JP2883341B2 - Structure of steam turbine, steam generation system for steam turbine, and operation method thereof - Google Patents

Structure of steam turbine, steam generation system for steam turbine, and operation method thereof

Info

Publication number
JP2883341B2
JP2883341B2 JP63293588A JP29358888A JP2883341B2 JP 2883341 B2 JP2883341 B2 JP 2883341B2 JP 63293588 A JP63293588 A JP 63293588A JP 29358888 A JP29358888 A JP 29358888A JP 2883341 B2 JP2883341 B2 JP 2883341B2
Authority
JP
Japan
Prior art keywords
steam
heater
section
pressure section
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63293588A
Other languages
Japanese (ja)
Other versions
JPH02140404A (en
Inventor
政晴 石井
至文 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63293588A priority Critical patent/JP2883341B2/en
Publication of JPH02140404A publication Critical patent/JPH02140404A/en
Application granted granted Critical
Publication of JP2883341B2 publication Critical patent/JP2883341B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、使用熱源の範囲を拡大し得るように改良し
て、比較的低カロリーの不安定な熱源を用いるに好適な
ように構成した蒸気タービンの構造、及び、比較的低カ
ロリーの不安定な熱源を用いて蒸気タービン駆動用の蒸
気を発生させるに好適なように改良した蒸気発生系統、
並びに、上記蒸気発生系統の運用方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention has been modified so as to be able to expand the range of heat sources used, and is configured to be suitable for using an unstable heat source having a relatively low calorie. A steam turbine structure, and a steam generation system improved so as to be suitable for generating steam for driving the steam turbine by using an unstable heat source having a relatively low calorie;
Also, the present invention relates to an operation method of the steam generation system.

〔従来の技術〕 従来、蒸気タービンは非再熱式から出発して改良が重
ねられ、蒸気タービンプラントの効率を改善するために
再熱式が開発されて今日に至っている。
2. Description of the Related Art Conventionally, steam turbines have been improved continuously starting from non-reheat steam turbines, and reheat steam turbines have been developed to improve the efficiency of steam turbine plants.

これら従来例の蒸気タービンは、主として化石燃料を
熱源とし、高カロリーの安定した供給熱源の存在を前提
として構成され、運用されている。
These conventional steam turbines are mainly configured and operated on the premise of a high calorie and stable supply heat source mainly using fossil fuel as a heat source.

従来の蒸気タービンプラントでは非再熱式蒸気タービ
ン系統の単独運用、あるいは再熱式蒸気タービン系統の
単独運用としており、再熱式,非再熱式を併用した前例
は無い。
In a conventional steam turbine plant, the non-reheated steam turbine system is operated independently or the reheated steam turbine system is operated alone, and there is no precedent for using both the reheated and non-reheated steam turbine systems.

熱併給形の蒸気タービンでは、高圧部と中圧部との間
に制御弁を設けて、後段に流れる蒸気流量を制御する方
法をとっている。この種の技術に関しては特公昭60−44
481号が公知である。
In a cogeneration steam turbine, a control valve is provided between a high-pressure section and an intermediate-pressure section to control the flow rate of steam flowing downstream. Regarding this kind of technology, Japanese Patent Publication No. 60-44
No. 481 is known.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来の蒸気タービンに関する技術的改良は、石炭又は
石油をエネルギ源として熱効率の向上,発生動力単価の
低減に傾注されてきた。
Technical improvements related to conventional steam turbines have been focused on improving thermal efficiency and reducing the unit cost of generated power using coal or petroleum as an energy source.

しかし乍ら、これら化石燃料の埋蔵量が有限であるこ
と、並びに、その輸入量や価格が国際情勢の影響を受け
易いことを考えると、使用し得る燃料の範囲を拡大する
ことについて真剣な努力が要請される。これは我国産業
の発達に寄与する百年の計である。
However, given the limited reserves of these fossil fuels and the fact that their imports and prices are susceptible to international affairs, serious efforts are being made to expand the range of fuels that can be used. Is requested. This is a hundred years of contribution to the development of Japan's industry.

ところが、今まで実用化されなかった太陽熱エネル
ギ、ゴミ焼却エネルギ、粗悪炭エネルギ、粗悪液体エネ
ルギ、及び粗悪ガスエネルギ(以下、未来形エネルギと
いう)には、安価であるという長所の反面、それぞれ実
用化を妨げる原因が有った。
However, solar heat energy, garbage incineration energy, crude coal energy, crude liquid energy, and crude gas energy (hereinafter referred to as future energy), which have not been put to practical use, have the advantage that they are inexpensive, but they have each been put into practical use. There was a cause that hindered.

こうした不具合の原因を解明して、その不具合を解消
しなければ未来形エネルギ源の実用段階に到達できな
い。
Unless the cause of such a problem is clarified and the problem is eliminated, the practical stage of the future energy source cannot be reached.

未来形エネルギ源に共通する「使いにくさ」はこれを
要約すると、主として、 (i) 発熱量が比較的低いこと。
The “unusability” common to future energy sources can be summarized as follows: (i) The calorific value is relatively low.

(ii) 発熱量が不安定であること。(Ii) The calorific value is unstable.

である。It is.

本発明はこうした事情に鑑みて為されたもので、安価
ではあるが不安定な低カロリ熱源を用いるに好適な蒸気
タービン構造、不安定な低カロリ熱源を用いるに好適な
蒸気タービン用蒸気発生系統、及び、その運用方法を提
供することを目的とする。
The present invention has been made in view of such circumstances, and is a steam turbine structure suitable for using an inexpensive but unstable low-calorie heat source, and a steam generation system for a steam turbine suitable for using an unstable low-calorie heat source. And an operation method thereof.

〔課題を解決するための手段〕[Means for solving the problem]

従来の火力発電所用の燃料に比して低カロリで不安定
な未来形エネルギ源に好適な蒸気タービンとして創作し
た本発明の構造について、その基本的原理を略述すると
次の如くである。
The basic principle of the structure of the present invention created as a steam turbine suitable for a future energy source which is less caloric and unstable than fuel for a conventional thermal power plant is briefly described as follows.

(a)発生熱量が不安定であれば、発生蒸気の温度や圧
力も不安定となる。こうした問題に対応するため、本発
明の蒸気タービン構造は、再熱式蒸気タービンとしての
運転と、非再熱式蒸気タービンとしての運転とを迅速,
容易に切り換えることができ、しかも、非再熱式タービ
ンとして運転する際の蒸気エネルギの損失を軽減し得る
ような構造とする。その具体的な構成としては、 高圧部の蒸気流動方向と中圧部の蒸気流動方向とを同
一ならしめて配設し、高圧部最終段と中圧部初段とを近
接せしめ、 上記高圧部最終段と中圧部初段との間に蒸気の流動を
阻止する仕切板を設け、 上記の仕切板に開口を設けると共に、該開口を閉止,
解放操作し得る高中圧連絡弁を設置し、 上記仕切板によって区画された高圧部の下流端に、加
熱器再熱部の蒸気流入口に接続された高圧部下流端開口
を設け、 上記仕切板によって区画された中圧部の上流端に、加
熱器再熱部の蒸気流出口に接続配管された中圧部上流端
開口を設け、かつ、上記接続配管に戻り蒸気止め弁を設
ける。
(A) If the amount of generated heat is unstable, the temperature and pressure of the generated steam also become unstable. In order to cope with such a problem, the steam turbine structure of the present invention enables the operation as a reheated steam turbine and the operation as a non-reheated steam turbine to be performed quickly.
The structure is such that it can be easily switched and the loss of steam energy when operating as a non-reheat turbine can be reduced. As a specific configuration, the steam flow direction of the high-pressure section and the steam flow direction of the medium-pressure section are equalized and arranged, and the high-pressure section final stage and the medium-pressure section first stage are brought close to each other. A partition plate for preventing the flow of steam is provided between the partition plate and the first stage of the intermediate-pressure section; an opening is provided in the partition plate;
A high-medium pressure communication valve that can be opened is installed, and a high-pressure part downstream end opening connected to a steam inlet of the heater reheating part is provided at a downstream end of the high-pressure part partitioned by the partition plate. At the upstream end of the intermediate pressure section defined by the above, an intermediate pressure section upstream end opening connected to the steam outlet of the heater reheating section is provided, and a return steam stop valve is provided in the connection pipe.

また、上記の構成において高中圧連絡弁を省略するこ
とも出来る。
Further, in the above configuration, the high / intermediate pressure communication valve can be omitted.

更に、前述の如く低カロリーで不安定な未来形エネル
ギ源を用いて蒸気を発生させて蒸気タービンに供給する
ために創作した本発明の蒸気発生系統は、未来形エネル
ギ源を用いる第1の加熱器と、従来形エネルギ源を用い
る第2の加熱器とを併設する。
Further, as described above, the steam generation system of the present invention created for generating steam using the low-calorie and unstable future energy source and supplying the steam to the steam turbine has the first heating system using the future energy source. And a second heater using a conventional energy source.

そして、この併設形蒸気発生系統を運用するために創
作した本発明の方法は、定常時には未来形エネルギ源を
用いて第1の加熱器を運転し、この第1の加熱器の発生
する蒸気のエネルギ量が不足した場合、従来形エネルギ
源を用いて第2の加熱器を運転する。
The method of the present invention created to operate this side-mounted steam generation system operates the first heater using a future energy source in a steady state, and the steam generated by the first heater is operated. If the amount of energy is insufficient, the second heater is operated using a conventional energy source.

〔作用〕[Action]

前述の如く、高圧部の蒸気流動方向と中圧部の蒸気流
動方向とを同一に設定すると、高圧部の排気を再熱する
ことなく中圧部へ供給する際に蒸気の流路が短く、蒸気
エネルギの損失が少ない。その上、蒸気タービン全体と
しての(高圧部,中圧部を総合しての)構成が簡単でコ
ンパクトになる。
As described above, when the steam flow direction of the high pressure section and the steam flow direction of the medium pressure section are set to be the same, the steam flow path is short when supplying the exhaust gas of the high pressure section to the medium pressure section without reheating, Low loss of steam energy. In addition, the configuration of the steam turbine as a whole (combining the high-pressure section and the medium-pressure section) is simple and compact.

こうした構成を用いる場合、高圧部と中圧部との間に
仕切板および弁手段を設けておくと、再熱形としてのパ
ターンと非再熱形としてのパターンとの切替が容易にか
つ確実に行われる。
When using such a configuration, if a partition plate and valve means are provided between the high-pressure section and the medium-pressure section, switching between the pattern as the reheat type and the pattern as the non-reheat type can be easily and reliably performed. Done.

