JP2883156B2 - Water swellable resin composition - Google Patents

Water swellable resin composition

Info

Publication number
JP2883156B2
JP2883156B2 JP10316690A JP10316690A JP2883156B2 JP 2883156 B2 JP2883156 B2 JP 2883156B2 JP 10316690 A JP10316690 A JP 10316690A JP 10316690 A JP10316690 A JP 10316690A JP 2883156 B2 JP2883156 B2 JP 2883156B2
Authority
JP
Japan
Prior art keywords
water
swellable resin
olefin
olefin copolymer
chlorinated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10316690A
Other languages
Japanese (ja)
Other versions
JPH044244A (en
Inventor
宣夫 楠
守 永井
茂 坂本
斉 竹内
道衛 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichiseika Color and Chemicals Mfg Co Ltd
Eneos Corp
Original Assignee
Dainichiseika Color and Chemicals Mfg Co Ltd
Nippon Petrochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichiseika Color and Chemicals Mfg Co Ltd, Nippon Petrochemicals Co Ltd filed Critical Dainichiseika Color and Chemicals Mfg Co Ltd
Priority to JP10316690A priority Critical patent/JP2883156B2/en
Publication of JPH044244A publication Critical patent/JPH044244A/en
Application granted granted Critical
Publication of JP2883156B2 publication Critical patent/JP2883156B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は特定の結晶化度を有する塩素化直鎖状エチレ
ン/α−オレフィン共重合体と水膨潤性樹脂とを均一に
混練分散させてなり、止水材等として有用な水膨潤性樹
脂組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention comprises uniformly kneading and dispersing a chlorinated linear ethylene / α-olefin copolymer having a specific crystallinity and a water-swellable resin. The present invention relates to a water-swellable resin composition useful as a water-stopping material.

(従来の技術) 従来より天然ゴムやクロロプレンゴム等の合成ゴムや
熱可塑性エラストマーを基材とし、これに水膨潤性樹脂
を配合してなる水膨潤性樹脂組成物が、地下の埋設管の
施工後の地盤沈下による隙間からの漏水防止やシールド
工法のセグメント止水材として使用されてきた。
(Conventional technology) Conventionally, a water-swellable resin composition comprising a synthetic rubber such as natural rubber or chloroprene rubber or a thermoplastic elastomer as a base material and a water-swellable resin blended therein is used to construct an underground buried pipe. It has been used to prevent water leakage from gaps due to later subsidence and as a segment waterproof material in shield construction methods.

しかしながら、天然ゴムや合成ゴムを基材とした止水
材は一般的に加硫工程を必要とし、従って止水材の水膨
潤度が小さくなる等の欠点があり、水膨潤性止水材とし
ては満足し得るものではなかった。
However, water-stop materials based on natural rubber or synthetic rubber generally require a vulcanization step, and therefore have the disadvantage that the water-swelling material has a small degree of water swelling. Was not satisfactory.

後者の熱可塑性エラストマーを基材とした場合は、止
水材の加硫工程を必要とせず合理化が出来るものの、大
きな水膨潤度が要求される場合は膨潤後の止水材の物理
的強度が小さく、一方、物理的強度を大きくすると水膨
潤度が小さくなる等、水膨潤度と物理的強度の両方を満
足させる止水材は得られにくかった。
When the latter is used as a base material, the water-stopping material can be streamlined without the need for a vulcanizing step, but if a large degree of water swelling is required, the physical strength of the water-stopping material after swelling is reduced. On the other hand, a water-stopping material satisfying both the water swelling degree and the physical strength was difficult to obtain, for example, when the physical strength was increased, the water swelling degree was reduced.

その中で、エチレン/α−オレフィン共重合体或いは
それらの塩素化物である塩素化ポリエチレンに高吸水性
樹脂を配合してなる水膨潤性止水材が多数提案されてい
る。
Among them, a large number of water-swellable water-stopping materials have been proposed in which a superabsorbent resin is blended with an ethylene / α-olefin copolymer or chlorinated polyethylene which is a chlorinated product thereof.

例えば、止水材に高い水膨潤性と形状保持性の両特性
を同時に達成するた為、特定の破断強度を有するEPRを
使用する提案が為されているが、多量のパラフィン油を
添加し、非架橋状態で吸水及び水膨潤させている為、水
膨潤前はある程度の物理的強度を保っているものの、高
水膨潤状態では大幅に強度が低下するという欠点があ
る。
For example, in order to simultaneously achieve both properties of high water swelling and shape retention in the water-stopping material, it has been proposed to use EPR having a specific breaking strength, but a large amount of paraffin oil is added, Since water is absorbed and swelled in a non-crosslinked state, it has a certain physical strength before water swelling, but has a drawback that the strength is greatly reduced in a high water swelling state.

又、同じEPRを使用し、水膨潤後の物理的強度を更に
高める為にクレーを高充填し、加硫させる提案も為され
ているが、十分な水膨潤度が得られにくかった。又、耐
候性や耐熱性に優れた水膨潤性止水材を得る為に、非結
晶性の塩素化ポリエチレンを過酸化物で架橋させる提案
も為されているが、自重の約2倍程度の水膨潤度しか示
さず満足し得るものではなかった。
It has also been proposed that the same EPR be used to further increase the physical strength after water swelling, and that the clay be highly filled and vulcanized, but it was difficult to obtain a sufficient degree of water swelling. Further, in order to obtain a water-swellable water-stopping material having excellent weather resistance and heat resistance, it has been proposed to cross-link non-crystalline chlorinated polyethylene with a peroxide. It showed only the degree of water swelling and was not satisfactory.

(発明が解決しようとしている課題) 塩素化ポリエチレンと水膨潤性樹脂とを配合して成形
してなる止水材を未架橋状態で水膨潤させると、塩素化
度が低く結晶性の高い塩素化ポリエチレンでは物理的強
度に優れているものの、水膨潤性樹脂の吸水膨潤圧より
内部応力が大きくなる為、止水材の水膨潤度が小さくな
り、水膨潤性止水材としての効果が望めない。
(Problems to be Solved by the Invention) When a water-blocking material formed by blending chlorinated polyethylene and a water-swellable resin and swelling with water in an uncrosslinked state, chlorination with a low degree of chlorination and high crystallinity is achieved. Polyethylene has excellent physical strength, but the internal stress is larger than the water absorption swelling pressure of the water-swellable resin, so the water swelling degree of the water-stopping material is small and the effect as a water-swellable water-stopping material cannot be expected .

一方、塩素化度が高く、非結晶性の塩素化ポリエチレ
ンを使用した場合は、止水材の物理的強度が小さいばか
りでなく、更に水中に浸漬すると水膨潤性樹脂の膨潤圧
が塩素化ポリエチレンの凝集力より大きくなり、形が崩
れることもある。
On the other hand, when a non-crystalline chlorinated polyethylene having a high degree of chlorination is used, not only the physical strength of the water-stopping material is small, but also when immersed in water, the swelling pressure of the water-swellable resin is reduced. May be larger than the cohesive force of the resin, and the shape may be lost.

又、この様な非結晶性の塩素化ポリエチレンを加硫系
で用いると、加硫ゴムと同様の欠点が発生し、止水材の
水膨潤度が極端に小さくなるという問題がある。
Further, when such non-crystalline chlorinated polyethylene is used in a vulcanization system, the same drawbacks as in the case of vulcanized rubber occur, and there is a problem that the water swelling degree of the water-blocking material becomes extremely small.

本発明者等は上記の問題を解決する為に鋭意研究の結
果、特定の塩素化直鎖状エチレン/α−オレフィン共重
合体と水膨潤性樹脂とを均一に混練分散させて成形して
なる止水材が非架橋状態においても物理的強度が優れ、
高い水膨潤度を示すことを知見して本発明を完成した。
The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, a specific chlorinated linear ethylene / α-olefin copolymer and a water-swellable resin are uniformly kneaded and dispersed to be molded. Excellent physical strength even when the water-stopping material is in a non-crosslinked state,
The present invention has been completed by finding that a high water swelling degree is exhibited.

(問題点を解決する為の手段) 即ち、本発明は、炭素数3〜12のα−オレフィンを2
〜40モル%含む直鎖状エチレン/α−オレフィン共重合
体を塩素化してなる塩素含有量5〜40重量%及び結晶化
度0.1〜3.0Cal/gの塩素化直鎖状エチレン/α−オレフ
ィン共重合体と水膨潤性樹脂とを均一に混練分散させて
なり、非加硫又は非架橋で成形して優れた物理的強度と
高い水膨潤度を有する成形物を与えることを特徴とする
水膨潤性樹脂組成物、及び該組成物から形成してなる水
膨潤性樹脂成形物である。
(Means for Solving the Problems) That is, the present invention provides a method for converting an α-olefin having 3 to 12 carbon atoms into 2
Chlorinated linear ethylene / α-olefin having a chlorine content of 5 to 40% by weight and a crystallinity of 0.1 to 3.0 Cal / g, obtained by chlorinating a linear ethylene / α-olefin copolymer containing 40 mol% A water characterized by uniformly kneading and dispersing a copolymer and a water-swellable resin to give a molded article having excellent physical strength and a high degree of water swelling by molding without vulcanization or non-crosslinking. A swellable resin composition and a water-swellable resin molded article formed from the composition.

(好ましい実施態様) 次に好ましい実施態様を挙げて本発明を更に詳細に説
明する。
Preferred Embodiment Next, the present invention will be described in more detail with reference to preferred embodiments.

本発明を第一に特徴づける塩素化直鎖状エチレン/α
−オレフィン共重合体は以下に説明する様に、特定のエ
チレン/α−オレフィン共重合体を水中懸濁させ、塩素
を吹き込むことによって製造される。
Chlorinated linear ethylene / α which characterizes the present invention first
The olefin copolymer is produced by suspending a specific ethylene / α-olefin copolymer in water and blowing chlorine as described below.

エチレン/α−オレフィン共重合体の製造 本発明の組成物の原料として使用されるエチレン/α
−オレフィン共重合体中のエチレンと共重合するα−オ
レフィンは炭素数3〜12のものである。具体的には、プ
ロピレン、ブテン−1、4−メチルペンテン−1、ヘキ
セン−1、オクテン−1、デセン−1、ドデセン−1等
を挙げることが出来る。
Production of ethylene / α-olefin copolymer Ethylene / α used as a raw material of the composition of the present invention
The α-olefin copolymerized with ethylene in the olefin copolymer has 3 to 12 carbon atoms. Specific examples include propylene, butene-1, 4-methylpentene-1, hexene-1, octene-1, decene-1, and dodecene-1.

これらのうちで特に好ましいのは、プロピレン、ブテ
ン−1、4−メチルペンテン−1、ヘキセン−1であ
る。又、コモノマーとして、ジエン類、例えば、ブタジ
エン、1,4−ヘキサジエン、ビニルノルボルネン、エチ
リデンノルボルネン等を併用してもよい。エチレン/α
−オレフィン共重合体中のα−オレフィン含量は5〜40
モル%であることが好ましい。
Of these, propylene, butene-1, 4-methylpentene-1, and hexene-1 are particularly preferred. Further, as a comonomer, dienes such as butadiene, 1,4-hexadiene, vinylnorbornene, and ethylidene norbornene may be used in combination. Ethylene / α
-Α-olefin content in the olefin copolymer is 5 to 40
Preferably it is mol%.

先ず使用する触媒系は、少なくともマグネシウム及び
チタンを含有する固体触媒成分に有機アルミニウム化合
物を組み合わせたもので、該固体触媒成分としては、例
えば、金属マグネシウム、水酸化マグネシウム、炭酸マ
グネシウム、酸化マグネシウム、塩化マグネシウム等、
又、硅素、アルミニウム、カルシウムから選ばれる金属
とマグネシウム原子とを含有する複塩、複酸化物、炭酸
塩、塩化物或いは水酸化物等、更にはこれらの無機質固
体化合物を含酸素化合物、含硫黄化合物、芳香族炭化水
素、ハロゲン含有物質で処理又は反応させたもの等のマ
グネシウムを含む無機質固体化合物にチタン化合物を公
知の方法により担持させたものが挙げられる。
First, the catalyst system to be used is a combination of a solid catalyst component containing at least magnesium and titanium and an organoaluminum compound. Examples of the solid catalyst component include metal magnesium, magnesium hydroxide, magnesium carbonate, magnesium oxide, and chloride. Magnesium, etc.
Also, double salts, double oxides, carbonates, chlorides or hydroxides containing a metal selected from silicon, aluminum and calcium and a magnesium atom, and furthermore, these inorganic solid compounds are oxygen-containing compounds, sulfur-containing compounds. Examples thereof include those in which a titanium compound is supported by a known method on an inorganic solid compound containing magnesium such as a compound treated or reacted with a compound, an aromatic hydrocarbon, or a halogen-containing substance.

これらの触媒の具体的なものとしては、例えば、MgO
−RX−TiCl4系(特公昭51−3514号公報)、Mg−SiCl4
ROH−TiCl4系(特公昭50−23864号公報)、MgCl2−Al(O
R)3−TiCl4系(特公昭51−152号公報、特公昭52−15111
号公報)、MgCl2−SiCl4−ROH−TiCl4系(特開昭49−10
6581号公報)、Mg(OOCR)2−Al(OR)3−TiCl4系(特公昭5
2−11710号公報)、Mg−POCl3−TiCl4系(特公昭51−15
3号公報)、MgCl2−AlOCl−TiCl4系(特公昭54−15316
号公報)、MgCl2−Al(OR)nX3-n−Si(OR′)mX4-m−TiC
l4系(特開昭56−95909号公報)等の固体触媒成分(前
記式中において、R、R′は有機残基、Xはハロゲン原
子を示す)に有機アルミニウム化合物を組み合わせたも
のが好ましい触媒系の例として挙げられる。
Specific examples of these catalysts include, for example, MgO
-RX-TiCl 4 system (JP-B-51-3514), Mg-SiCl 4
ROH-TiCl 4 system (Japanese Patent Publication No. 50-23864), MgCl 2 -Al (O
R) 3 -TiCl 4 system (JP-B-51-152, JP-B-52-15111)
Publication), MgCl 2 —SiCl 4 —ROH—TiCl 4 system (JP-A-49-10)
No. 6581), Mg (OOCR) 2 -Al (OR) 3 -TiCl 4 system (Japanese Patent Publication No. Sho 5
2-171010), Mg-POCl 3 -TiCl 4 system (JP-B-51-15)
No. 3), MgCl 2 —AlOCl—TiCl 4 system (Japanese Patent Publication No. 54-15316)
JP), MgCl 2 -Al (OR) n X 3 - n -Si (OR ') m X 4 - m -TiC
l 4 system (during the above formula, R, R 'is an organic residue, X is a halogen atom) solid catalyst component (JP-56-95909 JP), etc. a combination of an organoaluminum compound in preferred Examples include catalyst systems.

他の触媒系の例としては固体触媒成分として、いわゆ
るグリニヤ化合物等の有機マグネシウム化合物とチタン
化合物との反応生成物を用い、これに有機アルミニウム
化合物を組み合わせた触媒系を例示することが出来る。
As an example of another catalyst system, a catalyst product in which a reaction product of an organic magnesium compound such as a so-called Grignard compound and a titanium compound is used as a solid catalyst component, and an organic aluminum compound is combined with the reaction product can be exemplified.

有機マグネシウム化合物としては、例えば、一般式RM
gX、R2Mg、RMg(OR)等の有機マグネシウム化合物(こ
こで、Rは炭素数1〜20の有機残基、Xはハロゲンを示
す)及びこれらのエーテル錯合体、又、これらの有機マ
グネシウム化合物を更に他の有機金属化合物、例えば、
有機ナトリウム、有機リチウム、有機カリウム、有機硼
素、有機カルシウム、有機亜鉛等の各種化合物を加えて
変性したものを用いることが出来る。
As the organomagnesium compound, for example, the general formula RM
gX, R 2 Mg, an organic magnesium compound such as RMg (OR) (where, R represents an organic residue having 1 to 20 carbon atoms, X is a halogen) and their ethers錯合body, also, these organomagnesium The compound is further converted to another organometallic compound, for example,
Those modified by adding various compounds such as organic sodium, organic lithium, organic potassium, organic boron, organic calcium, and organic zinc can be used.

これらの触媒系の具体例としては、例えば、RMgX−Ti
Cl4系(特公昭50−39470号公報)、RMgX−フェノール−
TiCl4系(特公昭54−12953号公報)、RMgX−ハロゲン化
フェノール−TiCl4系(特公昭54−12954号公報)、RMgX
−CO2−TiCl4系(特開昭57−73009号公報)等の固体触
媒成分に有機アルミニウム化合物を組み合わせたものを
挙げることが出来る。
Specific examples of these catalyst systems include, for example, RMgX-Ti
Cl 4 system (Japanese Patent Publication No. 50-39470), RMgX-phenol-
TiCl 4 system (Japanese Patent Publication No. 54-12953), RMgX-halogenated phenol-TiCl 4 system (Japanese Patent Publication No. 54-12954), RMgX
Examples thereof include those in which an organic aluminum compound is combined with a solid catalyst component such as a —CO 2 —TiCl 4 system (JP-A-57-73009).

又、他の触媒系の例としては、固体触媒成分として、
SiO2、Al2O3等の無機酸化物と前記の少なくともマグネ
シウム及びチタンを含有する固体触媒成分を触媒させて
得られる固体物質を用い、これに有機アルミニウム化合
物を組み合わせたものを例示することが出来る。
Further, examples of other catalyst systems include, as a solid catalyst component,
SiO 2 , using a solid material obtained by catalyzing an inorganic oxide such as Al 2 O 3 and a solid catalyst component containing at least magnesium and titanium, and exemplifying a combination of an organic aluminum compound with the solid material. I can do it.

これらの触媒系の具体例としては、例えば、SiO2−RO
H−MgCl2−TiCl4系(特開昭56−47407号公報)、SiO2
R−O−R′−MgO−AlCl3−TiCl4系(特開昭57−18730
5号公報)、SiO2−MgCl2−Al(OR)3−TiCl4−Si(OR′)
4系(特開昭58−21405号公報)(前記式中においてR、
R′は炭化水素残基を示す。)等に有機アルミニウム化
合物を組み合わせたものを挙げることが出来る。
Specific examples of these catalyst systems include, for example, SiO 2 -RO
H-MgCl 2 -TiCl 4 system (JP-A-56-47407), SiO 2-
R-O-R'-MgO- AlCl 3 -TiCl 4 system (JP 57-18730
5 JP), SiO 2 -MgCl 2 -Al ( OR) 3 -TiCl 4 -Si (OR ')
Series 4 (JP-A-58-21405) (in the above formula, R,
R 'represents a hydrocarbon residue. ) And the like in combination with an organoaluminum compound.

上記した固体触媒成分と組み合わせるべき有機アルミ
ニウム化合物の具体的な例としては、一般式R3Al、R2Al
X、RAlX2、R2AlOR、RAl(OR)X及びR3Al2X3の有機アル
ミニウム化合物(ここでRは炭素数1〜20のアルキル
基、アリール基又はアラルキル基、Xはハロゲン原子を
示し、Rは同一でも又異なってもよい)で示される化合
物が好ましく、トリエチルアルミニウム、トリイソブチ
ルアルミニウム、トリヘキシルアルミニウム、トリオク
チルアルミニウム、ジエチルアルミニウムクロリド、ジ
エチルアルミニウムエトキシド、エチルアルミニウムセ
スキクロリド及びこれらの混合物等が挙げられる。
Specific examples of the organoaluminum compound to be combined with the solid catalyst component described above include the general formulas R 3 Al and R 2 Al
X, RAlX 2 , R 2 AlOR, RAl (OR) X and an organic aluminum compound of R 3 Al 2 X 3 (where R is an alkyl group having 1 to 20 carbon atoms, an aryl group or an aralkyl group, and X is a halogen atom) And R may be the same or different), and preferred are triethylaluminum, triisobutylaluminum, trihexylaluminum, trioctylaluminum, diethylaluminum chloride, diethylaluminum ethoxide, ethylaluminum sesquichloride and the like. Mixtures and the like can be mentioned.

有機アルミニウム化合物の使用量は特に制限されない
が、通常チタン化合物に対して0.1〜1,000モル倍使用す
ることが出来る。
Although the amount of the organoaluminum compound is not particularly limited, it can be usually used in an amount of 0.1 to 1,000 moles per mole of the titanium compound.

又、前記の触媒系をα−オレフィンと接触させた後重
合反応に用いることによって、その重合活性を大幅に向
上させ、未処理のものよりも一層安定に運転することも
出来る。このとき使用するα−オレフィンとしては種々
のものが使用可能であるが、好ましくは炭素数3〜12の
α−オレフィンであり、更に好ましくは炭素数3〜8の
α−オレフィンが望ましい。これらのα−オレフィンの
例としては、例えば、プロピレン、ブテン−1、ペンテ
ン−1、4−メチルペンテン−1、ヘキセン−1、オク
テン−1、デセン−1、ドデセン−1等及びこれらの混
合物等を挙げることが出来る。
Further, by using the above-mentioned catalyst system in a polymerization reaction after being brought into contact with an α-olefin, the polymerization activity can be greatly improved and the operation can be performed more stably than an untreated one. As the α-olefin used at this time, various ones can be used, preferably an α-olefin having 3 to 12 carbon atoms, and more preferably an α-olefin having 3 to 8 carbon atoms. Examples of these α-olefins include, for example, propylene, butene-1, pentene-1, 4-methylpentene-1, hexene-1, octene-1, decene-1, dodecene-1, and the like, and mixtures thereof. Can be mentioned.

触媒系とα−オレフィンとの触媒時の温度及び時間は
広い範囲で選ぶことが出来、例えば、0〜200℃、好ま
しくは0〜110℃で1分間〜24時間で接触処理させるこ
とが出来る。接触させるα−オレフィンの量も広い範囲
で選べるが、通常、前記固体触媒成分1g当り1g〜50,000
g、好ましくは5g〜30,000程度のα−オレフィンで処理
し、前記固体触媒成分1g当り1g〜500gのα−オレフィン
を反応させることが望ましい。この時、接触時の圧力は
任意に選ぶことが出来るが、通常−1〜100Kg/cm2・G
の圧力下に接触させることが望ましい。
The temperature and time for the catalyst between the catalyst system and the α-olefin can be selected in a wide range, and for example, the contact treatment can be performed at 0 to 200 ° C, preferably 0 to 110 ° C for 1 minute to 24 hours. The amount of the α-olefin to be contacted can also be selected in a wide range, but usually 1 g to 50,000 per 1 g of the solid catalyst component.
g, preferably about 5 g to 30,000 α-olefin, and 1 g to 500 g of α-olefin per 1 g of the solid catalyst component. At this time, the pressure at the time of contact can be arbitrarily selected, but usually −1 to 100 kg / cm 2 · G
It is desirable to make contact under a pressure of

α−オレフィン処理の際、使用する有機アルミニウム
化合物を全量、前記固体触媒成分と組み合わせた後α−
オレフィンと接触させてもよいし、又、使用する有機ア
ルミニウム化合物のうち一部を前記固体触媒成分と組み
合わせた後α−オレフィンと接触させ、残りの有機アル
ミニウム化合物を重合の際に別途添加して重合反応を行
ってもよい。
During the α-olefin treatment, the total amount of the organoaluminum compound used is combined with the solid catalyst component, and
It may be brought into contact with an olefin, or a part of the organoaluminum compound to be used is combined with the solid catalyst component and then brought into contact with an α-olefin, and the remaining organoaluminum compound is added separately during polymerization. A polymerization reaction may be performed.

又、触媒系とα−オレフィンとの接触時に、水素ガス
が共存しても支障なく、又、窒素、アルゴン、ヘリウム
等、その他の不活性ガスが共存しても何ら支障ない。重
合反応は通常のチグラー型触媒によるオレフィンの重合
反応に同様して行われる。即ち、反応は全て実質的に酸
素、水等を絶った状態で、気相又は不活性溶媒の存在下
又はモノマー自体を溶媒として行われる。オレフィンの
重合条件は温度は20〜300℃、好ましくは40〜200℃であ
り、圧力は常圧〜70Kg/cm2・G、好ましくは2Kg/cm2
G〜60Kg/cm2・Gである。分子量の調節は重合温度、触
媒のモル比等の重合条件を変えることによってもある程
度調節出来るが、重合系中に水素を添加することにより
効果的に行われる。
In addition, there is no problem if hydrogen gas coexists at the time of contact between the catalyst system and the α-olefin, and there is no problem even if other inert gases such as nitrogen, argon and helium coexist. The polymerization reaction is carried out in the same manner as the polymerization reaction of an olefin using a usual Ziegler-type catalyst. That is, all the reactions are carried out in a state in which oxygen, water and the like are substantially removed, in the presence of a gas phase or an inert solvent, or using the monomer itself as a solvent. Polymerization conditions olefin temperature 20 to 300 ° C., preferably from 40 to 200 ° C., the pressure is normal pressure ~70Kg / cm 2 · G, preferably 2Kg / cm 2 ·
G to 60 kg / cm 2 · G. Although the molecular weight can be adjusted to some extent by changing the polymerization conditions such as the polymerization temperature and the molar ratio of the catalyst, it can be effectively adjusted by adding hydrogen to the polymerization system.

勿論、水素濃度、重合温度等の重合条件の異なった2
段階乃至それ以上の多段階の重合反応も何ら支障なく実
施出来る。これらの中では気相重合法が好ましい。
Of course, different polymerization conditions such as hydrogen concentration and polymerization temperature
Multi-stage polymerization reactions of stages or more can be carried out without any problem. Of these, the gas phase polymerization method is preferred.

本発明の好ましい原料である直鎖状エチレン/α−オ
レフィン共重合体は、少なくともマグネシウム及びチタ
ンを含有する固体触媒成分及び有機アルミニウム化合物
からなる触媒の存在下にエチレンとα−オレフィンとを
共重合させて得られるものであって、その好ましい物性
は以下の通りである。
The linear ethylene / α-olefin copolymer, which is a preferred raw material of the present invention, is a copolymer of ethylene and α-olefin in the presence of a catalyst comprising at least a solid catalyst component containing magnesium and titanium and an organoaluminum compound. The preferred physical properties are as follows.

即ち、メルトインデックス(JIS K6760に従って、190
℃及び2.16Kgの条件で測定、以下「MI」という)は0.01
〜100g/10min.、好ましくは0.1〜50g/min.である。密度
(JIS K6760による)は0.860〜0.910g/cm3、好ましくは
0.870〜0.905g/cm3、更に好ましくは0.880〜0.900g/cm3
である。示差走査熱量測定法(DSC)による最大ピーク
の温度(Tm)は100℃以上、好ましくは110℃であり、沸
騰n−ヘキサン不溶分は10重量%以上、好ましくは20〜
95重量%、更に好ましくは30〜90重量%である。
That is, the melt index (190 according to JIS K6760)
° C and 2.16 kg, hereinafter referred to as “MI”) is 0.01
100 g / 10 min., Preferably 0.1 to 50 g / min. Density (by JIS K6760) is 0.860~0.910g / cm 3, preferably
0.870-0.905 g / cm 3 , more preferably 0.880-0.900 g / cm 3
It is. The maximum peak temperature (Tm) by differential scanning calorimetry (DSC) is 100 ° C. or more, preferably 110 ° C., and the boiling n-hexane insoluble content is 10% by weight or more, preferably 20 to
It is 95% by weight, more preferably 30 to 90% by weight.

エチレン/α−オレフィン共重合体のMIが0.01g/10mi
n.未満では流動性が低下し、又、MIが100g/10min.を越
えると塩素化物の引張強度等の低下が起こり望ましくな
い。
MI of ethylene / α-olefin copolymer is 0.01g / 10mi
If it is less than n., the fluidity will decrease, and if MI exceeds 100 g / 10 min., the tensile strength of the chlorinated product will decrease, which is not desirable.

直鎖状エチレン/αオレフィン共重合体の塩素化 本発明に用いられる直鎖状エチレン/α−オレフィン
共重合体の塩素化法としては、公知の方法を用いること
が出来る。例えば、粉末状のポリマーを水中に懸濁させ
て、適宜の加圧下に温度を約70〜80℃、好ましくは90℃
以上に保ってポリマーと塩素とを反応させる水性懸濁方
法、テトラクロロエチレンの様な有機溶媒にポリマーを
溶解させてポリマーと塩素とを反応させる方法又はN−
クロルアセトアミドの様な塩素化合物を予めポリマーと
ブレンドし、該塩素化合物が分解して塩素を遊離する温
度まで加熱し、遊離した塩素とポリマーを反応させる方
法等がある。特に水性懸濁法による塩素化法が好まし
い。
Chlorination of linear ethylene / α-olefin copolymer As the chlorination method of the linear ethylene / α-olefin copolymer used in the present invention, a known method can be used. For example, a powdery polymer is suspended in water, and the temperature is adjusted to about 70 to 80 ° C, preferably 90 ° C under appropriate pressure.
An aqueous suspension method of reacting the polymer with chlorine while keeping the above, a method of reacting the polymer with chlorine by dissolving the polymer in an organic solvent such as tetrachloroethylene, or N-
There is a method in which a chlorine compound such as chloracetamide is previously blended with a polymer, heated to a temperature at which the chlorine compound is decomposed and chlorine is liberated, and the liberated chlorine reacts with the polymer. Particularly, a chlorination method using an aqueous suspension method is preferred.

本発明で使用する塩素化直鎖状エチレン/α−オレフ
ィン共重合体は、その結晶化度が0.1〜3.0Cal/gである
ことが肝要である。実質的に結晶性を有さない非晶性の
塩素化直鎖状エチレン/α−オレフィン共重合体を配合
してなる止水材はコールドフロー性を示す為好ましくな
い。
It is important that the chlorinated linear ethylene / α-olefin copolymer used in the present invention has a crystallinity of 0.1 to 3.0 Cal / g. A water-stopping material comprising an amorphous chlorinated linear ethylene / α-olefin copolymer having substantially no crystallinity is not preferred because it exhibits cold flow properties.

本発明の水膨潤性樹脂組成物からなる止水材は特に架
橋又は加硫することなく使用される為、コールドフロー
性がないことが重要な特性である。又、結晶化度が3.0C
al/gより大であると止水材の伸びが劣り、止水材として
の水膨潤度が低下するので同様に好ましくない。
Since the water-stopping material comprising the water-swellable resin composition of the present invention is used without being particularly crosslinked or vulcanized, it is an important characteristic that it has no cold flow property. The crystallinity is 3.0C
If it is more than al / g, the elongation of the water-stopping material is inferior, and the degree of water swelling as the water-stopping material decreases, which is similarly unfavorable.

本発明の塩素化直鎖状エチレン/α−オレフィン共重
合体の塩素含有量は3〜50重量%であり、好ましくは5
〜40重量%であり、5重量%未満では水膨潤性樹脂と均
一に混練することが困難であり、一方、40重量%を越え
る場合は止水材としての耐熱性や低温特性が低下するの
でいずれも好ましくない。
The chlorine content of the chlorinated linear ethylene / α-olefin copolymer of the present invention is 3 to 50% by weight, preferably 5 to 50% by weight.
If it is less than 5% by weight, it is difficult to uniformly knead it with the water-swellable resin, while if it exceeds 40% by weight, heat resistance and low-temperature properties as a water-stopping material are reduced. Neither is preferred.

本発明で使用する塩素化直鎖状エチレン/α−オレフ
ィン共重合体が好ましい理由は次に述べることに起因し
ているものと考えられる。
It is considered that the reason why the chlorinated linear ethylene / α-olefin copolymer used in the present invention is preferable is as follows.

すなわち、塩素化される前の低密度エチレン/α−オ
レフィン共重合体は分岐度が多い為、不定形部分が多く
軟質状を呈すると共に微結晶部分を有する為、室温付近
では流動変形することがない。この微結晶量の調節はコ
モノマーのα−オレフィンの量を制御すること、その他
によって任意に変化させることが出来る。この特徴を塩
素化する際消失させずに持続させるには水性懸濁法によ
る塩素化が好ましい。
That is, since the low-density ethylene / α-olefin copolymer before chlorination has a high degree of branching, it has many amorphous portions and exhibits a soft state and has microcrystalline portions. Absent. The adjustment of the amount of microcrystals can be arbitrarily changed by controlling the amount of the comonomer α-olefin or the like. The chlorination by the aqueous suspension method is preferred in order to maintain this characteristic without disappearing during chlorination.

即ち、低密度エチレン/α−オレフィン共重合体の融
点以下で水に分散させた微粒子は表面のみ塩素化され、
その部分の結晶は殆ど消滅するが、その内部までは塩素
化が進行せず、微結晶の状態が残されるものと考えられ
る。
That is, the fine particles dispersed in water below the melting point of the low-density ethylene / α-olefin copolymer are chlorinated only on the surface,
It is considered that the crystal in that portion almost disappears, but chlorination does not proceed to the inside, and the state of fine crystals remains.

この様な理由から低密度エチレン/α−オレフィン共
重合体の塩素化物が本発明の目的に適しているものと考
えられる。他の高密度及び低密度ポリエチレンでも塩素
化する際に結晶の量を或程度残すことは可能であるが、
本発明の組成物の基材として用いると満足な結果が得ら
れないことから、結晶状態の差異が出ているものと考え
られる。
For these reasons, it is believed that chlorinated low density ethylene / α-olefin copolymers are suitable for the purpose of the present invention. Although it is possible to leave some amount of crystals when chlorinating other high-density and low-density polyethylene,
When the composition of the present invention is used as a substrate, satisfactory results cannot be obtained, and it is considered that there is a difference in crystal state.

前述した本発明の好ましいエチレン/α−オレフィン
共重合体は微結晶部分の量、その他が適切である為に、
その塩素化物を水膨潤性樹脂と配合するならば、得られ
た組成物からなる止水材は適当な形状保持性を有する為
に好ましいものである。
The preferred ethylene / α-olefin copolymer of the present invention described above is suitable for the amount of the microcrystalline portion and the like.
If the chlorinated product is blended with a water-swellable resin, a water-stopping material made of the obtained composition is preferable because it has an appropriate shape-retaining property.

本発明において使用し、本発明を第二に特徴づける水
膨潤性樹脂は、いずれも従来公知のものでよく、例え
ば、澱粉・アクリロニトリルグラフト共重合体の鹸化
物、澱粉・アクリル酸グラフト重合体のアルカリ金属塩
の架橋体、アクリル酸−アクリル酸アルカリ金属塩共重
合物の架橋体、エチレン−ビニルエステル−アクリル酸
エステル共重合体の鹸化物、イソブチレン−無水マレイ
ン酸共重合体のアルカリ金属塩の架橋体、カルボキシメ
チルセルロースのアルカリ金属塩の架橋体、架橋ポリエ
チレンオキサイド、水膨潤性ポリウレタン樹脂等、従来
公知のものはいずれも使用することが出来る。
The water-swellable resin used in the present invention and the second feature of the present invention may be any of conventionally known resins, for example, a saponified starch / acrylonitrile graft copolymer, a starch / acrylic acid graft polymer. A crosslinked product of an alkali metal salt, a crosslinked product of an acrylic acid-alkali metal acrylate copolymer, a saponified product of an ethylene-vinyl ester-acrylate copolymer, and an alkali metal salt of an isobutylene-maleic anhydride copolymer Any of conventionally known products such as a crosslinked product, a crosslinked product of an alkali metal salt of carboxymethyl cellulose, a crosslinked polyethylene oxide, and a water-swellable polyurethane resin can be used.

本発明において特に好ましい水膨潤性樹脂としては、
疎水性ポリマーセグメントと親水性ポリマーセグメント
のブロックコポリマー或はグラフトコポリマーである。
例えば、特公昭56−50886号公報、特公昭56−54002号公
報、特公昭57−48001号公報、特公昭57−48008号公報に
記載されている。この様なブロック又はグラフトコポリ
マーの中で最も好ましいものは、前記の親水性ポリマー
セグメントの親水性基がカルボン酸或いはスルホン酸の
アルカリ金属塩であるものである。
Particularly preferred water swellable resin in the present invention,
It is a block copolymer or a graft copolymer of a hydrophobic polymer segment and a hydrophilic polymer segment.
For example, it is described in JP-B-56-50886, JP-B-56-54002, JP-B-57-48001, and JP-B-57-48008. Most preferred among such block or graft copolymers are those in which the hydrophilic group of the hydrophilic polymer segment is an alkali metal salt of a carboxylic or sulfonic acid.

上記の水膨潤性樹脂は水膨潤度、吸水速度、ゲル強度
及び海水や地下水の様に塩を含む水に対しての水膨潤度
に各々特徴を有しており、1種又は2種以上を組み合わ
せて使用してもよい。その使用割合は要求される水膨潤
度や使用環境により任意の割合で選ばれる。
The above water swellable resin has characteristics in water swelling degree, water absorption rate, gel strength and water swelling degree with respect to water containing salt such as seawater or groundwater, and one or more kinds thereof are used. They may be used in combination. The use ratio is selected at an arbitrary ratio depending on the required degree of water swelling and the use environment.

本発明で使用する塩素化直鎖状エチレン/α−オレフ
ィン共重合体と水膨潤性樹脂とは任意の割合で配合出来
るが、本発明の組成物からなる止水材の水膨潤度と物理
的強度の兼ね合い或いは用途によって選ばれ、塩素化直
鎖状エチレン/α−オレフィン共重合体100重量部当り
水膨潤性樹脂10〜400重量部を配合するのが好ましい。
水膨潤性樹脂が10重量部未満では得られる止水材の水膨
潤度が小さく実用的ではない。又、400重量部を越える
量では止水材の物理的強度が不足すると共に水膨潤性樹
脂粉末が過剰に存在する為、加工性や成形性が損なわれ
る。
The chlorinated linear ethylene / α-olefin copolymer and the water-swellable resin used in the present invention can be blended in an arbitrary ratio. The water-swellable resin is preferably blended in an amount of 10 to 400 parts by weight per 100 parts by weight of the chlorinated linear ethylene / α-olefin copolymer, depending on the balance of the strength or the use.
When the amount of the water-swellable resin is less than 10 parts by weight, the obtained water-stopping material has a low water-swelling degree and is not practical. On the other hand, if the amount exceeds 400 parts by weight, the physical strength of the water-stopping material is insufficient and the water-swellable resin powder is excessively present, so that the processability and the moldability are impaired.

本発明の水膨潤性樹脂組成物の必須成分は上述の通り
であるが、止水材としての性能を変えない範囲内で従来
公知の高密度ポリエチレン、直鎖状低密度ポリエチレ
ン、高圧法ポリエチレン、ポリプロピレン等の結晶性ポ
リオレフィン若しくはそれらの塩素化物、天然ゴム、各
種合成ゴム、熱可塑性エラストマーや従来公知の塩素化
ポリエチレン用架橋剤、可塑剤、プロセスオイル、ポリ
ブテン、カーボンブラック、各種染顔料、炭酸カルシウ
ムやクレー等の各種充填剤、補強剤、安定剤、酸化防止
剤、オゾン劣化防止剤、難燃剤、発泡剤等を必要に応じ
て任意に添加出来る。
The essential components of the water-swellable resin composition of the present invention are as described above, but conventionally known high-density polyethylene, linear low-density polyethylene, high-pressure polyethylene, as long as the performance as a water-stopping material is not changed. Crystalline polyolefins such as polypropylene or their chlorinated products, natural rubber, various synthetic rubbers, thermoplastic elastomers and conventionally known crosslinking agents for chlorinated polyethylene, plasticizers, process oils, polybutenes, carbon black, various dyes and pigments, calcium carbonate Various fillers such as clay and clay, reinforcing agents, stabilizers, antioxidants, antiozonants, flame retardants, foaming agents and the like can be optionally added as required.

上記の各成分は従来公知の2本ロール、バンバリーミ
キサー、ニーダー、押出機等の混練機を使用することに
より容易に均一分散を行うことが出来る。これらの混練
物は、任意の公知の成形加工機により成形される。例え
ば、通常の押出成形機を使用することにより紐状或いは
シート状の止水材を得ることが出来る。又、カレンダー
ロールを使用することによる幅広のシートの作成、或い
は射出成形によるO−リング等の成形、プレス成形によ
り各種の複雑な型状を有する成形物を得る方法等により
任意の形状の水膨潤性樹脂組成物の成形体を得ることが
出来る。
The above components can be easily and uniformly dispersed by using a conventionally known kneader such as a two-roll mill, a Banbury mixer, a kneader, or an extruder. These kneaded materials are molded by any known molding machine. For example, a string-shaped or sheet-shaped water-stopping material can be obtained by using a normal extruder. In addition, water swelling of an arbitrary shape is performed by forming a wide sheet by using a calender roll, forming an O-ring or the like by injection molding, or obtaining a molded product having various complicated shapes by press molding. A molded article of the conductive resin composition can be obtained.

(作用・効果) 本発明で得られる水膨潤性樹脂組成物は、特定のエチ
レン/α−オレフィン共重合体を塩素化して得られる塩
素化直鎖状エチレン/α−オレフィン共重合体を基材と
して使用することを特徴としており、加硫工程やパーオ
キサイドによる架橋が不必要であるにもかかわらず、優
れた物理的強度を有すると共に水膨潤速度も早く、高い
水膨潤度を示すものである。
(Function / Effect) The water-swellable resin composition obtained in the present invention is based on a chlorinated linear ethylene / α-olefin copolymer obtained by chlorinating a specific ethylene / α-olefin copolymer. It has excellent physical strength and fast water swelling speed, and shows high degree of water swelling even though vulcanization step and crosslinking by peroxide are unnecessary. .

特に地下に埋設されたヒューム管、塩ビ管等のジョイ
ント部分の止水材として使用される場合は、不等沈下等
によって大きな間隙を生じても大きな体積膨潤を有して
いる為、容易に間隙が塞がり漏水が防止される。
In particular, when used as a waterproof material for joints such as fume pipes and PVC pipes buried underground, they have large volume swelling even if large gaps are created due to uneven settlement, etc. Is blocked and water leakage is prevented.

又、大深度のシールドのセグメント止水材として使用
される場合は地下の大きな水圧に対抗し得る膨潤圧を有
している為、シールド内への地下水の浸入を食い止める
ことが出来る。
Also, when used as a segment waterproofing material for a shield at a large depth, it has a swelling pressure that can withstand a large underground water pressure, so that infiltration of groundwater into the shield can be prevented.

本発明の水膨潤性樹脂組成物は、好ましくは特定の直
鎖状エチレン/α−オレフィン共重合体の塩素化物と特
定の水膨潤性樹脂組成物との組み合わせに関わる為、優
れた特性を有する。特に本発明の好ましい組み合わせの
水膨潤性樹脂組成物は架橋或は加硫することなく使用さ
れる為、塩素化物と水膨潤性樹脂との親和性、特に水浸
漬時の親和性に優れており、例えば、水浸漬時に水膨潤
性樹脂の脱離等が生じない。
The water-swellable resin composition of the present invention preferably has excellent properties because it is related to a combination of a specific chlorinated product of a linear ethylene / α-olefin copolymer and a specific water-swellable resin composition. . In particular, since the water-swellable resin composition of the preferred combination of the present invention is used without crosslinking or vulcanization, it has excellent affinity between the chlorinated product and the water-swellable resin, particularly when dipped in water. For example, the water-swellable resin does not detach when immersed in water.

尚、本発明の水膨潤性樹脂組成物は止水材として使用
される他に、含水保冷材、土壌保水材、結露防止材、吸
水マット等、その他の用途にも有利に使用することが出
来る。
In addition, the water-swellable resin composition of the present invention can be advantageously used for other applications, such as a water-cooling material, a soil water-retaining material, a dew condensation preventing material, a water-absorbing mat, etc., in addition to being used as a water-stopping material. .

(実施例) 次に実施例及び比較例を挙げて本発明を更に具体的に
説明する。尚、文中部又は%とあるのは特に断りのない
限り重量基準である。又、水膨潤度とあるのは下記の如
くにして算出した値である。
(Examples) Next, the present invention will be described more specifically with reference to examples and comparative examples. In the following, "parts" and "%" are based on weight unless otherwise specified. The water swelling is a value calculated as follows.

水膨潤度=サンプルの吸水後の重量/サンプルの乾燥重
量 又、実施例及び比較例で使用する塩素化直鎖状エチレ
ン/α−オレフィン共重合体及び水膨潤性樹脂は下記の
製造方法によって製造されたものである。
Degree of water swelling = weight of sample after water absorption / dry weight of sample Further, chlorinated linear ethylene / α-olefin copolymer and water swellable resin used in Examples and Comparative Examples are produced by the following production method. It was done.

塩素化直鎖状エチレン/α−オレフィン共重合体 実質的に無水の塩化マグネシウム、1,2−ジクロルエ
タン及び四塩化チタンから得られた固体触媒成分とトリ
エチルアルミニウムからなる触媒を用いて、エチレンと
ブテン−1とを共重合して得られたエチレン/ブテン−
1共重合体樹脂を32メッシュの金網を通過する粒度に常
温で機械粉砕した。
Chlorinated linear ethylene / α-olefin copolymer Ethylene and butene using a catalyst consisting of triethylaluminum and a solid catalyst component obtained from substantially anhydrous magnesium chloride, 1,2-dichloroethane and titanium tetrachloride. / Butene obtained by copolymerizing -1 with
1 Copolymer resin was mechanically pulverized at room temperature to a particle size passing through a 32 mesh wire mesh.

このエチレン/ブテン−1共重合体樹脂粉末5Kgを内
容積100lのグラスライニングされたオートクレーブにイ
オン交換水70l、湿潤剤2g、分散剤200mlと共に仕込み、
撹拌下塩素ガスを吹込みながら100℃で反応を開始し同
温度を維持しながら、所定の塩素含有量に達するまで塩
素化を行った後、常法により水洗乾燥を行った、塩素含
有量が15%及び30%のものを準備した。結晶化度は夫々
DSC法により2.2及び1.8Cal/gであった。
5 kg of this ethylene / butene-1 copolymer resin powder was charged into a 100-liter glass-lined autoclave together with 70 l of ion-exchanged water, 2 g of a wetting agent, and 200 ml of a dispersing agent.
After initiating the reaction at 100 ° C. while blowing chlorine gas under stirring and maintaining the same temperature, chlorination was performed until a predetermined chlorine content was reached, followed by washing and drying by a conventional method. 15% and 30% were prepared. Crystallinity is each
It was 2.2 and 1.8 Cal / g by DSC method.

上記の塩素化前の原料であるエチレン/ブテン−1共
重合体の物性は次の通りである。
The physical properties of the ethylene / butene-1 copolymer as the raw material before the chlorination are as follows.

密度:0.905g/cm3 ブテン−1含有量:7.7モル% メルトインデックス:1.0g/10min. DSCの最大ピーク温度:122℃ 沸騰n−ヘキサン不溶分:94重量% 尚、本発明における沸騰n−ヘキサン不溶分及びDSC
の測定方法は次の通りである。
Density: 0.905 g / cm 3 Butene-1 content: 7.7 mol% Melt index: 1.0 g / 10 min. Maximum peak temperature of DSC: 122 ° C. Boiling n-hexane insoluble matter: 94% by weight In the present invention, boiling n- Hexane insolubles and DSC
Is as follows.

(沸騰n−ヘキサン不溶分の測定方法) 熱プレスを用いて厚さ200μmのシートを成形し、そ
こから縦横夫々20mm×30mmのシートを3枚切り取り、そ
れを2重管式ソックスレー抽出器を用いて沸騰n−ヘキ
サンで5時間抽出を行う。n−ヘキサン不溶分を取り出
し、真空乾燥(7時間、真空下、50℃)後、次式により
沸騰n−ヘキサン不溶分(X、重量%)を算出する。
(Measurement method of boiling n-hexane insoluble matter) A 200-μm-thick sheet is formed by using a hot press, and three 20 mm × 30 mm sheets are cut out from the sheet, and are cut out using a double tube Soxhlet extractor. And extract with boiling n-hexane for 5 hours. The n-hexane insolubles are taken out, dried in vacuum (7 hours, under vacuum, 50 ° C.), and the boiling n-hexane insolubles (X, wt%) is calculated by the following equation.

(DSCによる測定方法) 熱プレスで成形した厚さ100μmのフイルムから約5mg
の試料を精秤し、それをDSC装置にセットし、170℃に昇
温してその温度で15分間保持した後、降温速度25℃/mi
n.で0℃まで冷却する。次にこの状態から昇温速度10℃
/min.で170℃まで昇温して測定を行う。0℃から170℃
に昇温する間に表れたピークの最大ピークの頂点の位置
の温度をもってTmとする。
(Measurement method by DSC) Approximately 5mg from a 100μm thick film formed by hot press
After accurately weighing the sample, setting it in the DSC device, raising the temperature to 170 ° C. and maintaining it at that temperature for 15 minutes, the temperature was lowered at a rate of 25 ° C./mi
Cool to 0 ° C with n. Next, from this state, the heating rate is 10 ° C.
The temperature is raised to 170 ° C at / min. 0 ° C to 170 ° C
The temperature at the position of the peak of the maximum peak that appears during the temperature rise is defined as Tm .

水膨潤性樹脂 (ポリスチレン)−(ポリブタジエン)−(ポリスチ
レン)ブロックコポリマー(ポリスチレン含有量30%)
の2重結合の殆ど全部にチオグリコール酸を付加させ、
カルボン酸のナトリウム塩にした水膨潤性樹脂A(吸水
倍率 150倍)を得た。
Water-swellable resin (polystyrene)-(polybutadiene)-(polystyrene) block copolymer (polystyrene content 30%)
Thioglycolic acid is added to almost all of the double bonds of
A water-swellable resin A (sodium absorption: 150 times) in the form of a sodium salt of carboxylic acid was obtained.

アクリル酸−アクリル酸ナトリウム(アクリル酸のカ
ルボン酸の75%モルを苛性ソーダで中和したもの)に過
硫酸カリウム、N,N′−メチレンビスアクリルアミドを
加えたものを調製し、シクロヘキサン−ソルビタンモノ
ステアレート溶液中に撹拌しながら滴下し、懸濁液を調
製した。次いで60℃で6時間反応させ、シクロヘキサン
を留出させ、70℃で減圧乾燥を行い水膨潤性高分子B
(吸水倍率 400倍)を得た。
Acrylic acid-sodium acrylate (75% mol of carboxylic acid of acrylic acid neutralized with caustic soda) to which potassium persulfate and N, N'-methylenebisacrylamide were added was prepared, and cyclohexane-sorbitan monostearate was prepared. The mixture was added dropwise to the rate solution with stirring to prepare a suspension. Then, the mixture was reacted at 60 ° C. for 6 hours to distill cyclohexane, and dried under reduced pressure at 70 ° C. to obtain a water-swellable polymer B.
(400 times the water absorption).

実施例1 塩素含有量15%の塩素化直鎖状エチレン/α−オレフ
ィン共重合体100部に対し、水膨潤性樹脂A75部、スズ系
安定剤2部を2本ロールで混練した。次いで得られた混
練物を160℃、150Kg/cm2の条件で3分間プレス成形を行
い、厚さ1mm及び3mmのシートを得た。
Example 1 To 100 parts of a chlorinated linear ethylene / α-olefin copolymer having a chlorine content of 15%, 75 parts of a water-swellable resin A and 2 parts of a tin-based stabilizer were kneaded with two rolls. Next, the obtained kneaded material was subjected to press molding at 160 ° C. and 150 kg / cm 2 for 3 minutes to obtain sheets having a thickness of 1 mm and 3 mm.

厚さ1mmのシートについてはJIS K−6301に基づいて引
張強度及びその他の物性値を測定した。厚さ3mmのシー
トについては約1cm角の大きさに切り取り、蒸留水中で
の水膨潤度を測定した。その結果を第1表に示す。
For a sheet having a thickness of 1 mm, the tensile strength and other physical properties were measured based on JIS K-6301. A sheet having a thickness of 3 mm was cut into a size of about 1 cm square, and the degree of water swelling in distilled water was measured. Table 1 shows the results.

実施例2〜8 第1表に示す様に塩素化直鎖状エチレン/α−オレフ
ィン共重合体の塩素化度、水膨潤性樹脂及びその添加量
を変えた配合で実施例1と同様の操作を繰り返し、シー
トを作成し、その物性値、水膨潤度を測定した。その結
果を第1表に示す。
Examples 2 to 8 As shown in Table 1, the same operation as in Example 1 was carried out except that the chlorination degree of the chlorinated linear ethylene / α-olefin copolymer, the water-swellable resin and the amount of addition thereof were changed. Was repeated to prepare a sheet, and its physical properties and water swelling were measured. Table 1 shows the results.

比較例1〜2 高密度ポリエチレンを前記の水性懸濁方法に順じて塩
素化することにより製造された塩素含有量30%、結晶化
度3.4Cal/gの塩素化ポリエチレンを使用し、第1表に示
す配合で実施例1と同様の操作を繰り返し、シートを作
成した。その結果を第1表に示す。
Comparative Examples 1-2 Using a chlorinated polyethylene having a chlorine content of 30% and a crystallinity of 3.4 Cal / g produced by chlorinating high-density polyethylene according to the aqueous suspension method described above, The same operation as in Example 1 was repeated with the composition shown in the table to prepare a sheet. Table 1 shows the results.

実施例9 実施例及び比較例で得られる水膨潤性樹脂組成物の性
能を評価する為、2枚の鉄製円板よりなる止水圧試験装
置を作成した。試験装置は主として鋼鉄製の厚さ20mmの
円形平板2枚と給水加圧ポンプからなり、下面の円形平
板にシール溝を設けたものである。
Example 9 In order to evaluate the performance of the water-swellable resin compositions obtained in Examples and Comparative Examples, a static pressure test device composed of two iron disks was prepared. The test apparatus mainly includes two circular flat plates made of steel and having a thickness of 20 mm and a water supply pressurizing pump, and a seal groove is provided in the circular flat plate on the lower surface.

実施例2及び比較例1で得られる混練物を60mm押出機
を使用し、断面が幅20mm、厚さ3mmの紐状の水膨潤性止
水材を得た。
Using a 60 mm extruder, the kneaded material obtained in Example 2 and Comparative Example 1 was used to obtain a string-shaped water-swellable waterproof material having a cross section of 20 mm in width and 3 mm in thickness.

上記の水膨潤性止水材を試験装置の下部シール溝にエ
ポキシ系接着剤で貼付け、2mmのスペーサーを上面と下
面の間の反面部に置くことで、上面と止水材の間に1mm
のクリアランスを設けた。
The above water-swellable water-stopping material is attached to the lower seal groove of the test device with an epoxy-based adhesive, and a 2 mm spacer is placed on the opposite surface between the upper surface and the lower surface, so that 1 mm between the upper surface and the water-stopping material.
Clearance was provided.

試験装置の上部及び下部を合せボルトで締付け、給水
加圧ポンプをセットし、所定の圧力をかけ、漏水の有無
の経時変化をみた。その結果を第2図に示す。図から明
らかな様に9ケ月後においても7KG/cm2の水圧に耐える
ことが出来た。
The upper and lower parts of the test apparatus were tightened with dowel bolts, a water supply pressurizing pump was set, a predetermined pressure was applied, and the time-dependent change in the presence or absence of water leakage was observed. The result is shown in FIG. As is clear from the figure, even after 9 months, it was able to withstand the water pressure of 7 KG / cm 2 .

本発明で得られる水膨潤性止水材は厚みに対し1mmの
クリアランスが存在するにもかかわらず、水で膨潤し、
体積増により空隙を塞いでしまう。しかも含有される水
膨潤性樹脂が水膨潤することにより、上下2枚の円板に
挟まれた水膨潤性止水材が円板に対して高い膨潤圧を示
すことになる。その結果、高水圧の水に耐え得、地下数
十mの工事にも使用可能である。
The water-swellable water-stopping material obtained in the present invention swells with water despite having a clearance of 1 mm with respect to the thickness,
The space is closed by the increase in volume. Moreover, since the contained water-swellable resin swells with water, the water-swellable water-stopping material sandwiched between the upper and lower two disks exhibits a high swelling pressure on the disks. As a result, it can withstand high-pressure water and can be used for construction several tens of meters below ground.

【図面の簡単な説明】[Brief description of the drawings]

第1図は実施例9における圧力と漏水の関係を示す図で
ある。
FIG. 1 is a diagram showing the relationship between pressure and water leakage in the ninth embodiment.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹内 斉 埼玉県北葛飾郡庄和町米島261―25 (72)発明者 中村 道衛 埼玉県草加市金明町475―6 (56)参考文献 特開 昭59−126448(JP,A) 特開 昭61−43641(JP,A) 特開 昭57−147570(JP,A) (58)調査した分野(Int.Cl.6,DB名) C08L 23/00 - 23/36 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hitoshi Takeuchi 261-25 Yonejima, Showa-cho, Kita-Katsushika-gun, Saitama Prefecture (72) Inventor Michie Nakamura 475-6, Kinmeicho, Soka-shi, Saitama -126448 (JP, A) JP-A-61-43641 (JP, A) JP-A-57-147570 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C08L 23/00- 23/36

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭素数3〜12のα−オレフィンを2〜40モ
ル%含む直鎖状エチレン/α−オレフィン共重合体を塩
素化してなる塩素含有量5〜40重量%及び結晶化度0.1
〜3.0Cal/gの塩素化直鎖状エチレン/α−オレフィン共
重合体と水膨潤性樹脂とを均一に混練分散させてなり、
非加硫又は非架橋で成形して優れた物理的強度と高い水
膨潤度を有する成形物を与えることを特徴とする水膨潤
性樹脂組成物。
1. A chlorinated linear ethylene / α-olefin copolymer containing 2 to 40 mol% of an α-olefin having 3 to 12 carbon atoms, a chlorine content of 5 to 40% by weight and a crystallinity of 0.1.
~ 3.0 Cal / g chlorinated linear ethylene / α-olefin copolymer and water-swellable resin are uniformly kneaded and dispersed,
A water-swellable resin composition which is molded by non-vulcanization or non-crosslinking to give a molded article having excellent physical strength and high water swelling degree.
【請求項2】炭素数3〜12のα−オレフィンを2〜40モ
ル%含む直鎖状エチレン/α−オレフィン共重合体を塩
素化してなる塩素含有量5〜40重量%及び結晶化度0.1
〜3.0Cal/gの塩素化直鎖状エチレン/α−オレフィン共
重合体と水膨潤性樹脂とを均一に混練分散させてなる水
膨潤性樹脂組成物を、非加硫又は非架橋で成形してなる
ことを特徴とする水膨潤性樹脂成形物。
2. A chlorinated linear ethylene / α-olefin copolymer containing 2 to 40 mol% of an α-olefin having 3 to 12 carbon atoms, a chlorine content of 5 to 40% by weight and a crystallinity of 0.1.
A water-swellable resin composition obtained by uniformly kneading and dispersing a water-swellable resin with a chlorinated linear ethylene / α-olefin copolymer of up to 3.0 Cal / g in a non-vulcanized or non-crosslinked form. A water-swellable resin molded product characterized by comprising:
JP10316690A 1990-04-20 1990-04-20 Water swellable resin composition Expired - Fee Related JP2883156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10316690A JP2883156B2 (en) 1990-04-20 1990-04-20 Water swellable resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10316690A JP2883156B2 (en) 1990-04-20 1990-04-20 Water swellable resin composition

Publications (2)

Publication Number Publication Date
JPH044244A JPH044244A (en) 1992-01-08
JP2883156B2 true JP2883156B2 (en) 1999-04-19

Family

ID=14346926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10316690A Expired - Fee Related JP2883156B2 (en) 1990-04-20 1990-04-20 Water swellable resin composition

Country Status (1)

Country Link
JP (1) JP2883156B2 (en)

Also Published As

Publication number Publication date
JPH044244A (en) 1992-01-08

Similar Documents

Publication Publication Date Title
EP0256724B1 (en) Thermoplastic elastomer compositions
CN101331179B (en) Polyolefin resin foam and process for production thereof
EP0212142B1 (en) Flame-retardant olefin polymer composition
EP0010428B1 (en) Process for producing a random ethylene terpolymer and melt-shaped articles of such terpolymer
JPS648657B2 (en)
US4587039A (en) Electrically-conductive resin composition
EP0191990A2 (en) Crosslinked resin compositions
CA1271288A (en) Thermoplastic elastomer composition
CA1223695A (en) Process for producing olefin copolymer rubber
AU721073B2 (en) Ethylene random copolymer, process for its preparation and rubber composition
JPS61255950A (en) Flame-retardant ethylene polymer composition having excellent heat resistance
JP2883156B2 (en) Water swellable resin composition
JPS6092342A (en) Floor- and wall-covering composition
JP2745679B2 (en) Olefin random copolymer
JPS61255951A (en) Lowly smoking ethylene polymer composition
JP2682076B2 (en) Unsaturated random copolymer
JPH0333111A (en) Antiozone butyl elastomer
JP5334235B2 (en) Pipe for water supply or gas transportation comprising a polymer blend-based polyethylene resin composition
JPS6142738B2 (en)
JP3506548B2 (en) Crosslinked rubber molded article for sealing and method for producing the same
JPH07116336B2 (en) Molding material
JPH11116811A (en) Vulcanizable rubber composition
JP5334275B2 (en) Polymer blend-based polyethylene resin composition and molded article thereof
JP3224255B2 (en) Higher α-olefin copolymer and method for producing the same
JPH0753778B2 (en) Roofing material and its sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees