shaft of the arm or the rotor, but the height of the float is obtained as an electric signal. For this purpose, it is necessary to provide a transducer for converting an angular displacement into an electric signal on the axis of the arm or the rotor, and its structure becomes complicated. In addition, since the arm and rotor follow the movement of the float with the attraction of the magnets, the frictional force of the suction acts on the float when the float moves up and down, reproducing the relationship between the height of the float and the flow rate. There is a problem that the property is deteriorated. Further, in the configuration shown in FIG. 12, the diameter of the coil differs for each diameter of the lead pipe of the flow path pipe, so that the productivity is poor, and the substantial magnetic permeability changes depending on the type and temperature of the fluid. However, the configuration shown in FIG. 13 requires a number of magnetically sensitive switches to obtain high resolution, is difficult to mount, and has high costs. No.

【0009】本発明は従来の構成のものの前述した欠点
が除去され、浮子の位置を電気信号として取り出す構造
が簡単で、製造コストを低減でき、それでいて測定精
度、信頼性の高い面積式流量計を提供できるようにし
た。
The present invention eliminates the above-mentioned drawbacks of the conventional structure, has a simple structure for extracting the position of the float as an electric signal, can reduce the manufacturing cost, and yet has a highly accurate and reliable area type flowmeter. Available now.

【0010】[0010]

【課題を解決するための手段】本発明の面積式流量計
は、垂直な流路管内に、被測定流体よりも比重の大なる
もので構成した浮子を上下動可能に設け、浮子の移動に
伴って流路管内の流路面積が変わるような構造とし、流
体が流路内を下から上に流れる際の流量を浮子の位置に
よって測定する面積式流量計において、浮子の移動方向
に着磁され、浮子の移動方向に平行な軸に関してほぼ軸
対称な磁力線を生じるマグネットを浮子もしくは浮子と
の共動部位に設け、前記マグネットの対称軸に垂直な平
面上で、しかも対称軸からほぼ等距離となる流路管の外
部に複数のホール素子を設け、これらホール素子のうち
少なくとも2個のホール素子についてはホール素子の感
磁面と前記マグネットの対称軸のなす角を互いに異なる
角度とし、これらホール素子によって検出される磁束密
度信号から前記ホール素子を設けた平面とマグネットと
の上下方向の相対位置を求めることにより流量が連続的
に計測されるようにしてある。
The area type flow meter according to the present invention is provided with a float having a specific gravity larger than that of the fluid to be measured in a vertical flow pipe so as to be movable up and down. The structure is such that the flow path area in the flow path tube changes accordingly, and in an area type flow meter that measures the flow rate when the fluid flows from the bottom to the top in the flow path by the position of the float, it is magnetized in the direction of movement of the float. A magnet that produces magnetic lines of force that are substantially axisymmetric about an axis parallel to the direction of movement of the float is provided at the float or at a portion cooperating with the float, and a flat surface perpendicular to the axis of symmetry of the magnet is provided.
Outside the flow tube on the plane and at approximately the same distance from the axis of symmetry
Section has a plurality of Hall elements, and among these Hall elements
For at least two Hall elements, the sensitivity of the Hall element
The angle formed by the magnetic surface and the axis of symmetry of the magnet is different from each other, and the flow rate is obtained by obtaining the vertical relative position between the plane on which the Hall element is provided and the magnet from the magnetic flux density signals detected by these Hall elements . Continuous
Are you in so that is measured.

【0011】[0011]

【実施例】以下、本発明を図1〜図7に基づいて詳述す
る。図1〜3は本発明の原理を示す。図1において、浮
子22または浮子とともに流量に応じて流路管21内で
上下方向に変位する部位に、上下方向に着磁されたマグ
ネット23を設ける。このマグネットは移動方向に平行
な軸Lに対して軸対称な形状を有し、かつ磁束密度がこ
の対称軸Lに関して軸対称の分布を有するものとする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to FIGS. 1 to 3 show the principle of the present invention. In FIG. 1, a magnet 23 vertically magnetized is provided at the float 22 or at a position vertically displaced in the flow pipe 21 in accordance with the flow rate together with the float. The magnet has an axially symmetric shape with respect to an axis L parallel to the moving direction, and the magnetic flux density has an axially symmetric distribution with respect to the axis of symmetry L.

【0012】すなわち、図1のように上記対称軸と直交
する平面24上にあって、対称軸から等しい距離にある
円周25上の点においては、磁力線26に直角な面にお
ける磁束密度E、磁力線と対称軸のなす角、すなわち磁
力線の接線角φがどの点においても等しくなる。
That is, as shown in FIG. 1, at a point on the circumference 25 which is on the plane 24 orthogonal to the axis of symmetry and is at an equal distance from the axis of symmetry, the magnetic flux density E on the plane perpendicular to the line of magnetic force 26, The angle between the line of magnetic force and the axis of symmetry, that is, the tangent angle φ of the line of magnetic force is equal at any point.

【0013】また、一方向にのみ着磁されたマグネット
の磁力線の幾何学的形状は、マグネットの磁力が多少増
減してもほとんど変化しないことから、図1の円周25
上の点の磁力線の接線角φは、温度変化などによってマ
グネットの磁力が多少変化しても常にほぼ一定に保た
れ、接線角φは図1の平面とマグネットの上下方向の相
対位置hによって定まる。
The geometric shape of the magnetic field lines of the magnet magnetized only in one direction hardly changes even if the magnetic force of the magnet slightly increases or decreases.
The tangent angle φ of the magnetic force line at the upper point is always kept substantially constant even if the magnetic force of the magnet slightly changes due to a temperature change or the like, and the tangent angle φ is determined by the relative position h between the plane in FIG. .

【0014】すなわち、図1を側面から見ると図2のよ
うになり、円周の半径rを一定にして相対位置hを変化
させると、磁力線の接線角φは図3のようにhに対応し
て変化することになる。この条件は浮子の中心軸とマグ
ネットの対称軸を一致させておけば、浮子が中心軸まわ
りに回転しても変化しない。
That is, when FIG. 1 is viewed from the side, FIG. 2 is obtained. When the relative position h is changed while keeping the radius r of the circumference constant, the tangent angle φ of the magnetic force line corresponds to h as shown in FIG. Will change. This condition does not change even if the float rotates about the center axis, provided that the center axis of the float matches the symmetry axis of the magnet.

【0015】本発明の要旨とするところは、上記のマグ
ネットの物理的性質を利用し、磁力線の接線角φを求め
ることによって、マグネットすなわち浮子の位置を検出
し、浮子の高さを求めて流量を測定できるようにしたこ
とにある。
The gist of the present invention is to utilize the physical properties of the magnet described above to determine the tangent angle φ of the line of magnetic force, thereby detecting the position of the magnet, ie, the float, determining the height of the float, and determining the flow rate. Is to be measured.

【0016】以下に本発明の実施例を詳述する。非磁性
材料よりなる流路管の外側に、図1の円周が位置するよ
うに半径rを選び、この円周上に特性の揃った2個の
ール素子を設ける。
Hereinafter, embodiments of the present invention will be described in detail. The radius r is selected so that the circumference of FIG. 1 is located outside the flow path tube made of a non-magnetic material, and two e having uniform characteristics on this circumference.
A rule element is provided.

【0017】図5のように、一方のホール素子Aは感磁
面をマグネットの対称軸と垂直に、もう一方のホール素
子Bは感磁面をマグネットの対称軸と平行になるように
設け、それぞれに信号変換回路を設けて、これらの出力
O、BO がホール素子の感磁面における磁束密度に比
例し、かつ等しい利得Kを有するようにする。すなわ
ち、素子A、素子Bの感磁面における磁束密度をEA
B とすると、 AO =K・EA 、BO =K・EB が成り立つものとする。
As shown in FIG. 5, one Hall element A is provided with its magnetically sensitive surface perpendicular to the symmetry axis of the magnet, and the other Hall element B is provided with its magnetically sensitive surface parallel to the symmetry axis of the magnet. A signal conversion circuit is provided for each of these so that these outputs A O and B O have a gain K that is proportional to the magnetic flux density on the magneto-sensitive surface of the Hall element and equal. That is, the magnetic flux densities on the magneto-sensitive surfaces of the elements A and B are represented by E A ,
Assuming that E B , A O = K · E A and B O = K · E B hold.

【0018】円周上の点における磁力線と対称軸のなす
角φ、磁力線に垂直な面における磁束密度Eは、前述の
ように円周上のすべての点で一定であるから、出力A
O 、BO はホール素子の感磁面と磁力線のなす角によっ
て定まり、 AO =K・EA =K・Ecosφ BO =K・EB =K・Esinφ 但し、K:定数 で表すことができる。
Since the angle φ between the line of magnetic force and the axis of symmetry at a point on the circumference and the magnetic flux density E on the plane perpendicular to the line of magnetic force are constant at all points on the circumference as described above, the output A
O, B O is determined by the angle of the sensitive surface and the magnetic field lines of the Hall element, A O = K · E A = K · Ecosφ B O = K · E B = K · Esinφ However, K: be represented by a constant it can.

【0019】したがって上式から磁束密度E、定数Kを
消去すると、 BO /AO =tanφ ・・・・・・・・(1) φ=tan-1(BO /AO ) ・・・・(2) となり、磁束密度Eの如何によらず、磁力線の角度φが
2つのホール素子の出力O 、 BO から求められ、前
述のようにホール素子を設けた平面24を基準とするマ
グネットの相対位置hが求められる。なお、ホール素子
の代わりに磁気抵抗素子を使用すると、磁気抵抗素子の
出力は極性(正負)のないスカラー量なので、磁気抵抗
素子とマグネットとの間の距離を知ることはできても磁
気抵抗素子に対してマグネットが上下のどちらにあるの
かを判別することはできず、マグネットの上下位置を判
別するには上下判別用の電子回路を別に設ける必要があ
る。 しかし、本発明の流量計におけるホール素子の出力
O 、 B O は極性(正負)を有し、磁力線の方向の正
逆により極性の正負が変化するベクトル量なので、ホー
ル素子を設けた平面24に対してマグネット10が上下
いずれにあるかは前記出力の正負により判別され、前述
のような上下判別用の別の電子回路を設ける必要がな
い。
The magnetic flux density E from the above equation thus, clearing the constants K, B O / A O = tanφ ········ (1) φ = tan -1 (B O / A O) ··· (2) where the angle φ of the line of magnetic force is determined from the outputs A O and B O of the two Hall elements , regardless of the magnetic flux density E, and based on the plane 24 provided with the Hall elements as described above. Ma
The relative position h of the gnet is determined. In addition, Hall element
Using a magnetoresistive element instead of
Since the output is a scalar without polarity (positive or negative),
You can know the distance between the element and the magnet,
Is the magnet above or below the magnetoresistive element?
Cannot be determined, and the vertical position of the magnet is determined.
To separate them, it is necessary to provide a separate electronic circuit
You. However, the output of the Hall element in the flow meter of the present invention
A O and B O have polarities (positive and negative), and are positive in the direction of the magnetic field lines.
Since the vector quantity changes the polarity of the polarity in reverse,
The magnet 10 moves up and down with respect to the plane 24 on which the
The output is determined by the sign of the output.
It is not necessary to provide another electronic circuit for discriminating
No.

【0020】図2から明らかなように、流量計に応用す
る際にはhは数cm変化するので、センサ設置点の磁束
密度Eは高さhによって大きく増減する。したがって本
発明のように磁束密度が大きく変化しても、磁力線の角
度φが精度よく求められる方法でないと実用には供し得
ない。
As is apparent from FIG. 2, when applied to a flow meter, h changes by several centimeters, so that the magnetic flux density E at the sensor installation point greatly varies depending on the height h. Therefore, even if the magnetic flux density greatly changes as in the present invention, it cannot be put to practical use unless the angle φ of the lines of magnetic force is accurately determined.

【0021】なお、φまたはtanφとマグネットの位
置hの関係は、マグネットの仕様とホール素子の設置位
置(半径r)によってきまるので、あらかじめ計算また
は実験を行うことにより既知である。したがって流量計
に用いる場合、ホール素子からの信号出力AO 、BO
得て、前記(1)または(2)式の演算を行えばφが求
められ、マグネットの位置hが求められる。
Since the relationship between φ or tan φ and the position h of the magnet depends on the specifications of the magnet and the position (radius r) of the Hall element, it is known by performing calculations or experiments in advance. Therefore, when used in a flow meter, by obtaining the signal outputs A O and B O from the Hall elements and performing the calculation of the above equation (1) or (2), φ is obtained and the position h of the magnet is obtained.

【0022】以上の信号処理や演算はアナログ〜ディジ
タル変換器とマイクロプロセッサを使用すれば容易に実
行可能であり、ホール素子からの信号に対してリニアラ
イズ処理を行うことも容易であるから、ホール素子自身
の信号出力は必ずしも磁束密度に対して比例関係にある
必要はない。
[0022] or more signal processing and calculation is readily performed when using analog-digital converter and a microprocessor, also because it is easy to perform the linearization processing on the signals from the Hall elements, Hall The signal output of the element itself does not necessarily have to be proportional to the magnetic flux density.

【0023】また、通常の面積流量計では浮子の高さと
流量の関係は一般に非直線性であり、流体の仕様によっ
ても異なるので、マグネットの位置hから流量を求める
際にも複雑な演算を要するが、これらの演算も共通のマ
イクロプロセッサでの処理が可能で、コスト面できわめ
て有利である。
In a normal area flow meter, the relationship between the height of the float and the flow rate is generally non-linear, and varies depending on the specification of the fluid. Therefore, a complicated calculation is required when obtaining the flow rate from the position h of the magnet. However, these operations can be processed by a common microprocessor, which is extremely advantageous in terms of cost.

【0024】上記した実施例のほかに、本発明は次のよ
うな実施態様においても有効である。
In addition to the above embodiment, the present invention is also effective in the following embodiments.

【0025】 (1) マグネットの位置 マグネットは浮子と一体になって上下すればよいので、
図6のように流路管内になくてもよく、また図7のよう
に浮子の中心軸から偏心した位置にあっても支障なく、
要は浮子と共動する部位に設ければよい。
(1) Position of the magnet Since the magnet may be moved up and down integrally with the float,
It does not have to be in the flow path pipe as shown in FIG. 6, or even in a position eccentric from the center axis of the float as shown in FIG.
In short, it may be provided at a portion that cooperates with the float.

【0026】 (2) ホール素子の角度 実施例では、マグネットの対称軸に平行なホール素子
垂直なホール素子を用いているが、2個のホール素子
感磁面の対称軸に対する角度が互いに等しくないなら
ば、原理的に磁力線の角度φを求めることができる(平
行と垂直でなくてもよい)。
[0026] (2) In the angle embodiment of the Hall element, is used a Hall element perpendicular Hall element parallel to the axis of symmetry of the magnet, the angle with respect to the two axes of symmetry of the magnetic sensitive surface of the Hall elements from each other if not equal, (it may not be parallel and vertical) which can be determined the angle φ of the principle of magnetic force lines.

【0027】 (3) ホール素子の数 最低2個必要であるが、それ以上でも差支えない。特
に、図4のように対称軸に関して位置、角度が軸対称な
ホール素子を2組(合計4個)用い、各軸対称ペアA
1 、A2 およびB1 、B2 の平均出力を求めてAO 、B
O とすると、マグネットが水平方向に移動することによ
ってホール素子設置点の磁力線の角度に差が生じた場合
も、誤差要因が互いに打ち消し合って高い精度が維持で
きるという利点がある。また、1個のホール素子の出力
が小さい場合、対称軸と感磁面のなす角が等しい複数個
ホール素子を設け、これらの出力の和をとることによ
り、検出感度を高めることも可能である。
(3) Number of Hall Elements At least two Hall elements are required, but more than two may be used. In particular, as shown in FIG.
Using two sets of Hall elements (total of four), each axially symmetric pair A
The average output of A 1 , A 2 and B 1 , B 2 is determined, and A O , B
When O is set, there is an advantage that even when the magnet moves in the horizontal direction, a difference occurs in the angle of the magnetic field lines at the installation point of the Hall element , the error factors cancel each other out, and high accuracy can be maintained. When the output of one Hall element is small, it is possible to increase the detection sensitivity by providing a plurality of Hall elements having the same angle between the symmetry axis and the magneto-sensitive surface, and taking the sum of these outputs. is there.

【0028】 (4) ホール素子の位置ホール素子が 2個の場合、理想的には同一場所が最適で
あり、一般に寸法の小さいホール素子を近接させて設置
することが望ましい。ただし、マグネットの水平方向の
移動量がマグネットとホール素子間の距離に比べて小さ
いならば、図1の円周上のどこにあってもよい。
[0028] (4) When the position Hall element of the Hall element is two, and ideally is optimal the same place, it is desirable generally to close the small hall element dimensions are installed. However, as long as the amount of horizontal movement of the magnet is smaller than the distance between the magnet and the Hall element , it may be anywhere on the circumference of FIG.

【0029】 (5) 流路管の材質 流路管は非磁性材製であれば材質の如何を問わない。ま
た、流体が高温または低温の場合、流路管の外周に断熱
構造体を設け、その外側にホール素子を置くこともでき
る。
(5) Material of Flow Pipe The flow pipe may be made of any material as long as it is made of a non-magnetic material. When the fluid is at a high or low temperature, a heat insulating structure may be provided on the outer periphery of the flow pipe, and a Hall element may be placed outside the heat insulating structure.

【0030】[0030]

【発明の効果】上述した本発明の流量計は次のような効
果を奏し得る。 (a) ホール素子は汎用のものを最小限2個用いれば事が
足り、コスト的に有利である。 (b) ホール素子が小さく場所をとらないので、流量計全
体を小型にできる。 (c) 浮子にマグネットによる吸引力が作用しないので、
吸引力によって生じる摩擦力もなく、精度の点で優れて
いる。 (d) 温度変化、経年変化などによりマグネットの磁力が
変化しても流量計の精度に影響しない。 (e) 流路管とホール素子の間に断熱構造を設けることが
できるので、適用できる流体温度の範囲が広い。(f) ホール素子の出力は極性(正負)を有し、磁力線の
方向の正逆により極性の 正負が変化するベクトル量なの
で、ホール素子を設けた平面に対してマグネッ トが上下
いずれにあるかは出力の正負により判別することがで
き、上下判別用 の別の電子回路を設ける必要がないとい
う利点もある。
The flow meter of the present invention described above has the following effects. (a) It is sufficient to use at least two general-purpose Hall elements , which is advantageous in cost. (b) Since the Hall element is small and takes up little space, the entire flowmeter can be made compact. (c) Since the attractive force of the magnet does not act on the float,
There is no frictional force caused by the suction force, and it is excellent in accuracy. (d) Even if the magnetic force of the magnet changes due to temperature change, aging, etc., it does not affect the accuracy of the flowmeter. (e) Since a heat insulating structure can be provided between the channel tube and the Hall element , the applicable fluid temperature range is wide. (f) The output of the Hall element has polarity (positive or negative)
It is a vector quantity whose polarity changes depending on the direction.
In, the magnet bets is vertical to the plane in which a Hall element
It can be determined by the sign of the output.
It can, have not necessary to provide another electronic circuit for vertical determination
There are also advantages.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の基本原理図。FIG. 1 is a basic principle diagram of the present invention.

【図2】磁束分布図。FIG. 2 is a magnetic flux distribution diagram.

【図3】マグネットの位置と磁力線の接線角との関係を
示す図。
FIG. 3 is a diagram showing a relationship between a position of a magnet and a tangent angle of a line of magnetic force.

【図4】本発明の基本態様図。FIG. 4 is a diagram showing a basic mode of the present invention.

【図5】本発明の第1実施例図。FIG. 5 is a diagram of a first embodiment of the present invention.

【図6】本発明の第2実施例図。FIG. 6 is a diagram showing a second embodiment of the present invention.

【図7】本発明の第3実施例図。FIG. 7 is a diagram showing a third embodiment of the present invention.

【図8】テーパー管を使用した面積式流量計の原理図。FIG. 8 is a principle diagram of an area type flowmeter using a tapered tube.

【図9】ストレート管を使用した面積式流量計の原理
図。
FIG. 9 is a principle diagram of an area type flow meter using a straight pipe.

【図10】テーパー管で、浮子の位置をマグネットカッ
プリングで捉えるようにした従来のものの一例図。
FIG. 10 is an example of a conventional example in which the position of a float is captured by a magnetic coupling using a tapered tube.

【図11】ストレート管で、浮子の位置をマグネットカ
ップリングで捉えるようにした従来のものの一例図。
FIG. 11 is an example of a conventional example in which the position of a float is captured by a magnetic coupling in a straight pipe.

【図12】浮子の位置をトランスデューサにより捉える
ようした従来のものを示す図。
FIG. 12 is a diagram showing a conventional one in which the position of a float is captured by a transducer.

【図13】浮子の位置をスキャニング手段により捉える
ようにした従来のものを示す図。
FIG. 13 is a diagram showing a conventional one in which the position of a float is captured by scanning means.

【符号の説明】[Explanation of symbols]

21 流路管 22 浮子 23 マグネット 24 平面 25 円周 26 磁力線 L 対称軸 DESCRIPTION OF SYMBOLS 21 Flow pipe 22 Float 23 Magnet 24 Plane 25 Circumference 26 Line of magnetic force L Symmetry axis

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】垂直な流路管内に、被測定流体よりも比重
の大なるもので構成した浮子を上下動可能に設け、浮子
の移動に伴って流路管内の流路面積が変わるような構造
とし、流体が流路内を下から上に流れる際の流量を浮子
の位置によって測定する面積式流量計において、浮子の
移動方向に着磁され、浮子の移動方向に平行な軸に関し
てほぼ軸対称な磁力線を生じるマグネットを浮子もしく
は浮子との共動部位に設け、前記マグネットの対称軸に
垂直な平面上で、しかも対称軸からほぼ等距離となる流
路管の外部に複数のホール素子を設け、これらホール素
子のうち少なくとも2個のホール素子についてはホール
素子の感磁面と前記マグネットの対称軸のなす角を互い
に異なる角度とし、これらホール素子によって検出され
る磁束密度信号から前記ホール素子を設けた平面とマグ
ネットとの上下方向の相対位置を求めることにより流量
連続的に計測されるようにした面積式流量計。
1. A float having a specific gravity greater than that of a fluid to be measured is provided in a vertical flow pipe so as to be movable up and down, and the flow area in the flow pipe changes as the float moves. In an area type flowmeter that measures the flow rate when a fluid flows from the bottom to the top in a flow path by the position of the float, the area-type flowmeter is magnetized in the direction of movement of the float, and is substantially axial with respect to the axis parallel to the direction of movement of the float. provided a magnet to produce a symmetrical magnetic field lines cooperating portion between the float or float, the axis of symmetry of the magnet
Flows on a vertical plane and at approximately the same distance from the axis of symmetry
A plurality of Hall elements are provided outside the duct,
Holes for at least two Hall elements
The angle formed between the magneto-sensitive surface of the element and the axis of symmetry of the magnet is different from each other, and the vertical relative position between the plane on which the Hall element is provided and the magnet is obtained from the magnetic flux density signals detected by these Hall elements . area flow meter flow rate was so that continuously measured by.
JP4206022A 1992-07-09 1992-07-09 Area type flow meter Expired - Lifetime JP2883928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4206022A JP2883928B2 (en) 1992-07-09 1992-07-09 Area type flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4206022A JP2883928B2 (en) 1992-07-09 1992-07-09 Area type flow meter

Publications (2)

Publication Number Publication Date
JPH0626900A JPH0626900A (en) 1994-02-04
JP2883928B2 true JP2883928B2 (en) 1999-04-19

Family

ID=16516609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4206022A Expired - Lifetime JP2883928B2 (en) 1992-07-09 1992-07-09 Area type flow meter

Country Status (1)

Country Link
JP (1) JP2883928B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57182121U (en) * 1981-05-14 1982-11-18
JPH074486Y2 (en) * 1987-06-10 1995-02-01 ミツミ電機株式会社 Magnetic sensor mounting structure

Also Published As

Publication number Publication date
JPH0626900A (en) 1994-02-04

Similar Documents

Publication Publication Date Title
JP2929158B2 (en) Area type flow meter
CN100514007C (en) Flowmeter
US5186058A (en) Rotameter with float guides
US6079279A (en) Suspended-body flow meter
JP2883928B2 (en) Area type flow meter
US6021676A (en) Instrument for measurement of basementrock's deformation
EP0197100A1 (en) Apparatus for magnetic position determination
JP3422673B2 (en) Flowmeter
US3946177A (en) Liquid-level sensor utilizing ferromagnetic fluid
US4059015A (en) Angle-to-current converter
JP2001041703A (en) Range finder and thickness meter
JPH05264326A (en) Linear position sensor
JP2003028899A (en) Current sensor
JPH0792395B2 (en) Area type flow meter with sensor and flow rate measuring method
CN209131743U (en) A kind of novel suspended body flowmeter
JP2770126B2 (en) Liquid level indicator
KR20000070595A (en) Metering device for contactless determination of a rotation
JP3422184B2 (en) Magnetic rotation angle sensor
JPH0317225Y2 (en)
JPH08254448A (en) Flow meter
JPS63145933A (en) Electric measurement
JPS63163116A (en) Flowmeter
JPS6347631A (en) Apparatus for measuring specific gravity of fluid
JP3022099B2 (en) Displacement measuring device
US3040577A (en) Metering apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080212

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090212

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090212

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100212

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100212

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110212

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120212

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120212

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 14