また、前述の第1の加熱器と第2の加熱器とを併設し
て、定常状態においては安価な未来形エネルギ源を用い
て発生蒸気単価を下げ、該未来形エネルギ源特有の不安
定さの故に発生蒸気のカロリが不足した場合には従来形
エネルギ源(良質石炭,良質石油,良質天然ガス)を用
いて第2の加熱器を運転し、不足エネルギを補う(部分
的に補ってもよく、全面的に切り替えてもよい)。これ
により、蒸気タービンに対して必要な蒸気動力の供給を
維持することが出来る。
In addition, the above-described first heater and second heater are provided side by side, and in the steady state, the unit price of generated steam is reduced by using an inexpensive future energy source, and the instability peculiar to the future energy source is reduced. Therefore, when the calorie of the generated steam is insufficient, the second heater is operated by using the conventional energy source (high quality coal, high quality oil, high quality natural gas) to compensate for the insufficient energy (even if the energy is partially compensated). Well, you may switch entirely). Thereby, the supply of the necessary steam power to the steam turbine can be maintained.

〔実施例〕 第1図は本発明に係る蒸気タービン構造の一実施例を
示す縦断面図である。
Embodiment FIG. 1 is a longitudinal sectional view showing one embodiment of a steam turbine structure according to the present invention.

主蒸気は、タービン蒸気室11、蒸気加減弁12、及びノ
ズル蒸気室13を介して高圧部16の初段ノズル14に供給さ
れ、初段動翼15に吹きつけられる。その後、図の右方に
向けて高圧部最終段19まで流動しつつ仕事をする。
The main steam is supplied to the first stage nozzle 14 of the high-pressure section 16 through the turbine steam chamber 11, the steam control valve 12, and the nozzle steam chamber 13, and is blown to the first stage rotor blades 15. Thereafter, the work is performed while flowing toward the right side of the figure to the final stage 19 of the high pressure section.

図示の18は中圧部であって、21はその初段である。こ
のように、中圧部18も蒸気の流動方向が図の右向きとな
るように設定されている。
In the drawing, reference numeral 18 denotes an intermediate pressure portion, and reference numeral 21 denotes a first stage thereof. As described above, the medium pressure section 18 is also set so that the flowing direction of the steam is rightward in the drawing.

高圧部16の蒸気流動方向と中圧部18の蒸気流動方向と
を同一とした結果、高圧部最終段19と中圧部初段21とが
近接して対向する。
As a result of making the steam flow direction of the high pressure section 16 and the steam flow direction of the intermediate pressure section 18 the same, the high pressure section final stage 19 and the intermediate pressure section first stage 21 are opposed to each other in close proximity.

上記の対向部を仕切る形に仕切板20を設け、かつ、上
記仕切板で区画された高,中圧部を連通せしめたり遮断
したり出来る構造の高中圧連絡弁17を設ける。
A partition plate 20 is provided in such a manner as to partition the facing portion, and a high / medium pressure communication valve 17 having a structure capable of communicating or blocking the high / medium pressure portions partitioned by the partition plate is provided.

本例の高圧部16のケーシングは一重構造に構成されて
いる。本例の高圧部16は、低カロリーの未来形エネルギ
源によって発生せしめられた主蒸気の供給を受けるの
で、二重構造にしなくてもその圧力に耐えることが出
来、一重構造とすることによって全体的な形状,寸法が
コンパクトになる。
The casing of the high-pressure unit 16 of the present example has a single-layer structure. The high-pressure section 16 of the present example receives the supply of main steam generated by a low-calorie future energy source, so that it can withstand the pressure without having a double structure, and by employing a single structure, Shape and dimensions are compact.

前記の高,中圧連絡弁17は、オン・オフ的制御しか出
来ない止め弁形のものではなく、流量制御機能を備えた
調整弁によって構成する。
The high / medium pressure communication valve 17 is not a stop valve type that can perform only ON / OFF control, but is constituted by a regulating valve having a flow rate control function.

前記の仕切板20を介してその両側に、即ち、高圧部16
の下流側の端と中圧部18の上流側の端とに、それぞれ高
圧部下流端開口22、及び中圧部上流端開口23を設ける。
On both sides through the partition plate 20, that is, the high-pressure section 16
A high-pressure section downstream end opening 22 and a medium-pressure section upstream end opening 23 are provided at the downstream end and the intermediate pressure section 18 at the upstream end, respectively.

上記高圧部下流端開口22は、再熱蒸気元止め弁24を介
して加熱器再熱部27の蒸気流入口に接続する。
The high-pressure section downstream end opening 22 is connected to a steam inlet of a heater reheating section 27 via a reheat steam main stop valve 24.

また、中圧部上流端開口23は、戻り蒸気止め弁26、及
び、流量制御機能を有する戻り蒸気調整弁25を直列に介
して加熱器再熱部27の蒸気流出口に接続配管されてい
る。
Further, the intermediate pressure portion upstream end opening 23 is connected to a steam outlet of the heater reheating unit 27 via a return steam stop valve 26 and a return steam regulating valve 25 having a flow rate control function in series. .

前記の高中圧連絡弁17を閉止すると、高圧部16で仕事
をした蒸気は高圧部最終段19を通過した後、高圧部下流
端開口22を通って加熱器再熱部27の蒸気流入口に導かれ
る。
When the high-medium pressure communication valve 17 is closed, the steam that has worked in the high-pressure section 16 passes through the high-pressure section final stage 19, and then passes through the high-pressure section downstream end opening 22 to the steam inlet of the heater reheating section 27. Be guided.

ここで再加熱された再熱蒸気は、中圧部上流端開口23
を通って中圧部18に導かれる。即ち、この蒸気タービン
は再熱運用される。
The reheated steam reheated here is the intermediate pressure section upstream end opening 23
Through to the medium pressure section 18. That is, the steam turbine is operated for reheating.

前記の高,中圧連絡弁17を開放すると、高圧部16で仕
事をした蒸気は該高,中圧連絡弁17を流通して中圧部18
に流入する。この場合の蒸気流路は蒸気タービン外部配
管を経由しないので配管による蒸気エネルギ損失を生じ
ない。
When the high / medium pressure communication valve 17 is opened, the steam that has worked in the high pressure section 16 flows through the high / medium pressure communication valve 17 and passes through the medium pressure section 18.
Flows into. In this case, since the steam flow path does not pass through the steam turbine external piping, no steam energy loss occurs due to the piping.

この場合(高中圧連絡弁17開)、戻り蒸気止め弁26を
閉止すれば、再熱系に蒸気が流れず非再熱運用される。
In this case (when the high / medium pressure communication valve 17 is opened), if the return steam stop valve 26 is closed, steam does not flow to the reheating system, and non-reheating operation is performed.

この例の蒸気タービン(第1図)は、例えば太陽熱発
電に適用すると効果が大きい。
The effect of the steam turbine of this example (FIG. 1) is great when applied to, for example, solar thermal power generation.

通常、太陽熱発電そのものは、当然太陽光が比較的常
時強い場所に設置されるものであるが、曇りの日又は夜
間には需要に対する発電可能量の不足が考えられこれを
埋めるために、化石燃料をベースとしたボイラを設置す
るなどの方法がとられる。運用形態を考慮した場合、常
時利用する運用、すなわち、本来エネルギと称するエネ
ルギの場合熱源のカロリが比較的低いので、必要なトー
タルエネルギを得るため豊富なエネルギを利用し(言い
替えればエネルギ密度が散漫)、再熱式を採用し、短時
間運用する補完的な立場のボイラ運転の場合は設備費を
押えて簡単な非再熱式を採用することが好ましい。
Normally, solar thermal power generation itself is naturally installed in a place where sunlight is relatively strong at all times.However, on a cloudy day or at night, there is a shortage of power that can be generated against demand, and fossil fuel For example, a method of installing a boiler based on the above is adopted. In consideration of the operation mode, in the case of operation that is always used, that is, in the case of energy originally called energy, since the calorie of the heat source is relatively low, abundant energy is used to obtain the necessary total energy (in other words, the energy density is diffused). In the case of a boiler operation of a complementary standpoint of adopting a reheat type and operating for a short time, it is preferable to adopt a simple non-reheat type while suppressing the equipment cost.

このような運用はさらにゴミ焼却で発生する熱を回収
するボイラや粗悪炭を燃焼するボイラにも利用される。
ごみの中に混在される水分のため比較的昇温が少ないば
かりでなく計画値に対して昇温がままならぬ場合等に一
般商用として用いられるボイラによる蒸気で補完してや
る必要がでてくる。
Such operations are also used in boilers that recover heat generated by garbage incineration and boilers that burn crude coal.
It is necessary to supplement with steam from a boiler used for general commercial use when not only the temperature rise is relatively low due to the moisture mixed in the garbage but also the temperature rise does not remain as planned.

前記の高中圧連絡弁17を、単なるオン・オフ作動をす
る止め弁とせず、流量制御機能を有する調整弁で構成し
ておくと、再熱式運用と非再熱式運用の混合運用を行う
ことも可能である。
If the high-to-medium pressure communication valve 17 is not a stop valve that performs a mere on / off operation, but is configured with a regulating valve having a flow control function, a mixed operation of a reheat type operation and a non-reheat type operation is performed. It is also possible.

また、高圧排気部に加熱器再熱部への蒸気の流れを閉
止する再熱蒸気元止め弁24を設けることにより、非再熱
運用の場合戻り蒸気止め弁26だけで蒸気の流れを閉止す
る場合に比べ蒸気の流れが通常の非再熱タービンと同様
となり系統的に安定させることができる。
In addition, by providing a reheat steam stop valve 24 for closing the flow of steam to the heater reheating unit in the high pressure exhaust unit, the steam flow is closed only by the return steam stop valve 26 in the case of non-reheat operation. Compared to the case, the flow of steam is the same as that of a normal non-reheat turbine, and can be systematically stabilized.

第2図は前記と異なる実施例を示す。前例(第1図)
に比して異なる点は、高圧部28と中圧部29とを仕切って
いる仕切板31に弁手段を設けていないことであり、その
他の構成は前例(第1図)と類似である。この実施例
(第2図)においては再熱蒸気元止め弁24は不要であ
る。
FIG. 2 shows an embodiment different from the above. Previous example (Fig. 1)
The difference from this is that no valve means is provided on the partition plate 31 that separates the high-pressure section 28 and the medium-pressure section 29, and the other configuration is similar to the previous example (FIG. 1). In this embodiment (FIG. 2), the reheat steam main stop valve 24 is unnecessary.

本例(第2図)は、前例(第1図)において高中圧連
絡弁17を締め切った場合と同様に機能する。即ち、高圧
部28で仕事をした蒸気は高圧部最終段30を通過後仕切板
31によって中圧部への流入をさえぎられ、高圧部端開口
22′を通り加熱器再熱部27に送られる。加熱器で再熱さ
れた高温再熱蒸気は中圧部端開口23′を通って中圧部に
戻される。従って、本例によれば、高圧部と中圧部間に
仕切板31を設け、高圧部下流端開口22′と中圧部上流端
開口23′間に戻り蒸気調整弁25′,戻り蒸気止め弁26′
を有する配管を設けることにより、高圧部から中圧部へ
供給する蒸気の流路を短くすることができ、それだけ蒸
気エネルギの損失を少なくできる結果、比較的低いカロ
リーで不安定な本タービン構造は再熱式運用の蒸気ター
ビン構造であり、未来形エネルギ源を用いた加熱器に適
用するに好適で、構造をコンパクトにすることができ
る。
This example (FIG. 2) functions in the same manner as the previous example (FIG. 1) in which the high / medium pressure communication valve 17 is closed. That is, the steam that has worked in the high-pressure section 28 passes through the
The flow into the medium pressure section is blocked by 31 and the high pressure section end opening
It is sent to the heater reheating section 27 through 22 '. The high-temperature reheated steam reheated by the heater is returned to the medium pressure section through the medium pressure section end opening 23 '. Therefore, according to this embodiment, the partition plate 31 is provided between the high pressure section and the medium pressure section, and the return steam regulating valve 25 'and the return steam stop are provided between the high pressure section downstream end opening 22' and the medium pressure section upstream end opening 23 '. Valve 26 '
By providing the piping having the above structure, the flow path of the steam supplied from the high-pressure section to the medium-pressure section can be shortened, and the loss of steam energy can be reduced accordingly. It is a steam turbine structure of reheat type operation, suitable for application to a heater using a future energy source, and can be made compact in structure.

第3図は、発熱量が不安定で経時的に不測の変化をす
る未来形エネルギ源(例えばゴム焼却廃熱や太陽熱)を
熱源として、蒸気タービンを駆動する蒸気を発生させる
に好適なように創作した本発明に係る蒸気発生系統の一
実施例を示す系統図である。
FIG. 3 is a diagram showing a case in which a future energy source (eg, waste rubber incineration heat or solar heat) having an unstable heating value and undergoing an unexpected change with time is used as a heat source to generate steam for driving a steam turbine. BRIEF DESCRIPTION OF THE DRAWINGS It is a system diagram which shows one Example of the steam generation system based on the created this invention.

6は蒸気タービン高圧部、7は同中圧部、8は同低圧
部である。
Reference numeral 6 denotes a high pressure section of the steam turbine, 7 denotes an intermediate pressure section, and 8 denotes a low pressure section.

本例の蒸気発生系統は、第1図,第2図に示した本発
明の蒸気タービン構造と併用することが望ましいが、従
来例の再熱形蒸気タービンと併用することも可能であ
る。
The steam generation system of this embodiment is preferably used in combination with the steam turbine structure of the present invention shown in FIGS. 1 and 2, but can also be used in combination with a conventional reheated steam turbine.

1は第1の加熱器の主蒸気過熱部、2は同じく再熱部
で、両者によって第1の加熱器Iが構成されている。
Reference numeral 1 denotes a main steam superheater of the first heater, and 2 denotes a reheater, both of which constitute a first heater I.

3は第2の加熱器の主蒸気過熱部、4は同じく再熱部
で、両者によって第2の加熱器IIが構成されている。
Reference numeral 3 denotes a main steam superheater of the second heater, and reference numeral 4 denotes a reheater, both of which constitute a second heater II.

上記第1の加熱器Iは未来形エネルギ源(例えば太陽
熱,ゴミ焼却廃熱,粗悪炭)を熱源とする。
The first heater I uses a future energy source (for example, solar heat, waste incineration waste heat, or coarse coal) as a heat source.

また第2の加熱器IIは従来形の化石燃料(例えばLN
G、重油,良質炭など)を熱源とする。
The second heater II is a conventional fossil fuel (for example, LN
G, heavy oil, high-quality coal, etc.) as the heat source.

本例の蒸気発生系統を運用するには、定常状態におい
ては未来形エネルギ源を用いて第1の加熱器により蒸気
を発生させる。
In order to operate the steam generation system of the present example, in a steady state, steam is generated by the first heater using a future energy source.

第1の加熱器Iの熱源である未来形エネルギ源は、将
来的に豊富であり安価であるため、定常状態においては
発生させる蒸気の単価が安く、その上、資源供給に関す
る不安が無い。しかし、これら未来形エネルギ源は発生
熱量が不安定であって、 例えば太陽熱は天候の変化により、 ゴミ焼却廃熱はゴミ質変化や含有水分の変化により、 粗悪気体燃料は気温変化などにより、 発生熱量が変化して、発生蒸気の量,温度,圧力が変
化し、その予測が困難である。
The future energy source, which is the heat source of the first heater I, will be abundant and inexpensive in the future, so that the unit price of generated steam is low in a steady state, and further, there is no concern about resource supply. However, these future energy sources generate unstable heat, such as solar heat due to changes in weather, waste incineration waste heat due to changes in waste quality and water content, and poor gaseous fuel due to changes in temperature. As the amount of heat changes, the amount, temperature, and pressure of the generated steam change, and its prediction is difficult.

発生蒸気の保有エネルギが減少した場合,第1図に示
した蒸気タービン構造により、再熱運用,非再熱運用を
切り替え(混用も可能)対応するが、これらの操作によ
っては必ずしも完全な対応ができないので、蒸気保有エ
ネルギの不足を補うために構成した第3図の蒸気発生系
統(装置としての実施例)を用いた本発明に係る運用方
法の実施例について次に述べる。
When the retained energy of the generated steam decreases, the steam turbine structure shown in Fig. 1 switches between reheating operation and non-reheating operation (mixing is also possible), but depending on these operations, a complete response is not always possible. Since it is impossible, an embodiment of the operation method according to the present invention using the steam generation system (embodiment as an apparatus) of FIG. 3 configured to compensate for the shortage of the energy possessed by steam will be described below.

定常状態(第1図の実施例に係る蒸気タービン構造に
よって発生蒸気保有エネルギの変化に対応し得る状態)
においては、安価で豊富な未来形エネルギ源を熱源とし
て第1の加熱器Iで発生させた蒸気によって蒸気タービ
ンを駆動する。
Steady state (a state in which the steam turbine structure according to the embodiment in FIG. 1 can cope with a change in generated steam holding energy)
In, the steam turbine is driven by the steam generated by the first heater I using a cheap and abundant future energy source as a heat source.

第1図の実施例に係る蒸気タービン構造による対応可
能の範囲を越えて発生蒸気保有エネルギが減少した場
合、従来形の商用エネルギ源(例えば瀝青炭,LNG、A重
油など)を熱源として第2の加熱器IIを運転し、不足蒸
気を補う。
When the generated steam holding energy is reduced beyond the range that can be handled by the steam turbine structure according to the embodiment of FIG. 1, the conventional commercial energy source (for example, bituminous coal, LNG, heavy oil A, etc.) is used as a second heat source. Run Heater II to make up for the missing steam.

第1の加熱器Iが蒸気の発生を停止した場合(例え
ば、夜間における太陽熱の消失、粗悪燃料における保炎
の失敗など)には、全面的に第2の加熱器IIの発生蒸気
に切り替えて蒸気タービンの運転を継続する。
When the first heater I stops generating steam (for example, disappearance of solar heat at night, failure of flame holding in poor fuel, etc.), the steam is entirely switched to the steam generated by the second heater II. Continue operation of the steam turbine.

このようにして、本発明に係る蒸気タービン構造と、
本発明に係る蒸気発生系統とは相俟って、低カロリで不
安定な未来形エネルギ源利用の実現を可能ならしめる。
Thus, the steam turbine structure according to the present invention,
In combination with the steam generation system according to the present invention, it is possible to realize the use of a low-calorie and unstable future energy source.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明に係る蒸気タービン構造
と、蒸気タービン用蒸気発生系統及びその運用方法とは
産業上の利用分野(低カロリで不安定なエネルギ源を利
用した蒸気タービンの運転)を同じくし、 低カロリで不安定なエネルギ源の欠点をカバーして、
その実用化を図るという目的を達成する。
As described above, the steam turbine structure, the steam generation system for the steam turbine, and the operation method thereof according to the present invention are applicable to industrial fields (operation of a steam turbine using a low-calorie and unstable energy source). Similarly, covering the shortcomings of low calorie and unstable energy sources,
Achieve the purpose of putting it to practical use.

即ち、本発明に係る蒸気タービン構造は、高圧部にお
ける蒸気流動方向と中圧部における蒸気流動方向とを同
一として、高圧部最終段と中圧部初段とを近接せしめて
その間に仕切壁を設けたので、再熱運用,非再熱運用の
切換を容易かつ高効率で行うことができ、蒸気条件の変
化に順応性が高く、しかもコンパクトに構成することが
出来て、低カロリで不安定な熱源による発生蒸気条件の
変化に順応し得る。
That is, in the steam turbine structure according to the present invention, the steam flow direction in the high-pressure section is the same as the steam flow direction in the medium-pressure section, and the high-pressure section final stage and the intermediate-pressure section first stage are brought close to each other and a partition wall is provided therebetween. Therefore, switching between reheating operation and non-reheating operation can be performed easily and with high efficiency, it is highly adaptable to changes in steam conditions, and it can be made compact, low calorie and unstable. It can adapt to changes in the generated steam conditions due to the heat source.

また、本発明に係る蒸気発生系統により本発明に係る
蒸気発生系統の運用方法を実施すれば、定常状態では低
カロリで不安定な熱源を用いてコストの安い蒸気を蒸気
タービンに供給することができ、かつ、上記低カロリで
不安定な熱源による発生蒸気の保有エネルギが不足した
場合は通常の商用エネルギ源を使用して補うことができ
る。
Further, if the operation method of the steam generation system according to the present invention is performed by the steam generation system according to the present invention, low-cost and low-cost steam can be supplied to the steam turbine using an unstable heat source in a steady state. If the energy generated by the low calorie and unstable heat source is insufficient, it can be compensated by using a normal commercial energy source.

【図面の簡単な説明】[Brief description of the drawings]

第1図及び第2図はそれぞれ本発明に係る蒸気タービン
構造の一実施例を示す断面図である。 第3図は本発明に係る蒸気タービン用蒸気発生系統の一
実施例を示す系統図である。 I……第1の加熱器、II……第2の加熱器、1……第1
の加熱器の過熱部、2……第1の加熱器の再熱部、3…
…第2の加熱器の過熱部、4……第2の加熱器の再熱
部、6……蒸気タービン高圧部、7……同中圧部、8…
…同低圧部、16……蒸気タービン高圧部、17……高中圧
連絡弁、18……同中圧部、19……高圧部最終段、20……
仕切板、21……中圧部初段、22……高圧部下流端開口、
23……中圧部上流端開口、24……再熱蒸気元止め弁、25
……戻り蒸気調整弁、26……戻り蒸気調整弁。
1 and 2 are cross-sectional views each showing an embodiment of the steam turbine structure according to the present invention. FIG. 3 is a system diagram showing one embodiment of a steam generation system for a steam turbine according to the present invention. I: first heater, II: second heater, 1 ... first
, The superheated portion of the heater, 2... The reheated portion of the first heater, 3.
... A superheater section of the second heater, 4... A reheat section of the second heater, 6... A high pressure section of the steam turbine, 7.
... Low pressure section, 16 ... High pressure section of steam turbine, 17 ... High / medium pressure communication valve, 18 ... Medium pressure section, 19 ... Final stage of high pressure section, 20 ...
Partition plate, 21 ... First stage of medium pressure section, 22 ... Opening of downstream end of high pressure section,
23 …… Opening of the middle pressure section upstream end, 24 …… Reheat steam stop valve, 25
…… Return steam regulating valve, 26 …… Return steam regulating valve.

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】蒸気を発生する過熱部と、蒸気を加熱する
再熱部とよりなる加熱器から作動蒸気を供給され、かつ
高圧部と中圧部と低圧部とを1軸に連結した蒸気タービ
ンの構造において、 高圧部の蒸気流動方向と中圧部の蒸気流動方向とが同一
方向となるように配設し、 上記高圧部最終段と中圧部初段との間に蒸気の流動を阻
止すると仕切板を設け、 上記の仕切板に開口を設けると共に、該開口を閉止,開
放操作し得る高中圧連絡弁を設置し、 上記仕切板によって区画された高圧部の下流端に、加熱
器再熱部の蒸気流入口に接続された高圧部下流端開口を
設け、 上記仕切板によって区画された中圧部の上流端に、加熱
器再熱部の蒸気流出口に接続配管された中圧部上流端開
口部を設け、かつ、上記接続配管に戻り蒸気止め弁を設
けたことを特徴とする、蒸気タービンの構造。
1. Steam supplied with working steam from a heater comprising a superheating section for generating steam and a reheating section for heating the steam, and having a high-pressure section, a medium-pressure section and a low-pressure section connected in a single shaft. In the turbine structure, the steam flow direction of the high-pressure section and the steam flow direction of the medium-pressure section are arranged in the same direction, and the flow of steam is prevented between the final stage of the high-pressure section and the first stage of the medium-pressure section. Then, a partition plate is provided, an opening is provided in the partition plate, and a high-to-medium pressure communication valve capable of closing and opening the opening is provided. A heater is provided at a downstream end of the high-pressure section defined by the partition plate. A high pressure section downstream end opening connected to the steam inlet of the heating section is provided, and an intermediate pressure section connected to the steam outlet of the heater reheating section at an upstream end of the medium pressure section partitioned by the partition plate. An upstream end opening is provided, and a return steam stop valve is provided in the connection pipe. It characterized the structure of the steam turbine.
【請求項2】前記の高中圧連絡弁は、流量制御機能を有
する調整弁であることを特徴とする、請求項1に記載の
蒸気タービンの構造。
2. The structure of the steam turbine according to claim 1, wherein the high-to-medium pressure communication valve is a regulating valve having a flow control function.
【請求項3】前記高圧弁のタービンケーシングは一重構
造であることを特徴とする、請求項1又は同2に記載の
蒸気タービンの構造。
3. The steam turbine structure according to claim 1, wherein the turbine casing of the high-pressure valve has a single structure.
【請求項4】前記の高圧部下流端開口は、再熱蒸気止め
弁を解して加熱器再熱部流入口に接続されていることを
特徴とする、請求項1に記載の蒸気タービンの構造。
4. The steam turbine according to claim 1, wherein the high pressure section downstream end opening is connected to a heater reheating section inflow port through a reheat steam stop valve. Construction.
【請求項5】前記の加熱器再熱部流出口と中圧部上流端
開口との間に設けられた接続配管は、前記の戻り蒸気止
め弁及び、流量制御機能を有する戻り蒸気調整弁を有す
るものであることを特徴とする、請求項1又は同4に記
載の蒸気タービンの構造。
5. A connecting pipe provided between the outlet of the heater reheating section and the opening at the upstream end of the intermediate pressure section includes the return steam stop valve and the return steam regulating valve having a flow rate control function. The structure of the steam turbine according to claim 1, wherein the steam turbine has:
【請求項6】蒸気を発生する過熱部と、蒸気を加熱する
再熱部とよりなる加熱器から作動蒸気を供給され、かつ
高圧部と中圧部と低圧部とを1軸に連結した蒸気タービ
ンの構造において、 高圧部の蒸気流動方向と中圧部の蒸気流動方向とを同一
ならしめて配設し、 上記高圧部最終段と中圧部初段との間に蒸気の流動を阻
止する仕切板を設け、 上記仕切板によって区画された高圧部の下流端に、加熱
器再熱部の蒸気流入口に接続された高圧部下流端開口を
設け、 上記仕切板によって区画された中圧部の上流端に加熱器
再熱部の蒸気流出口と接続された中圧部上流端開口を設
け、 かつ加熱器再熱部の蒸気流出口と中圧部上流端開口との
接続配管が、戻り蒸気止め弁及び、流量制御機能を有す
る戻り蒸気調整弁を有することを特徴とする、蒸気ター
ビンの構造。
6. Steam which is supplied with working steam from a heater comprising a superheating section for generating steam and a reheating section for heating the steam, and which has a high-pressure section, a medium-pressure section and a low-pressure section connected in a single shaft. In the turbine structure, the steam flow direction of the high-pressure part and the steam flow direction of the medium-pressure part are arranged in the same manner, and a partition plate that prevents the flow of steam between the final stage of the high-pressure part and the first stage of the medium-pressure part A downstream end of a high-pressure section connected to a steam inlet of a heater reheating section at a downstream end of the high-pressure section partitioned by the partition plate, and an upstream of an intermediate-pressure section partitioned by the partition plate. At the end, an intermediate-pressure section upstream end opening connected to the steam outlet of the heater reheating section is provided, and the connecting pipe between the steam outlet of the heater reheating section and the intermediate pressure section upstream end opening is returned steam stop. Steam having a valve and a return steam regulating valve having a flow control function The structure of the turbine.
【請求項7】蒸気を発生する過熱部と、蒸気を加熱する
再熱部とを有し、比較的低いカロリーで発生熱量の不安
定な熱源を用いる第1の加熱器、並びに、蒸気を発生す
る過熱部と、蒸気を加熱する再熱部とを有し、比較的高
カロリーで発生熱量の安易低した熱源を用いる第2の加
熱器よりなることを特徴とする、蒸気タービン用蒸気発
生系統。
7. A first heater having a superheater for generating steam and a reheater for heating steam, using a heat source having a relatively low calorie and an unstable heat generation amount, and a steam generator. A steam generating system for a steam turbine, comprising a second heater using a heat source having a relatively high calorie and an easily reduced amount of generated heat having a superheating section for heating the steam and a reheating section for heating the steam. .
【請求項8】蒸気を発生する過熱部、蒸気を加熱する再
熱部とを有し、比較的低いカロリーで発生熱量の不安定
な熱源を用いる第1の加熱器、並びに、蒸気を発生する
過熱部と、蒸気を加熱する再熱部とを有し、比較的高カ
ロリーで発生熱量の安定した熱源を用いる第2の加熱器
よりなる蒸気発生系統から作動蒸気を供給される蒸気タ
ービンを運用する方法において、 定常状態においては第1の加熱器を運転すると共に第2
の加熱器を休止させ、 第1の加熱器の発生する蒸気エネルギが不足した場合、
第2の加熱器を併用し、若しくは第2の加熱器に切り替
えることを特徴とする、蒸気タービン用蒸気発生系統の
運用方法。
8. A first heater having a superheating section for generating steam, a reheating section for heating steam, and using a heat source having a relatively low calorie and generating an unstable amount of heat, and generating steam. Operates a steam turbine that has a superheater and a reheater that heats steam, and that is supplied with working steam from a steam generator system that includes a second heater that uses a heat source with a relatively high calorie and stable heat generation. In a steady state, operating the first heater and the second heater.
When the heater of the first heater is stopped, and the steam energy generated by the first heater is insufficient,
A method for operating a steam generation system for a steam turbine, wherein a second heater is used in combination or switched to a second heater.
JP63293588A 1988-11-22 1988-11-22 Structure of steam turbine, steam generation system for steam turbine, and operation method thereof Expired - Fee Related JP2883341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63293588A JP2883341B2 (en) 1988-11-22 1988-11-22 Structure of steam turbine, steam generation system for steam turbine, and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63293588A JP2883341B2 (en) 1988-11-22 1988-11-22 Structure of steam turbine, steam generation system for steam turbine, and operation method thereof

Publications (2)

Publication Number Publication Date
JPH02140404A JPH02140404A (en) 1990-05-30
JP2883341B2 true JP2883341B2 (en) 1999-04-19

Family

ID=17796668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63293588A Expired - Fee Related JP2883341B2 (en) 1988-11-22 1988-11-22 Structure of steam turbine, steam generation system for steam turbine, and operation method thereof

Country Status (1)

Country Link
JP (1) JP2883341B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2375009A3 (en) * 2010-04-07 2018-03-14 Kabushiki Kaisha Toshiba Steam turbine plant

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2333245A1 (en) * 2009-12-01 2011-06-15 Siemens Aktiengesellschaft Rotor assembly for a reheat steam turbine
JP5597016B2 (en) 2010-04-07 2014-10-01 株式会社東芝 Steam turbine plant
JP5479191B2 (en) 2010-04-07 2014-04-23 株式会社東芝 Steam turbine plant
EP2436885B1 (en) * 2010-09-29 2018-02-21 Siemens Aktiengesellschaft Steam turbine with a blindwall between adjacent pressure sections

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5119782Y2 (en) * 1971-01-19 1976-05-25

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2375009A3 (en) * 2010-04-07 2018-03-14 Kabushiki Kaisha Toshiba Steam turbine plant

Also Published As

Publication number Publication date
JPH02140404A (en) 1990-05-30

Similar Documents

Publication Publication Date Title
US6604354B2 (en) Combined cycle power plant
US7621133B2 (en) Methods and apparatus for starting up combined cycle power systems
US5606858A (en) Energy recovery, pressure reducing system and method for using the same
US3789804A (en) Steam power plant with a flame-heated steam generator and a group of gas turbines
US20080127647A1 (en) Solar-Generated Steam Retrofit for Supplementing Natural-Gas Combustion at Combined Cycle Power Plants
US20060254251A1 (en) Reheat/regenerative type thermal power plant using rankine cycle
JPS6193208A (en) Turbine bypass system
JP2883341B2 (en) Structure of steam turbine, steam generation system for steam turbine, and operation method thereof
JPH07502322A (en) Steam system in a multi-boiler plant
CN110567027B (en) System for coupling sludge incinerator and heat supply unit
CN212202149U (en) Gas-steam combined cycle thermodynamic system with steam extraction heat regeneration
CN201218519Y (en) Reheating temperature-reduction auxiliary regulating mechanism for coal-gas mixed combustion boiler
KR20120131755A (en) Turbine generator control apparatus of steam generating plant
CN208982123U (en) A kind of system for realizing three kinds of state switchover operations of thermoelectricity unit
JP4898722B2 (en) Coal gasification combined power generation facility
CN111485961A (en) Gas-steam combined cycle thermodynamic system with steam extraction heat regeneration
CN114251139B (en) Unit thermal power generation unit neighbor quick start system
JP4718333B2 (en) Once-through exhaust heat recovery boiler
CN113175370B (en) System for interconnecting boilers and steam turbines among different units and operation method
JP2004169625A (en) Co-generation plant and its starting method
CN212132387U (en) Two-stage steam extraction type medium-temperature and medium-pressure waste incineration power generation system
RU2300636C1 (en) Combination heat and power generating plant
JPH0341654B2 (en)
CN214464455U (en) Depth peak regulation system based on thermodynamic system coupling among units
CN211011382U (en) Waste incineration power generation bypass recovery system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees