JP2883903B2 - Novel bioactive peptide and its use - Google Patents

Novel bioactive peptide and its use

Info

Publication number
JP2883903B2
JP2883903B2 JP1059183A JP5918389A JP2883903B2 JP 2883903 B2 JP2883903 B2 JP 2883903B2 JP 1059183 A JP1059183 A JP 1059183A JP 5918389 A JP5918389 A JP 5918389A JP 2883903 B2 JP2883903 B2 JP 2883903B2
Authority
JP
Japan
Prior art keywords
group
gly
peptide
ser
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1059183A
Other languages
Japanese (ja)
Other versions
JPH02237999A (en
Inventor
哲司 須藤
篤志 泉
美加 高島
壽之 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shionogi and Co Ltd
Original Assignee
Shionogi and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shionogi and Co Ltd filed Critical Shionogi and Co Ltd
Priority to JP1059183A priority Critical patent/JP2883903B2/en
Priority to DE69020755T priority patent/DE69020755T3/en
Priority to DK90104021T priority patent/DK0385476T4/en
Priority to EP90104021A priority patent/EP0385476B2/en
Priority to ES90104021T priority patent/ES2076981T5/en
Priority to AT90104021T priority patent/ATE124994T1/en
Publication of JPH02237999A publication Critical patent/JPH02237999A/en
Priority to US08/192,800 priority patent/US7211380B1/en
Application granted granted Critical
Publication of JP2883903B2 publication Critical patent/JP2883903B2/en
Priority to US09/902,161 priority patent/US20020086843A1/en
Priority to US10/335,847 priority patent/US20030162710A1/en
Priority to CL200401266A priority patent/CL2004001266A1/en
Priority to US11/737,521 priority patent/US20090105464A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は新規な生理活性ペプチド及びその用途に関
し、更に詳細には、ヒト型脳性ナトリウム利尿ペプチド
及びこれを含有する高血圧症、浮腫性疾患、心不全、腎
不全等の循環器系疾患治療剤に関する。
The present invention relates to a novel bioactive peptide and its use, and more particularly, to a human brain natriuretic peptide and hypertension, edema disease containing the same, The present invention relates to a therapeutic agent for cardiovascular diseases such as heart failure and renal failure.

〔従来の技術〕[Conventional technology]

最近、ブタ脳からペプチドが単離、構造決定され、そ
の構造及び生理活性作用が心房性ナトリウム利尿ペプチ
ド(以下ANPと略す)とよく似ていることから、脳性ナ
トリウム利尿ペプチド(Brain Natriuretic Peptide;以
下BNPと略す)と命名された〔須藤ら,Nature,332,78−8
0(1988)〕。BNPは生体の体液容量、電解質バランス及
び血圧の調節に関与しており、これにより生体ではANP
とBNPによる2重の調節機構が存在することが示され
た。
Recently, a peptide has been isolated from pig brain and its structure has been determined. Its structure and bioactivity are very similar to those of atrial natriuretic peptide (hereinafter abbreviated as ANP), so brain natriuretic peptide (Brain Natriuretic Peptide; [Sudo et al., Nature, 332, 78-8]
0 (1988)]. BNP is involved in the regulation of body fluid volume, electrolyte balance and blood pressure in living organisms, which
And that there is a dual regulatory mechanism by BNP.

一方、このブタBNPのcDNAがクローニングされ、ブタB
NPの前駆体の構造が明らかにされている〔前川ら;Bioch
em.Biophys.Res.Commun.,157(1),410〜416(198
8)〕。更にこのブタBNPのcDNAをプローブとしてヒトBN
PのcDNAがクローニングされ、その構造解析によりヒトB
NPのアミノ酸配列が推定されている。
Meanwhile, the cDNA of this porcine BNP was cloned and
The structure of NP precursors has been elucidated (Maekawa et al .; Bioch
em. Biophys. Res. Commun., 157 (1), 410-416 (198
8)]. Furthermore, using the porcine BNP cDNA as a probe, human BN
CDNA of P was cloned and its structural analysis
The amino acid sequence of NP has been deduced.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、ヒトBNPが単離もしくは合成された報
告はなく、どのような作用域は活性を有しているのか不
明である。従ってこのヒトBNPを合成し、その生物活性
を公知のナトリウム利尿ペプチドと比較し、その有用性
を探索することは、医薬品開発上、抗体産生等の副作用
を回避する意味で重要である。
However, there is no report that human BNP has been isolated or synthesized, and it is unclear what active area has activity. Therefore, synthesizing this human BNP, comparing its biological activity with a known natriuretic peptide, and exploring its usefulness is important in drug development from the viewpoint of avoiding side effects such as antibody production.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは、前記ヒトBNPのアミノ酸配列の推定に
基づき、新規物質であるヒトBNP誘導体を合成し、その
薬理作用についてさらに検討を進めたところ、これらの
物質が既知のナトリウム利尿ペプチドが有する平滑筋弛
緩作用、ナトリウム利尿作用を有することを見出し、本
発明を完成した。
The present inventors have synthesized a human BNP derivative which is a novel substance based on the estimation of the amino acid sequence of the human BNP, and further studied its pharmacological action.These substances have a known natriuretic peptide. They have found that they have a smooth muscle relaxing action and a natriuretic action, and have completed the present invention.

すなわち本発明は、 (式中、XはH、H−Gly−Ser−Gly−又はH−Ser−Pr
o−Lys−Met−Val−Gln−Gly−Ser−Gly−を示す) で表わされる生理活性ペプチドまたはその塩およびこれ
を含有する循環器系疾患治療剤を提供するものである。
That is, the present invention (Wherein X is H, H-Gly-Ser-Gly- or H-Ser-Pr
o-Lys-Met-Val-Gln-Gly-Ser-Gly-) or a salt thereof, and a therapeutic agent for circulatory diseases containing the same.

本発明において、XがH−Gly−Ser−Gly−であるペ
プチド(I)をヒトBNP−26と称し、XがH−Ser−Pro
−Lys−Met−Val−Gln−Gly−Ser−Gly−であるペプチ
ド(I)をヒトBNP−32と称することがある。
In the present invention, the peptide (I) in which X is H-Gly-Ser-Gly- is referred to as human BNP-26, and X is H-Ser-Pro
The peptide (I) that is -Lys-Met-Val-Gln-Gly-Ser-Gly- may be referred to as human BNP-32.

なお、本明細書において、ペプチド中の略称は、当該
分野において一般に使用されるものであり、次の意味を
有する。
In addition, in this specification, the abbreviation in a peptide is what is generally used in the said field | area, and has the following meaning.

Asp:L−アスパラジン酸 Ser:L−セリン Gly:グリシン Cys:L−システイン Phe:L−フェニルアラニン Arg:L−アルギニン Leu:L−ロイシン Ile:L−イソロイシン Asn:L−アスパラギン Val:L−バリン Try:L−チロシン 本発明のペプチド(I)は、ペプチド合成に常用され
る固相法又は液相法〔例えば、泉屋信夫ら著「ペプチド
合成」1984年,丸善(株)発行;日本化学会編「生化学
実験講座(I)/タンパク質の化学」4巻,208〜495頁,
1977年,東京化学同人発行等〕によって製造することが
できる。
Asp: L-aspartic acid Ser: L-serine Gly: glycine Cys: L-cysteine Phe: L-phenylalanine Arg: L-arginine Leu: L-leucine Ile: L-isoleucine Asn: L-asparagine Val: L-valine Try: L-Tyrosine The peptide (I) of the present invention can be prepared by a solid phase method or a liquid phase method commonly used for peptide synthesis [for example, Nobuo Izumiya et al., “Peptide Synthesis”, 1984, published by Maruzen Co., Ltd .; Ed. “Biochemistry Experiment Course (I) / Protein Chemistry”, vol. 4, pp. 208-495,
1977, Tokyo Chemical Doujinshi, etc.].

例えば固相法によって本発明ペプチド(I)を合成す
る場合、使用するアミノ酸のα−アミノ基は9−フルオ
レニルメチルオキシカルボニル基(Fmoc基)、アスパラ
ギン酸のβ−カルボキシル基はtert−ブチル基(tBu
基)、アルギニンのグアニジノ基は4−メトキシ−2,3,
6−トリメチルベンゼンスルホニル基(Mtr基)、セリン
の水酸基はtert−ブチル基(tBu基)、システインのチ
オール基はアセトアミドメチル基(Acm基)、ヒスチジ
ンのイミダゾール基はトリチル基(Trt基)、リジンの
ε−アミノ基はtert−ブチルオキシカルボニル基(Boc
基)で保護することが好ましい。また、使用する不溶性
樹脂は、p−アルコキシベンジルアルコール樹脂(Wang
Resin)が好ましい。保護アミノ酸の縮合はジシクロヘ
キシルカルボジイミド(DCC)法、1,3−ジイソプロピル
カルボジイミド(DIC)による活性エステル法、DCCによ
る酸無水物法、ジフェニルリン酸アジド法(DPPA)法等
を用いるのが好ましい。しかし、アミノ酸の保護基は上
記のものに、限定されるものではなく、例えば使用する
アミノ酸のα−アミノ基はtert−ブチルオキシカルボニ
ル基(Boc基)で保護してもよい。
For example, when the peptide (I) of the present invention is synthesized by a solid phase method, the α-amino group of the amino acid used is a 9-fluorenylmethyloxycarbonyl group (Fmoc group), and the β-carboxyl group of aspartic acid is tert-butyl. Group (tBu
Group), the guanidino group of arginine is 4-methoxy-2,3,
6-trimethylbenzenesulfonyl group (Mtr group), serine hydroxyl group is tert-butyl group (tBu group), cysteine thiol group is acetamidomethyl group (Acm group), histidine imidazole group is trityl group (Trt group), lysine Is an tert-butyloxycarbonyl group (Boc
Group). The insoluble resin used is a p-alkoxybenzyl alcohol resin (Wang
Resin) is preferred. Condensation of the protected amino acid is preferably performed using a dicyclohexylcarbodiimide (DCC) method, an active ester method using 1,3-diisopropylcarbodiimide (DIC), an acid anhydride method using DCC, a diphenylphosphoric acid azide method (DPPA) method, or the like. However, the protecting group of the amino acid is not limited to those described above. For example, the α-amino group of the amino acid used may be protected with a tert-butyloxycarbonyl group (Boc group).

固相法による本発明ペプチド(I)の製造は、例えば
以下のようにして行なわれる。まずC末端アミノ酸であ
るHisの保護誘導体Fmoc−His(Trt)−OHをp−アルコ
キシベンジルアルコール樹脂に導入し、以後対応する保
護アミノ酸を順次結合させ、保護ペプチド樹脂を合成す
る。次いで、ピペリジン及びトリフルオロ酢酸(TFA)
による処理、ピペリジン及びトリメチルシリルブロマイ
ド(TMSBr)による処理〔Chem.Pharm.Bull.,35(9),3
880(1987)〕等により、樹脂からのペプチドの切断とA
cm基以外の保護基の除去を同時に行ない、システインの
チオール基にAcm基を有するペプチド〔CYS(Acm)−ペ
プチド〕を得る。次にこれをヨウ素で酸化することによ
り、チオールの保護基を脱離させると同時に、ペプチド
分子内の2つのシステインのチオール基によるジスルフ
ィド結合を形成させることにより、粗合成ペプチドを得
る。
The peptide (I) of the present invention is produced by the solid phase method, for example, as follows. First, a protected derivative Fmoc-His (Trt) -OH of His, which is a C-terminal amino acid, is introduced into a p-alkoxybenzyl alcohol resin, and then the corresponding protected amino acids are sequentially bonded to synthesize a protected peptide resin. Then piperidine and trifluoroacetic acid (TFA)
Treatment with piperidine and trimethylsilyl bromide (TMSBr) [Chem. Pharm. Bull., 35 (9), 3
880 (1987)] and cleavage of peptide from resin and A
The protecting group other than the cm group is simultaneously removed to obtain a peptide having an Acm group at the thiol group of cysteine [CYS (Acm) -peptide]. Next, this is oxidized with iodine to remove the protective group of the thiol, and at the same time, to form a disulfide bond by the thiol group of two cysteines in the peptide molecule to obtain a crude synthetic peptide.

得られた粗合成ペプチドの精製は、常法、例えばゲル
ろ過、イオン交換クロマトグラフィー、逆相高速液体ク
ロマトグラフィー(HPLC)等により行うことができる。
The obtained crude synthetic peptide can be purified by a conventional method, for example, gel filtration, ion exchange chromatography, reverse phase high performance liquid chromatography (HPLC), or the like.

なお、本発明ペプチド(I)は、塩酸、硫酸、燐酸等
の無機酸や蟻酸、酢酸、クエン酸、酒石酸、フマル酸、
マレイン酸等の有機酸を用いて、常法に従って酸付加塩
とすることができる。
In addition, the peptide (I) of the present invention includes inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid, formic acid, acetic acid, citric acid, tartaric acid, fumaric acid,
An acid addition salt can be prepared using an organic acid such as maleic acid according to a conventional method.

〔作用及び発明の効果〕[Action and effect of the invention]

斯くして得られる本発明ペプチドは平滑筋弛緩作用等
を有する。これらの作用について検討した結果を次に示
す。
The peptide of the present invention thus obtained has a smooth muscle relaxing action and the like. The results of studying these effects are shown below.

<平滑筋弛緩作用> 試験方法 4〜7日齢のヒヨコの直腸を摘出し、長さ1.5cmの筋
標本とした。これを、3mlオルガンバス中、95%O2−5
%CO2ガスを通じ、32℃に保温したクレブス−ヘンスレ
イト栄養液〔カルバコール(2×108M)を含む〕2.5ml
中に浸した。この筋標本に0.5gの静圧をかけ、約30分静
置して筋の自動運動が安定したとこで被験物質としてヒ
トBNP−26を100ng投与し、投与後6〜8分間の筋の弛緩
を測定した。測定後すみやかにオルガンバスを洗い、20
〜30分おいて、被験物質としてヒトBNP−32を200ng用い
て上記操作を繰り返した。被験物質は所定量を生理食塩
水に溶解して用いた。
<Smooth muscle relaxing action> Test method The rectum of a chick aged 4 to 7 days was excised and used as a 1.5 cm-long muscle specimen. This is mixed with 95% O 2 -5 in a 3 ml organ bath.
2.5 ml of a Krebs-Hensleit nutrient solution (containing carbachol (2 × 10 8 M)) kept at 32 ° C. through% CO 2 gas
Dipped in. The muscle specimen was subjected to a static pressure of 0.5 g, and allowed to stand for about 30 minutes to stabilize the automatic movement of the muscle. 100 ng of human BNP-26 was administered as a test substance, and the muscle was relaxed for 6 to 8 minutes after administration. Was measured. Immediately after measurement, wash the organ bath.
After 30 minutes, the above operation was repeated using 200 ng of human BNP-32 as a test substance. The test substance was used by dissolving a predetermined amount in physiological saline.

結果 結果を第1−A図〜第1−B図に示す。その結果、本
発明ペプチドは100〜200ngの投与で強い平滑筋弛緩活性
を示した。
Results The results are shown in FIGS. 1-A to 1-B. As a result, the peptide of the present invention showed a strong smooth muscle relaxing activity at a dose of 100 to 200 ng.

以上の如く本発明ペプチド又はその塩は優れた平滑筋
弛緩作用を有し、さらに利尿及びナトリウム利尿作用、
血圧降下作用を有し、かつヒト由来であるため安全性が
高く、例えば心臓性浮腫、腎臓性浮腫、肝性浮腫、肺浮
腫、高血圧症、うっ血性心不全、急性及び慢性腎不全等
の治療薬として有用である。
As described above, the peptide of the present invention or a salt thereof has an excellent smooth muscle relaxing action, and further has a diuretic and natriuretic action,
It has a hypotensive effect and is highly safe because it is derived from humans, for example, therapeutic agents for cardiac edema, renal edema, hepatic edema, pulmonary edema, hypertension, congestive heart failure, acute and chronic renal failure, etc. Useful as

また投与方法は、ペプチド系医薬の投与に使用されて
いる方法すなわち静脈注射、筋肉内注射、皮下注射によ
り、あるいは舌下投与、鼻内投与、直腸投与により投与
することが可能である。
The administration method can be the method used for administration of peptide-based drugs, that is, intravenous injection, intramuscular injection, subcutaneous injection, or sublingual administration, intranasal administration, or rectal administration.

またこのペプチドを危険な又は有害な副作用を生じさ
せることなく投与できる量は、0.5μg/kg〜100mg/kgの
範囲が好ましい。
The amount that can be administered without causing any dangerous or harmful side effects is preferably in the range of 0.5 μg / kg to 100 mg / kg.

〔実施例〕 次に実施例を挙げて本発明を詳細に説明するが、本発
明はこれらに限定されるものではない。
[Examples] Next, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.

実施例1 (1) ペプチドヒトBNP−26及びヒトBNP−32の合成: 保護ペプチド樹脂の合成 保護ペプチド樹脂の合成においては、各構成アミノ酸
のα−アミノ基はすべて9−フルオレニルメチルオキシ
カルボニル基(Fmoc基)で保護し、活性な側鎖のうち、
アスパラギン酸のβ−カルボキシル基はtert−ブチル基
(tBu基)で、アルギニンのグアニジノ基は4−メトキ
シ−2,3,6−トリメチルベンゼンスルホニル基(Mtr基)
でセリンの水酸基はtert−ブチル基(tBu基)で、シス
テインのチオール基はアセトアミドメチル基(Acm基)
で、ヒスチジンのイミダゾール基はトリチル基(Trt
基)で、リジンのε−アミノ基はtert−ブチルオキシカ
ルボニル基(Boc基)で保護した。また、樹脂として
は、保護Hisを導入したp−アルコキシベンジルアルコ
ール樹脂0.1gを用いた。
Example 1 (1) Synthesis of Peptides Human BNP-26 and Human BNP-32: Synthesis of Protected Peptide Resin In the synthesis of the protected peptide resin, all α-amino groups of the constituent amino acids were 9-fluorenylmethyloxycarbonyl. Group (Fmoc group)
The β-carboxyl group of aspartic acid is a tert-butyl group (tBu group), and the guanidino group of arginine is a 4-methoxy-2,3,6-trimethylbenzenesulfonyl group (Mtr group)
The hydroxyl group of serine is a tert-butyl group (tBu group), and the thiol group of cysteine is an acetamidomethyl group (Acm group)
And the imidazole group of histidine is a trityl group (Trt
), The ε-amino group of lysine was protected with a tert-butyloxycarbonyl group (Boc group). As the resin, 0.1 g of a p-alkoxybenzyl alcohol resin into which protected His was introduced was used.

保護アミノ酸の縮合にあたっては、樹脂に結合してい
る保護ペプチドの末端のアミノ基の保護基であるFmoc基
をピペリジンで室温下6分間処理することを2回繰り返
し、ほぼ完全に除去した。ついでこの脱Fmoc化で遊離し
たアミノ基を目的のペプチドのアミノ酸配列における次
に位置するアミノ酸のFmoc保護誘導体のカルボキシル基
と縮合した。この保護アミノ酸の縮合においては、Fmoc
−アミノ酸1mmolを1−ヒドロキシベンズトリアゾール
の存在下、1,3−ジイソプロピルカルボジイミド(DIC)
と処理することにより縮合した。この操作によって反応
が完結していない場合は、同じ操作を繰り返した。な
お、反応の進行及び完結はニンヒドリンによるカイザー
テストでモニターした。
In the condensation of the protected amino acid, the treatment of the Fmoc group, which is the protecting group of the amino group at the terminal of the protected peptide bound to the resin, with piperidine for 6 minutes at room temperature was repeated twice to remove almost completely. Subsequently, the amino group released by the de-Fmoc-decomposition was condensed with the carboxyl group of the Fmoc-protected derivative of the next amino acid in the amino acid sequence of the target peptide. In the condensation of this protected amino acid, Fmoc
-1 mmol of an amino acid in the presence of 1-hydroxybenztriazole in 1,3-diisopropylcarbodiimide (DIC)
And condensed. When the reaction was not completed by this operation, the same operation was repeated. The progress and completion of the reaction were monitored by a Kaiser test using ninhydrin.

この様にして、Fmoc−Gly−Ser(tBu)−Gly−Cys(A
cm)−Phe−Gly−Arg(Mtr)−Lys(Boc)−Met−Asp
(tBu)−Arg(Mtr)−Ile−Ser(tBu)−Ser(tBu)−
Ser(tBu)−Ser(tBu)−Gly−Leu−Gly−Cys(Acm)
−Lys(Boc)−Val−Leu−Arg(Mtr)−Arg(Mtr)−Hi
s(Trt)−樹脂を合成した。この段階でこのものを一部
取り出し、前述の方法に従って保護ペプチドの末端のア
ミノ基の保護基であるFmoc基を除去し、H−Gly−Ser
(tBu)−Gly−Cys(Acm)−Phe−Gly−Arg(Mtr)−Ly
s(Boc)−Met−Asp(tBu)−Arg(Mtr)−Ile−Ser(t
Bu)−Ser(tBu)−Ser(tBu)−Ser(tBu)−Gly−Leu
−Gly−Cys(Acm)−Lys(Boc)−Val−Leu−Arg(Mt
r)−Arg(Mtr)−His(Trt)−樹脂(以下、保護ヒトB
NP−26樹脂と言う)を670mg得た。
In this manner, Fmoc-Gly-Ser (tBu) -Gly-Cys (A
cm) -Phe-Gly-Arg (Mtr) -Lys (Boc) -Met-Asp
(TBu) -Arg (Mtr) -Ile-Ser (tBu) -Ser (tBu)-
Ser (tBu) -Ser (tBu) -Gly-Leu-Gly-Cys (Acm)
-Lys (Boc) -Val-Leu-Arg (Mtr) -Arg (Mtr) -Hi
s (Trt) -resin was synthesized. At this stage, a part of this product was removed, and the Fmoc group, which is a protecting group for the amino group at the terminal of the protected peptide, was removed according to the method described above, and H-Gly-Ser
(TBu) -Gly-Cys (Acm) -Phe-Gly-Arg (Mtr) -Ly
s (Boc) -Met-Asp (tBu) -Arg (Mtr) -Ile-Ser (t
Bu) -Ser (tBu) -Ser (tBu) -Ser (tBu) -Gly-Leu
-Gly-Cys (Acm) -Lys (Boc) -Val-Leu-Arg (Mt
r) -Arg (Mtr) -His (Trt) -resin (hereinafter referred to as protected human B)
670 mg of NP-26 resin).

残りをさらにN端延長の反応にかけ、Fmoc−Ser(tB
u)−Pro−Lys(Boc)−Met−Val−Gln−Gly−Ser(tB
u)−Gly−Cys(Acm)−Phe−Gly−Arg(Mtr)−Lys(B
oc)−Met−Asp(tBu)−Arg(Mtr)−Ile−Ser(tBu)
−Ser(tBu)−Ser(tBu)−Ser(tBu)−Gly−Leu−Gl
y−Cys(Acm)−Lys(Boc)−Val−Leu−Arg(Mtr)−A
rg(Mtr)−His(Trt)−樹脂を得た。次いで前述の方
法に従って保護ペプチドの末端のアミノ基の保護基であ
るFmoc基を除去し、H−Ser(tBu)−Pro−Lys(Boc)
−Met−Val−Gln−Gly−Ser(tBu)−Gly−Cys(Acm)
−Phe−Gly−Arg(Mtr)−Lys(Boc)−Met−Asp(tB
u)−Arg(Mtr)−Ile−Ser(tBu)−Ser(tBu)−Ser
(tBu)−Ser(tBu)−Gly−Leu−Gly−Cys(Acm)−Ly
s(Boc)−Val−Leu−Arg(Mtr)−Arg(Mtr)−His(T
rt)−樹脂(以下保護ヒトBNP−32樹脂と言う)を1.5g
得た。
The remainder was further subjected to an N-terminal extension reaction, and Fmoc-Ser (tB
u) -Pro-Lys (Boc) -Met-Val-Gln-Gly-Ser (tB
u) -Gly-Cys (Acm) -Phe-Gly-Arg (Mtr) -Lys (B
oc) -Met-Asp (tBu) -Arg (Mtr) -Ile-Ser (tBu)
-Ser (tBu) -Ser (tBu) -Ser (tBu) -Gly-Leu-Gl
y-Cys (Acm) -Lys (Boc) -Val-Leu-Arg (Mtr) -A
rg (Mtr) -His (Trt) -resin was obtained. Then, the Fmoc group, which is a protecting group for the terminal amino group of the protected peptide, was removed according to the method described above, and H-Ser (tBu) -Pro-Lys (Boc) was removed.
-Met-Val-Gln-Gly-Ser (tBu) -Gly-Cys (Acm)
-Phe-Gly-Arg (Mtr) -Lys (Boc) -Met-Asp (tB
u) -Arg (Mtr) -Ile-Ser (tBu) -Ser (tBu) -Ser
(TBu) -Ser (tBu) -Gly-Leu-Gly-Cys (Acm) -Ly
s (Boc) -Val-Leu-Arg (Mtr) -Arg (Mtr) -His (T
rt) -resin (hereinafter referred to as protected human BNP-32 resin) 1.5 g
Obtained.

Cys(Acm)−ヒトBNP−26の合成 保護ヒトBNP−26樹脂600mgをチオアニソール2.4mlと
共に反応器中に入れ、トリフルオロ酢酸(TFA)20ml、
トリメチルシリルブロマイド(TMSBr)2.6ml及びエタン
ジチオール2.4mlを加え、0℃で3時間反応させた。反
応終了後、エーテル200mlで洗ってアニソールを除去
し、1N−酢酸20mlで生成物を抽出した。樹脂及び不溶物
を遠心分離でとりのぞき、氷冷しながら1Mフッ化ナトリ
ウム(NaF)1mlを加え、5%アンモニア水でユニバーサ
ル試験紙上pH約8に調整して30分放置した。その後、再
び1N−酢酸を加えてpH5に再調整し、更に水で10倍に希
釈した。これを60mlのODS樹脂〔LC−Sorb(ケムコ
製)〕を充填したカラム(φ3cm×8.5cm)に吸着させ、
0.1N−酢酸でよく洗浄した後、0.1%TFAを含む60%アセ
トニトリル200mlで溶出した。アセトニトリルを減圧下
留去後、凍結乾燥して300mgの粗Cys(Acm)−ヒトBNP−
26を得た。
Synthesis of Cys (Acm) -human BNP-26 600 mg of protected human BNP-26 resin was placed in a reactor with 2.4 ml of thioanisole and 20 ml of trifluoroacetic acid (TFA) was added.
2.6 ml of trimethylsilyl bromide (TMSBr) and 2.4 ml of ethanedithiol were added and reacted at 0 ° C. for 3 hours. After completion of the reaction, anisole was removed by washing with 200 ml of ether, and the product was extracted with 20 ml of 1N-acetic acid. The resin and insolubles were removed by centrifugation, 1 ml of 1M sodium fluoride (NaF) was added while cooling with ice, the pH was adjusted to about 8 on a universal test paper with 5% aqueous ammonia, and the mixture was allowed to stand for 30 minutes. Thereafter, the pH was adjusted again to 5 by adding 1N-acetic acid again, and further diluted 10-fold with water. This was adsorbed on a column (φ3 cm × 8.5 cm) packed with 60 ml of ODS resin [LC-Sorb (Chemco)]
After washing well with 0.1N-acetic acid, elution was performed with 200 ml of 60% acetonitrile containing 0.1% TFA. Acetonitrile was distilled off under reduced pressure, lyophilized, and 300 mg of crude Cys (Acm) -human BNP-
I got 26.

このものを1N−酢酸9mlに溶かし、9回に分けて逆相H
PLCにかけた〔カラム:ヌクレオシル120−5C18,20×250
mm,流速5ml/分,溶媒系:(A)水:アセトニトリル:10
%TFA=90:10:1,(B)水:アセトニトリル:10%TFA=4
0:60:1,(A):(B)=90:10から(A):(B)=5
5:45までの120分間の直線グラジエント〕。この操作を
9回繰り返し57〜61分のところに溶出されるメインピー
クを分取した。この分画を、減圧下アセトニトリルを留
去後、凍結乾燥を行ないCys(Acm)−ヒトBNP−26 96.
0mgを得た。
This was dissolved in 1N-acetic acid (9 ml), and the mixture was divided into 9 portions and the reversed phase H was added.
PLC (column: nucleosyl 120-5C18, 20 × 250
mm, flow rate 5 ml / min, solvent system: (A) water: acetonitrile: 10
% TFA = 90: 10: 1, (B) water: acetonitrile: 10% TFA = 4
0: 60: 1, (A) :( B) = 90: 10 to (A) :( B) = 5
120 minute linear gradient up to 5:45]. This operation was repeated 9 times, and the main peak eluted at 57 to 61 minutes was collected. After acetonitrile was distilled off under reduced pressure, the fraction was freeze-dried and Cys (Acm) -human BNP-26 96.
0 mg was obtained.

ヒトBNP−26の合成 ヨウ素227mgを95%酢酸50mlに溶かし、1N−塩酸80μ
を加えたもの(以下A液という)を用意した。
Synthesis of human BNP-26 Dissolve 227 mg of iodine in 50 ml of 95% acetic acid, and add
(Hereinafter referred to as solution A) was prepared.

また、クエン酸2.1g、L−アスコルビン酸575mgを2N
−水酸化ナトリウム10mlに溶かし、水を加えて50mlとし
たもの(以下B液という)を用意した。
Also, 2.1 g of citric acid and 575 mg of L-ascorbic acid were added in 2N.
-Dissolved in 10 ml of sodium hydroxide and added water to make 50 ml (hereinafter referred to as solution B).

Cys(Acm)−ヒトBNP−26 89.0mgを90%酢酸5mlに溶
かしたものをA液30mlに室温下撹拌しながら滴下し、20
分間さらに撹拌した。その後、B液をヨウ素のかっ色が
消えるまで滴下した。このものに水500mlを加えて希釈
し、30mlのODS樹脂〔LC−Sorb(ケムコ製)〕を充填し
たカラム(φ2×9.5cm)に吸着させた。これを0.1N−
酢酸でよく洗浄した後、0.1%TFAを含む60%アセトニト
リル60mlで溶出した。アセトニトリルを減圧留去後、凍
結乾燥し、粗ヒトBNP−26 60.0mgを得た。このもとを1
N−酢酸4mlに溶かし、4回に分けて逆相HPLCにかけた
〔カラム:ヌクレオシル120−5C18,φ20×250mm,流速5m
l/分,溶媒系;(A)水:アセトニトリル:10%TFA=9
0:10:1,(B)水:アセトニトリル:10%TFA=40:60:1,
(A):(B)=90:10から(A):(B)=55:45まで
の120分間の直線グラジエント〕。この操作を4回繰り
返し、62〜66分のメインピークを分取した。この分画
を、減圧下アセトニトリルを留去後、凍結乾燥して、25
mgのヒトBNP−26を得た。
A solution prepared by dissolving 89.0 mg of Cys (Acm) -human BNP-26 in 5 ml of 90% acetic acid was added dropwise to 30 ml of solution A while stirring at room temperature.
Stirred for another minute. Thereafter, solution B was added dropwise until the brown color of iodine disappeared. This was diluted with 500 ml of water and adsorbed on a column (φ2 × 9.5 cm) packed with 30 ml of ODS resin [LC-Sorb (Chemco)]. 0.1N−
After washing well with acetic acid, elution was carried out with 60 ml of 60% acetonitrile containing 0.1% TFA. After acetonitrile was distilled off under reduced pressure, the residue was freeze-dried to obtain 60.0 mg of crude human BNP-26. This one
The residue was dissolved in 4 ml of N-acetic acid and subjected to reverse phase HPLC in four portions [column: nucleosyl 120-5C18, φ20 × 250 mm, flow rate 5 m
l / min, solvent system; (A) water: acetonitrile: 10% TFA = 9
0: 10: 1, (B) water: acetonitrile: 10% TFA = 40: 60: 1,
(A): (B) = 90: 10 to (A) :( B) = 55: 45 linear gradient for 120 minutes]. This operation was repeated four times, and a main peak at 62 to 66 minutes was collected. After acetonitrile was distilled off under reduced pressure, this fraction was lyophilized to give 25
mg of human BNP-26 was obtained.

Cys(Acm)−ヒトBNP−32の合成 保護ヒトBNP−32 700mgを前記と同様に、チオアニ
ソールと共にTFA,TMSBr及びエタンジオールにより、樹
脂からの脱離、脱保護を行ない、さらに逆相HPLCによる
精製によりCys(Acm)−ヒトBNP−32を60.0mg得た。
Synthesis of Cys (Acm) -human BNP-32 700 mg of protected human BNP-32 was desorbed and deprotected from the resin with TFA, TMSBr and ethanediol together with thioanisole in the same manner as described above, followed by reverse phase HPLC. Purification yielded 60.0 mg of Cys (Acm) -human BNP-32.

ヒトBNP−32の合成 Cys(Acm)−ヒトBNP−32 60.0mgを前記と同様
に、ヨードによる脱Acm、環化を行ない、粗ヒトBNP−32
20.0mgを得た。次にこのものを1N−酢酸4mlに溶か
し、4回に分けて逆相HPLCにかけた〔カラム:ヌクレオ
シル120−5C18,φ20×250mm,流速5ml/分,溶媒系;
(A)水:アセトニトリル:10%TFA=90:10:1,(B)
水:アセトニトリル:10%TFA=40:60:1,(A):(B)
=90:10から(A):(B)=55:45までの120分間の直
線グラジエント〕。この操作を4回繰り返し、61〜64分
のメインピークを分取した。減圧下アセトニトリルを留
去後、凍結乾燥し、5mgのヒトBNP−32を得た。
Synthesis of human BNP-32 Cys (Acm) -human BNP-32 (60.0 mg) was de-Acmized with iodine and cyclized in the same manner as described above to obtain crude human BNP-32.
20.0 mg were obtained. Next, this was dissolved in 1N-acetic acid (4 ml) and subjected to reversed phase HPLC in four portions [column: nucleosyl 120-5C18, φ20 × 250 mm, flow rate 5 ml / min, solvent system;
(A) Water: acetonitrile: 10% TFA = 90: 10: 1, (B)
Water: acetonitrile: 10% TFA = 40: 60: 1, (A): (B)
= 90: 10 to (A) :( B) = 55:45 linear gradient for 120 minutes]. This operation was repeated four times, and a main peak at 61 to 64 minutes was collected. After acetonitrile was distilled off under reduced pressure, the residue was freeze-dried to obtain 5 mg of human BNP-32.

(2) 物理化学的性質 上記(1)において得られたヒトBNP−26及び32の物
理化学的性質は、次の通りであった。
(2) Physicochemical properties The physicochemical properties of human BNP-26 and 32 obtained in (1) above were as follows.

(a) 性状 白色粉末 (b) 溶媒に対する溶解性 水、酸性水溶液、酢酸に可溶。クロロホルム、ベンゼ
ン、エチルエーテル、ヘキサンに不溶。
(A) Properties White powder (b) Solubility in solvent Soluble in water, acidic aqueous solution, and acetic acid. Insoluble in chloroform, benzene, ethyl ether and hexane.

(c) 酸性、中性、塩基性の別 塩基性 (d)アミノ酸組成 第1表の通り。(C) Acidity, neutrality, basicity and basicity (d) Amino acid composition As shown in Table 1.

【図面の簡単な説明】[Brief description of the drawings]

第1−A図はヒヨコ直腸標本に本発明のヒトBNP−26を1
00ng投与した時の弛緩長さの経時変化、第1−B図はヒ
ヨコ直腸標本に本発明のヒトBNP−32を200ng投与した時
の弛緩長さの経時変化を示す図面である。
FIG. 1-A shows that human BNP-26 of the present invention was added to a chick rectal specimen.
FIG. 1-B is a graph showing the time-dependent change in the relaxation length when 200 ng of the human BNP-32 of the present invention was administered to a chick rectal specimen.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 泉 篤志 東京都墨田区業平5丁目5番12号 第一 化学薬品株式会社東京技術センター内 (72)発明者 高島 美加 東京都墨田区業平5丁目5番12号 第一 化学薬品株式会社東京技術センター内 (72)発明者 松尾 壽之 宮崎県宮崎郡清武町大字木原6653番地 (56)参考文献 特表 平3−505280(JP,A) ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Atsushi Izumi 5-5-12, Nippondaira, Sumida-ku, Tokyo Daiichi Chemical Co., Ltd. Tokyo Technical Center (72) Inventor Mika Takashima 5-5-Norihira, Sumida-ku, Tokyo No. 12 Daiichi Kagaku Co., Ltd. Tokyo Technical Center (72) Inventor Toshiyuki Matsuo 6553 Kihara, Kiyotake-cho, Miyazaki-gun, Miyazaki Prefecture (56) References Table 3-505280 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ヒスチジンの保護誘導体を不溶性樹脂に導
入し、これに保護アミノ酸を順次結合させて保護ペプチ
ド樹脂を合成した後、システイン以外のアミノ酸の保護
基を除去するとともに樹脂からペプチドを切断し、次い
でこれをヨウ素で酸化することにより、システインの保
護基を脱離させると同時にペプチド分子内の2つのシス
テインのチオール基によるジスルフィド結合を形成させ
ることを特徴とする一般式(I) (式中、XはH、H−Gly−Ser−Gly−又はH−Ser−Pr
o−Lys−Met−Val−Gln−Gly−Ser−Gly−を示す) で表わされる生理活性ペプチドの製造方法。
1. A protected histidine derivative is introduced into an insoluble resin, and a protected amino acid is sequentially bonded thereto to synthesize a protected peptide resin. Then, the protecting group of amino acids other than cysteine is removed and the peptide is cleaved from the resin. And then oxidizing it with iodine to remove the protecting group of cysteine and simultaneously form a disulfide bond by the thiol group of two cysteines in the peptide molecule. (Wherein X is H, H-Gly-Ser-Gly- or H-Ser-Pr
o-Lys-Met-Val-Gln-Gly-Ser-Gly-).
JP1059183A 1989-03-01 1989-03-10 Novel bioactive peptide and its use Expired - Lifetime JP2883903B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP1059183A JP2883903B2 (en) 1989-03-10 1989-03-10 Novel bioactive peptide and its use
DE69020755T DE69020755T3 (en) 1989-03-01 1990-03-01 Physiologically active polypeptide and DNA.
DK90104021T DK0385476T4 (en) 1989-03-01 1990-03-01 Physiologically active polypeptide and DNA
EP90104021A EP0385476B2 (en) 1989-03-01 1990-03-01 Physiologically active polypeptide and DNA
ES90104021T ES2076981T5 (en) 1989-03-01 1990-03-01 PHYSIOLOGICALLY ACTIVE POLYPEPTIDE AND ITS DNA.
AT90104021T ATE124994T1 (en) 1989-03-01 1990-03-01 PHYSIOLOGICALLY ACTIVE POLYPEPTIDE AND DNA.
US08/192,800 US7211380B1 (en) 1989-03-01 1994-02-07 Physiologically active polypeptide and DNA
US09/902,161 US20020086843A1 (en) 1989-03-01 2001-07-11 Physiologically active polypeptide and DNA
US10/335,847 US20030162710A1 (en) 1989-03-01 2003-01-03 Physiologically active polypeptide and DNA
CL200401266A CL2004001266A1 (en) 1989-03-01 2004-05-25 PROCEDURE FOR THE PREPARATION OF A DNA FRAGMENT THAT CODIFIES A HUMAN BRAIN POLYPEPTIDE AND HAS NATURAL ACTIVITY; POLYPEPTIDE PREPARATION PROCEDURE; DNA FRAGMENT; POLYPEPTIDE.
US11/737,521 US20090105464A1 (en) 1989-03-01 2007-04-19 Physiologically active polypeptide and dna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1059183A JP2883903B2 (en) 1989-03-10 1989-03-10 Novel bioactive peptide and its use

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10131506A Division JP3025672B2 (en) 1998-05-14 1998-05-14 Novel bioactive peptides and their uses

Publications (2)

Publication Number Publication Date
JPH02237999A JPH02237999A (en) 1990-09-20
JP2883903B2 true JP2883903B2 (en) 1999-04-19

Family

ID=13106039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1059183A Expired - Lifetime JP2883903B2 (en) 1989-03-01 1989-03-10 Novel bioactive peptide and its use

Country Status (1)

Country Link
JP (1) JP2883903B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1339210C (en) * 1988-05-31 1997-08-05 John Lewicki Recombinant techniques for production of novel natriuretic and vasodilator peptides

Also Published As

Publication number Publication date
JPH02237999A (en) 1990-09-20

Similar Documents

Publication Publication Date Title
US5583108A (en) Vasonatrin peptide and analogs thereof
JP4130671B2 (en) Method for preparing cardiodilatin fragments
EP0561412B1 (en) Parathyroid hormone derivatives
EP0477885B1 (en) Parathyroid hormone derivatives
JP2850259B2 (en) Cyclic analogs of atrial natriuretic peptides
EP0356124A2 (en) Atrial natriuretic peptide clearance inhibitors
JPS6319520B2 (en)
JPS62129297A (en) Calcitonin gene related peptide derivative
US20090105464A1 (en) Physiologically active polypeptide and dna
EP0270376B1 (en) Calcitonin gene-related peptide derivatives
JP2819467B2 (en) Novel cardiodilatin fragment and method for producing the same
JP2544929B2 (en) Novel bioactive peptide
EP0385476B2 (en) Physiologically active polypeptide and DNA
US4824937A (en) Synthetic natriuretic peptides
EP0283956B1 (en) Fluorine containing atrial natriuretic peptides
AU8237187A (en) Derivatives of atrial natriuretic peptides
US4721704A (en) Potent synthetic atrial peptide analogs
JP2883903B2 (en) Novel bioactive peptide and its use
EP0185320B1 (en) Partially modified, retro-inverso neurotensin analogs
JP3025672B2 (en) Novel bioactive peptides and their uses
EP0300737B1 (en) Calcitonin gene related peptide derivatives
JP3264439B2 (en) Novel bioactive peptides and their uses
JP3258639B2 (en) Novel bioactive peptides and their uses
US7211380B1 (en) Physiologically active polypeptide and DNA
KR0141973B1 (en) Physiologically active peptide and calcium metabolism-regulating agent comprising said peptide as active ingredient

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080212

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090212

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100212

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100212

Year of fee payment: 11