JP2882807B2 - Automatic boron concentration analyzer - Google Patents

Automatic boron concentration analyzer

Info

Publication number
JP2882807B2
JP2882807B2 JP1063318A JP6331889A JP2882807B2 JP 2882807 B2 JP2882807 B2 JP 2882807B2 JP 1063318 A JP1063318 A JP 1063318A JP 6331889 A JP6331889 A JP 6331889A JP 2882807 B2 JP2882807 B2 JP 2882807B2
Authority
JP
Japan
Prior art keywords
neutron
detector
boron concentration
temperature
neutron detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1063318A
Other languages
Japanese (ja)
Other versions
JPH02242197A (en
Inventor
高志 井口
寛治 水崎
札三 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1063318A priority Critical patent/JP2882807B2/en
Publication of JPH02242197A publication Critical patent/JPH02242197A/en
Application granted granted Critical
Publication of JP2882807B2 publication Critical patent/JP2882807B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はPWRプラントの反応度制御に用いられている
ボロン濃度(ほう素濃度)を自動分析・計測するボロン
濃度自動分析装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an automatic boron concentration analyzer for automatically analyzing and measuring boron concentration (boron concentration) used for reactivity control of a PWR plant.

〔従来の技術〕 従来装置の構造及び原理を第5図に示す。第5図にお
いて、中性子吸収方式のボロン検出器は、中性子源11と
そこから統計的確立で発生する高速中速中性子を熱中
性子まで減速する減速材(高濃度ポリエチレン等)12と
熱中性子を感度よく検出する中性子検出器13からなる中
性子束検出部10と中性子検出信号を演算処理する回路部
20と結果を表示する表示部30より成る。中性子源11と中
性子束検出器13との間を被測定プロセス流体を入れる
が、ボロンは熱中性子吸収断面積が大きいのでこの流体
のほう素濃度により中性子束検出器13に到達できる中性
子数は異なるのでこの関係を用いることによりボロン濃
度を測定できる。厳密には、ボロンの同位元素の内天然
には19.80%の比率で存在するB10が中性子の吸収断面積
が大きいのでB10の濃度を測定していることになる。
又、ボロンの熱中性子吸収断面積は中性子のエネルギー
温度に逆比例する為温度ドリフトを生じるので温度補
正回路を組み込んでいる。
[Prior Art] FIG. 5 shows the structure and principle of a conventional device. In FIG. 5, the boron detector of the neutron absorption system detects a neutron source 11, a moderator (high-density polyethylene, etc.) 12 for decelerating high-speed and medium-speed neutrons generated by statistical establishment from the source to a thermal neutron, and a thermal neutron. A neutron flux detector 10 composed of a neutron detector 13 that detects well, and a circuit that performs arithmetic processing on a neutron detection signal
20 and a display unit 30 for displaying the result. The process fluid to be measured is inserted between the neutron source 11 and the neutron flux detector 13, but the number of neutrons that can reach the neutron flux detector 13 depends on the boron concentration of boron because boron has a large thermal neutron absorption cross section. Therefore, the boron concentration can be measured by using this relationship. Strictly speaking, the inner natural isotope boron so that B 10 present in a ratio of 19.80% is that measuring the concentration of so B 10 absorption cross section of neutron is large.
Further, since the thermal neutron absorption cross section of boron is inversely proportional to the energy temperature of neutrons, a temperature drift occurs, so a temperature correction circuit is incorporated.

PWRの1次冷却材のボロン濃度は0ppm〜5000ppm程度と
広いレンジに亘っている。
The boron concentration of the primary coolant of PWR is in a wide range from 0 ppm to 5000 ppm.

又ボロン濃度はPWRの主要な反応度制御手段であるこ
とにより自動分析計測装置としてはこの広いレンジに
亘り精度/応答性よく計測でき、又、自動分析計測装
置の目的の1つは省力化であることから校正頻度が少な
く長期間人手をかけず安定して計測できるものとする必
要がある。
The concentration of boron is the main means of controlling the reactivity of PWR, so that it can be measured with high accuracy / response over a wide range as an automatic analysis and measurement device. One of the purposes of the automatic analysis and measurement device is to save labor. For this reason, it is necessary that the frequency of calibration be low and stable measurement can be performed without human intervention for a long time.

一方、現在正式データ用として用いられている手分析
では、専門の操作分析者を必要とするものの15分程度
の所要時間で±5ppm程度の精度で測定できる。これだけ
の精度を有するボロン濃度自動分析装置は従来存在せず
PWR1次冷却材のボロン濃度は手分析によって測定管理
されていた。
On the other hand, manual analysis, which is currently used for official data, requires a specialized operation analyst, but can be measured with an accuracy of about ± 5 ppm in about 15 minutes. There has been no boron concentration automatic analyzer with such accuracy
The boron concentration of PWR primary coolant was measured and controlled by manual analysis.

ボロン濃度はPWRの反応度制御の主要な手段であるの
で手分析の為の分析員の負担は大きく、又将来実用化さ
れるPWRの負荷調整運転ではボロン濃度は短時間に大き
く変化するのでその計測を手分析で行なうことは分析員
の負担を増々大きくし、又ボロン濃度の自動制御化の為
にも望ましくなく、ボロン濃度の高精度自動分析計の登
場が強く要求されている。
Since the boron concentration is the main means of controlling the reactivity of the PWR, the burden on the analyst for manual analysis is large, and in the load adjustment operation of the PWR that will be put into practical use in the future, the boron concentration changes greatly in a short period of time. Performing the measurement by hand analysis increases the burden on the analyst, and is not desirable for the automatic control of the boron concentration. The emergence of a highly accurate automatic analyzer of the boron concentration is strongly demanded.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

手分析に代わって精度よく、応答性よくボロン濃度を
計測でき、又省力化の為に校正頻度が少なく長期間安定
して計測できるボロン濃度自動分析装置を実現するため
には以下の問題がある。
There are the following problems to realize a boron concentration automatic analyzer that can measure boron concentration with high accuracy and responsiveness in place of manual analysis and that can measure stably for a long period with less calibration frequency for labor saving. .

(1) 誤差の要因とその程度が不明であり、それらを
定量的にとらえる必要がある。
(1) The factors and the degree of the errors are unknown, and it is necessary to quantitatively grasp them.

(2) 中性子源からの中性子放出は統計的であり統計
誤差を有する。従来中性子源としてAm−Be(アメリシウ
ム−ベリリウム)、中性子束検出器としてBF3カウンタ
を用いておりこの組合せでのカウント率は103cps(coun
ts per second)のオーダでありカウント数をふやして
統計誤差を小さくするには長時間を要し応答性が悪く又
その間、状態を一定に保たねばならないという問題があ
る。
(2) Neutron emissions from neutron sources are statistical and have statistical errors. Am-Be as a conventional neutron source (americium - beryllium), the count rate in this combination is used of BF 3 counter as a neutron flux detector 10 3 cps (coun
In order to reduce the statistical error by increasing the number of counts, it takes a long time, the response is poor, and the state must be kept constant during that time.

(3) カウント率とボロン濃度(厳密にはB10濃度)
の関係は非線形であるが、これを2次関数で近似してい
る。計測レンジは0〜5000ppmと広いのでこの関数近似
の誤差は大きい。
(3) the count rate and the boron concentration (strictly B 10 concentration)
Is nonlinear, but this is approximated by a quadratic function. Since the measurement range is as wide as 0 to 5000 ppm, the error of this function approximation is large.

(4) ボロンの中性子吸収断面積は中性子エネルギー
(温度)の関数であるので温度変動の影響を受ける。こ
の為温度補正回路を有しているが減速材の熱伝導率は非
常に悪く、温度変動時各部の熱的非平衡状態は長く続き
温度補正は難かしく又完全には補正きれない。
(4) Since the neutron absorption cross section of boron is a function of neutron energy (temperature), it is affected by temperature fluctuation. For this reason, although a temperature compensating circuit is provided, the thermal conductivity of the moderator is very poor, and the thermal non-equilibrium state of each part is long when the temperature fluctuates, so that the temperature compensation is difficult and cannot be completely compensated.

(5) 又プロセス温度のみでなく、演算処理部の周囲
温度の変動によっても中性子束検出器への印加電圧が変
化しカウント率が変動する。γ線等の影響を除くため中
性子検出器のカウント出力信号のパルス形状から中性子
によるパルスのみを抽出する弁別回路を有しているがこ
のしきい値も温度変動によりドリフトしこれも又温度変
動誤差となる。
(5) The voltage applied to the neutron flux detector changes due to not only the process temperature but also the ambient temperature of the arithmetic processing unit, and the count rate changes. There is a discriminating circuit that extracts only neutron pulses from the pulse shape of the neutron detector count output signal in order to eliminate the effects of gamma rays, etc., but this threshold also drifts due to temperature fluctuations, and this also causes temperature fluctuation errors. Becomes

(6) PWRでは1次冷却材中のB10濃度は燃料核分裂に
よる中性子の吸収により運転が進むにつれて減損してい
き当初の19.80%からその存在比率は減少していく。
(6) PWR B 10 concentration of the in the primary coolant existence ratio from 19.80% of the original will be impaired as proceeds operated by neutron absorption in the fuel fission decreases.

この為B10濃度を計測するのであれば問題ないがボロ
ン濃度を計測する場合は誤差要因となる。
Therefore although it if no problem is to measure the B 10 concentration becomes an error factor when measuring the boron concentration.

以上のことをまとめると第6図のようになる。 The above is summarized in FIG.

〔課題を解決するための手段〕[Means for solving the problem]

本発明に係るボロン濃度自動分析装置は中性子検出部
110と演算処理回路部120と表示部130からなるボロン濃
度分析装置において、前記中性子検出部110は中性子源1
11と減速材112と中性子検出器113とサンプラータンク11
4を具備するとともに中性子源111にはAm−BeおよびCfの
いずれかを用い、中性子検出器113にはHe3カウンターを
使用し、中性子検出器113の上流には温度制御器と流量
制御器を設け、中性子検出器113のカウント率とボロン
濃度の関係をボロン濃度の範囲0〜5000ppmを複数の小
領域に分け、その領域で2次曲線近似し、前記演算処理
回路部120は増幅器121とパルス数カウンタ122とコンピ
ュータ123と補正処理部124を具備し、前記コンピュータ
123は、パルス数カウンタ122の出力およびB10存在比設
定器125の出力を入力するとともに、中性子源111の温度
信号1と中性子検出器113の温度信号2と演算処理回路
部120の温度信号3を入力し、表示部130に出力すること
を特徴とする。
The automatic boron concentration analyzer according to the present invention is a neutron detector
In the boron concentration analyzer including the 110, the arithmetic processing circuit unit 120, and the display unit 130, the neutron detection unit 110 includes a neutron source 1
11, moderator 112, neutron detector 113, and sampler tank 11
4, a neutron source 111 using either Am-Be or Cf, a neutron detector 113 using a He 3 counter, and a temperature controller and a flow controller upstream of the neutron detector 113. The relationship between the count rate of the neutron detector 113 and the boron concentration is divided into a plurality of small regions in the range of the boron concentration of 0 to 5000 ppm, and a quadratic curve is approximated in the region. A computer including a number counter 122, a computer 123, and a correction processing unit 124;
123 inputs the outputs of the output and B 10 abundance setter 125 of the pulse number counter 122, the temperature signal third temperature signal 2 and the arithmetic processing circuit unit 120 of the temperature signal 1 and the neutron detector 113 neutron source 111 Is input and output to the display unit 130.

〔作用〕[Action]

中性子源にはAm−BeおよびCfのいずれかを用いて中性
子を発生させ、中性子吸収率のより高い中性子検出器
(He3カウンター)により計数する。
Neutrons are generated using either Am-Be or Cf as a neutron source, and counted by a neutron detector (He 3 counter) having a higher neutron absorption rate.

中性子検出器の上流に温度制御器と流量制御器を設け
ることによりプロセスの温度変動及び流量変動を防ぐ。
Providing a temperature controller and a flow controller upstream of the neutron detector prevents process temperature and flow fluctuations.

中性子検出器のカウント率とボロン濃度の関数式はボ
ロン濃度0〜5000ppm範囲を複数の小領域に分けその領
域で2次曲線近似することにより、関数フィッテングの
正確さを高める。
The function formula of the neutron detector count rate and the boron concentration increases the accuracy of the function fitting by dividing the range of the boron concentration from 0 to 5000 ppm into a plurality of small regions and approximating the region with a quadratic curve.

補正処理部により中性子源の温度と中性子検出器の温
度と演算処理部の温度の影響を補正する。
The correction processing unit corrects the effects of the temperature of the neutron source, the temperature of the neutron detector, and the temperature of the arithmetic processing unit.

〔実施例〕〔Example〕

先ず、誤差要因(第6図)とその問題を解決するため
のポイントにつき述べる。
First, error factors (FIG. 6) and points for solving the problems will be described.

(1) 物理的考察、及び実験により誤差要因の抽出と
各要因の誤差に及ぼす程度を把握し問題解決の項目を絞
り込む。これにより以下の(2)〜(6)の導出の足が
かりを得る。
(1) The factors of error are extracted by physical considerations and experiments, and the degree to which each factor affects the error is identified, and items for solving the problem are narrowed down. This provides a starting point for deriving the following (2) to (6).

(2) 統計的誤差を減少させ、又応答性を向上する為
に中性子検出器でのカウント率を増加するよう中性子源
と検出器の配置を最適に選ぶ。又中性子発生数の多い中
性子源と中性子吸収率のより高い中性子検出器を用い
る。
(2) Optimizing the arrangement of neutron sources and detectors to increase the count rate at the neutron detector to reduce statistical errors and improve responsiveness. Also, a neutron source with a high neutron generation rate and a neutron detector with a higher neutron absorption rate are used.

(3) 中性子検出器のカウント率とボロン濃度の関数
フィッディングをより正確に行なうためボロン濃度の範
囲0〜5000ppmを複数の領域に分けその小さいレンジで
2次曲線近似とする。領域を更に小さく分けて1次近似
としてもよいし、又逆に領域メッシュを粗くして3次以
上の多項式近似としてもよい。
(3) In order to more accurately perform the function fitting of the neutron detector count rate and boron concentration, the range of boron concentration of 0 to 5000 ppm is divided into a plurality of regions, and a quadratic curve approximation is performed in a small range. The region may be further divided into smaller approximations and a first-order approximation may be used, or conversely, the region mesh may be roughened and used as a third-order or higher polynomial approximation.

(4) プロセス温度変動は補正しきれないのでボロン
濃度計の上流に温度一定制御装置を設ける。又プロセス
温度変動の要因となる流量変動を抑えるため、流量一定
制御装置を設置する。更に周囲温度の変動(季節、昼夜
等による)及びプロセス温度変動の影響を補正する為に
温度補正処理部124も用いる。温度補正処理用温度検出
器は従来の減速材部に加えてプロセス流体部にも用いる
方式にもできる。
(4) Since a process temperature fluctuation cannot be completely corrected, a constant temperature control device is provided upstream of the boron concentration meter. In addition, a constant flow rate control device is installed to suppress the flow rate fluctuation that causes the process temperature fluctuation. Further, the temperature correction processing unit 124 is also used to correct the influence of the fluctuation of the ambient temperature (due to season, day and night, etc.) and the fluctuation of the process temperature. The temperature detector for temperature correction can be used in the process fluid section in addition to the conventional moderator section.

(5) 演算処理部の温度ドリフトの影響を補正する為
演算処理部温度の補正処理部124を設ける。
(5) An arithmetic processing unit temperature correction processing unit 124 is provided to correct the influence of the temperature drift of the arithmetic processing unit.

(6) B10の減損はゆるやかにおこるので、別途求め
たB10存在比をインプットしこの値により補正できる補
正処理部124を設ける。
(6) Since the loss of B 10 is caused to gradually, provided the correction processing unit 124 that can be input separately obtained B 10 abundance corrected by this value.

次に本発明の実施例を第1図〜第4図に示す。第1図
は本発明の実施例の構成を示す。中性子源111としては
アメリシウム−ベリリウム(Am−Be)又はカリホルニウ
ム(252Cf)を用いる。
Next, an embodiment of the present invention is shown in FIGS. FIG. 1 shows the configuration of an embodiment of the present invention. The neutron source 111 americium - using beryllium (Am-Be) or Californium (252 Cf).

a=中性子源からサンプラータンクまでの距離 b=サンプラータンクから中性子検出器までの距離 とするとき、a,bの距離は計算解析又は実験により最適
配置となるよう即ちカウント率が最も大きくなるように
設定する。
a = distance from the neutron source to the sampler tank b = distance from the sampler tank to the neutron detector When a and b are determined by calculation analysis or experiment so that the optimal arrangement is obtained, that is, the count rate is maximized. Set.

減速材112としてはポリエチレンを使用する。中性子
検出器113にはHe3カウンターを使用する。
As the moderator 112, polyethylene is used. The neutron detector 113 uses a He 3 counter.

中性子検出器のカウント率Cとボロン濃度下の関数フ
ィッテングをより正確に行なうためボロン濃度の範囲0
〜5000ppm複数の小さい領域に分け、その小さいレンジ
で2次曲線近似する。プロセス温度変動を防ぐため中性
子検出器の上流に温度1定制御器118と流量1定制御器
(図示省略)を設ける。
In order to perform more accurate function fitting under the neutron detector count rate C and boron concentration, the range of boron concentration 0
50005000 ppm Divided into a plurality of small areas, and a quadratic curve is approximated in the small range. A temperature constant controller 118 and a flow rate constant controller (not shown) are provided upstream of the neutron detector to prevent process temperature fluctuation.

中性子検出信号を演算処理する回路部120は増幅器121
とパルス数カウンタ122とコンピュータ123を備える。
The circuit unit 120 for processing the neutron detection signal is an amplifier 121
And a pulse number counter 122 and a computer 123.

B10存在比設定器125によりB10の存在比を設定しコン
ピュータ123に入力し、その値により補正できる補正処
理部124を設ける。演算処理部の温度ドリフトの影響を
補正するための補正も前記補正部124により行なう。
The B 10 abundance setter 125 inputs to the computer 123 sets the presence ratio of B 10, providing the correction processing unit 124 can be corrected by that value. The correction for correcting the influence of the temperature drift of the arithmetic processing unit is also performed by the correction unit 124.

第2図は本発明の実施例のプラトー曲線を示す。プラ
トー領域は数百ボルトあり通常この範囲に印加電圧を定
め電圧変動の影響を除いているが、最も特性のよいもの
で1%/100V程度のスロープを有し印加電圧を安定に保
つことが要求される。
FIG. 2 shows a plateau curve of the embodiment of the present invention. The plateau region has several hundred volts and the applied voltage is usually set in this range to eliminate the effects of voltage fluctuations. However, it is required to maintain the applied voltage stably with a slope of about 1% / 100V with the best characteristics. Is done.

第3図は本発明の実施例のパルス高さ分布曲線を示
す。
FIG. 3 shows a pulse height distribution curve of the embodiment of the present invention.

パルス高さ分布密度は検出器の種類、形状等によって
異なる。第3図のLの長さが大で傾斜部の面種の比率
が小さい程ノイズ弁別の精度がよくなり、又温度変動等
によるパルス巾変動の影響を受けない。
The pulse height distribution density differs depending on the type and shape of the detector. The longer the length L in FIG. 3 and the smaller the ratio of the surface types of the inclined portions, the higher the accuracy of noise discrimination and the less affected by pulse width variations due to temperature variations and the like.

第4図は検出器カウント率Cとボロン濃度CBとの関係
を実験的に求める場合の誤差を示す図である。
FIG. 4 is a diagram showing an error in case of obtaining the relationship between the detector count rate C and boron concentration C B experimentally.

広いレンジに亘って2次曲線で近似すると誤差が大き
くなるので、小さいレンジに分けて2次近似する。
When approximating with a quadratic curve over a wide range, the error becomes large. Therefore, quadratic approximation is performed by dividing into small ranges.

前記実施例により、第6図に示す誤差要因に対しては
以下のように対処する。
According to the above embodiment, the error factors shown in FIG. 6 are dealt with as follows.

(1) 中性子放出に伴なう統計誤差は (F:カウント率、t:計測時間)に近似できるのでFを大
きくするかtを大きくすることにより減少できる。tを
大きくすることでの対処することもできるがこの場合は
応答時間が長くなるのでFを大きく方法を採用し以下の
如く対処する。
(1) The statistical error associated with neutron emission is (F: count rate, t: measurement time) and can be reduced by increasing F or increasing t. It can be dealt with by increasing t, but in this case, since the response time becomes long, the method of increasing F is adopted and the following measures are taken.

(a) 中性子計数率増加策として 中性子源とカウンタの配置については、試験結果に
より最適の配置を求める。
(A) As a measure to increase the neutron counting rate For the arrangement of the neutron source and counter, the optimum arrangement will be determined based on the test results.

中性子源は強度種類(252Cf)に変更することも可
能である。
The neutron source can be changed to the intensity type ( 252 Cf).

カウンタの高効率化のためBF3をHe3に変更する。He
3の方がB10より中性子吸収断面積が大きく又He3では毒
性がないため加圧できるので計数率は3〜10倍上昇し、
誤差は〜2ppm以下になる。
Change BF 3 to He 3 to increase the efficiency of the counter. He
3 has a larger neutron absorption cross-section than B 10 and He 3 has no toxicity and can be pressurized, so the counting rate increases 3 to 10 times.
The error is less than ~ 2 ppm.

(b) その他次のことにも注意する。(B) Also note the following.

計数率は下流のAmp回路とのマッチングより定め
る。104〜105cpsが現状のリミットである。又パルス巾
が小さくパイルアップ効果の小さいことが望ましい。パ
イルアップ効果が大きく、パルス巾が大きいとカウント
率の増大に伴って各パルスが重なり数え落としの原因と
なるからである。
The counting rate is determined by matching with the downstream Amp circuit. 10 4 to 10 5 cps is the current limit. It is also desirable that the pulse width is small and the pile-up effect is small. This is because the pile-up effect is large, and if the pulse width is large, each pulse overlaps with an increase in the count rate, which causes counting down.

プラトー曲線の平坦化をはかる。又パルス高さ分布
曲線より弁別設定の容易なものとする(図2,3)。
The plateau curve is flattened. In addition, the discrimination setting should be easier than the pulse height distribution curve (Figs. 2 and 3).

検出器場所での中性子束レベル以上を計測できるよ
う検出器の中性子束レンジを定める。中性子源により検
出器設置場所の中性子束レベルは異なるからである。
The neutron flux range of the detector is determined so that the neutron flux level at the detector location can be measured. This is because the neutron flux level differs depending on the neutron source.

上記〜を満足するように計算及び実験によって
He3封入圧、検出器の大きさを最適に定める。中性子源
を1ci(キュリー)とした場合He3検出器は5〜10kg/cm2
の封入圧で外径1B有効長10B程度が最適となる。(1Bと
は1インチ長のことである。) (2) フィッティング誤差 上記(1)項により中性子源、検出器のタイプ及び配
置を選定後検出器カウント率対ボロン濃度の関係を実験
的に求める。この関係式は2次曲線に近いが広いレンジ
に亘って2次曲線で近似すると第4図(a),(b)の
如くエラーを生じる。
Through calculations and experiments to satisfy the above
Optimum He 3 filling pressure and detector size. When the neutron source is 1 ci (Curie), the He 3 detector is 5 to 10 kg / cm 2
The optimal pressure is about 1 B in outer diameter and about 10 B in effective length. (1B is 1 inch long.) (2) Fitting error After selecting the neutron source and detector type and arrangement according to the above item (1), the relationship between the detector count rate and the boron concentration is experimentally obtained. . This relational expression is close to a quadratic curve, but if it is approximated by a quadratic curve over a wide range, an error occurs as shown in FIGS. 4 (a) and 4 (b).

そこで問題点を解決するためのポイントの(3)項の
処理を行なう。これにより第4図(c)のようにフィッ
ティング誤差は大きく低減できる。
Therefore, the processing of item (3) for solving the problem is performed. Thereby, the fitting error can be greatly reduced as shown in FIG. 4 (c).

(3) 温度変動誤差 プロセス温度変動及び周囲温度変動による検出器カウ
ント率対ボロン濃度の関係式の変化量を実験により求め
る。この時ボロン濃度自動分析装置各部の温度を同時に
計測しておき、各部の温度と上記変化量との関係式を求
め、この関係式により温度補正処理を行なう。
(3) Temperature fluctuation error The amount of change in the relational expression between the detector count rate and the boron concentration due to the process temperature fluctuation and the ambient temperature fluctuation is obtained by experiments. At this time, the temperature of each part of the automatic boron concentration analyzer is measured at the same time, and a relational expression between the temperature of each part and the amount of change is obtained, and a temperature correction process is performed using this relational expression.

但し温度変動を生じさせないことが一番有効であるの
で温度一定制御器を設置する。温度制御操作端は応答性
より冷却水よりヒータによる温度上昇させて周囲温度以
上の一定値に保つ。
However, since it is most effective not to cause temperature fluctuation, a temperature constant controller is provided. The temperature control operating end raises the temperature of the cooling water by the heater from the responsiveness and maintains the temperature at a constant value equal to or higher than the ambient temperature.

〔発明の効果〕〔The invention's effect〕

本発明は前述のように構成されているので本発明によ
れば以下の効果を奏する。
Since the present invention is configured as described above, the present invention has the following effects.

(1) 流体の温度と流量を一定にする制御器をそな
え、かつカウント数の増大手段の採用により統計的誤差
を減少できる。
(1) Statistical errors can be reduced by providing a controller for keeping the temperature and flow rate of the fluid constant, and by employing means for increasing the number of counts.

(2) カウント数とボロン濃度との関係を小領域に分
けて近似することにより広いレンジに亘って高精度で計
測できる。
(2) By approximating the relationship between the count number and the boron concentration in small regions, it is possible to measure with high accuracy over a wide range.

(3) 運転に伴なう自然ボロンの内のB10成分の減損
の影響を補正でき、又温度変動によるドリフトの補正機
能を有する中性子吸収方式の検出器(中性子源からの中
性子が中性子検出器へ到着する数がプロセス中のボロン
濃度の増加に応じて減少するという原理を用いた中性子
源と中性子検出器からなるもの)を組込んでいるため高
精度のボロン濃度を自動分析できる。
(3) Operation to be correct for the effects of loss of B 10 component of the accompanying natural boron, also a neutron neutron detector from the detector (neutron source neutron absorbing system having a drift compensation function due to temperature variation (A neutron source and neutron detector based on the principle that the number of particles arriving at the reactor decreases as the boron concentration increases during the process).

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例の構成を示す図、 第2図は本発明の実施例のプラトー曲線を示す図、 第3図は本発明の実施例のパルス高さ分布曲線を示す
図、 第4図は検出器カウント率対ボロン濃度の関係を実験的
に求める場合の誤差を示す図、 第5図は従来装置の構成を示す図、 第6図は従来装置の誤差要因を示す図である。 10,110……中性子検出部、11,111……中性子源、12,112
……減速材、13,113……中性子検出器、14,114……サン
プラータンク、15,115……配管(流入例)、16,116……
配管(流出例)、17,117……配線、118……ヒータ、119
……調節計、20,120……演算処理回路部、21,121……増
幅器、22,122……パルス数カウンタ、23,123……μ−コ
ンピュータ、124……補正処理部、125……B10存在比設
定器、30,130……表示部(指示計又はコンピュータ)。
FIG. 1 is a diagram showing a configuration of an embodiment of the present invention, FIG. 2 is a diagram showing a plateau curve of the embodiment of the present invention, FIG. 3 is a diagram showing a pulse height distribution curve of the embodiment of the present invention, FIG. 4 is a diagram showing an error when the relationship between the detector count rate and the boron concentration is experimentally obtained, FIG. 5 is a diagram showing a configuration of a conventional device, and FIG. 6 is a diagram showing an error factor of the conventional device. is there. 10,110: Neutron detector, 11,111: Neutron source, 12,112
... Moderator, 13,113 ... Neutron detector, 14,114 ... Sampler tank, 15,115 ... Piping (inflow example), 16,116 ...
Piping (example of outflow), 17,117: Wiring, 118: Heater, 119
...... controllers, 20, 120 ...... arithmetic processing circuit unit, 21, 121 ...... amplifiers, 22, 122 ...... pulse number counter, 23, 123 ...... .mu. computer, 124 ...... correction processing unit, 125 ...... B 10 abundance setter, 30,130 ... Display unit (indicator or computer).

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭49−18095(JP,A) 特公 昭45−4234(JP,B1) (58)調査した分野(Int.Cl.6,DB名) G01T 1/00 - 7/12 G21C 17/00 - 17/14 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-49-18095 (JP, A) JP-B-45-4234 (JP, B1) (58) Fields investigated (Int. Cl. 6 , DB name) G01T 1/00-7/12 G21C 17/00-17/14

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】中性子検出部(110)と演算処理回路部(1
20)と表示部(130)からなるボロン濃度分析装置にお
いて、 (A)前記中性子検出部(110)は、中性子源(111)と
減速材(112)と中性子検出器(113)とサンプラータン
ク(114)を具備するとともに、 (B)中性子源(111)にはAm−BeおよびCfのいずれか
を用い、 (C)中性子検出器(113)にはHe3カウンタを使用し、 (D)中性子検出器(113)の上流には温度制御器と流
量制御器を設け、 (E)中性子検出器(113)のカウント率とボロン濃度
の関係は、ボロン濃度の範囲0〜5000ppmを複数の小領
域に分け、その領域で2次曲線近似し、 (F)前記演算処理回路部(120)は増幅器(121)とパ
ルス数カウンタ(122)とコンピータ(123)と補正処理
部(124)を具備し、 (G)前記コンピータ(123)は、パルス数カウンタ(1
22)の出力およびB10存在比設定器(125)の出力を入力
するとともに、中性子源(111)の温度信号(1)と中
性子検出器(113)の温度信号(2)と演算処理回路部
(120)の温度信号(3)を入力し、表示部(130)に出
力することを特徴とするボロン濃度自動分析装置。
A neutron detector (110) and an arithmetic processing circuit (1)
(A) The neutron detector (110) includes a neutron source (111), a moderator (112), a neutron detector (113), and a sampler tank (130). (B) a neutron source (111) using either Am-Be or Cf, (C) a neutron detector (113) using a He 3 counter, and (D) a neutron. A temperature controller and a flow rate controller are provided upstream of the detector (113). (E) The relationship between the count rate of the neutron detector (113) and the boron concentration is as follows. (F) The arithmetic processing circuit section (120) includes an amplifier (121), a pulse counter (122), a computer (123), and a correction processing section (124). (G) The computer (123) is provided with a pulse number counter (1).
Inputs the output of the output and B 10 abundance setter 22) (125), the temperature signal (2) and the arithmetic processing circuit unit of the temperature signal (1) and the neutron detector of the neutron source (111) (113) An automatic boron concentration analyzer characterized in that the temperature signal (3) of (120) is input and output to a display unit (130).
JP1063318A 1989-03-15 1989-03-15 Automatic boron concentration analyzer Expired - Lifetime JP2882807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1063318A JP2882807B2 (en) 1989-03-15 1989-03-15 Automatic boron concentration analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1063318A JP2882807B2 (en) 1989-03-15 1989-03-15 Automatic boron concentration analyzer

Publications (2)

Publication Number Publication Date
JPH02242197A JPH02242197A (en) 1990-09-26
JP2882807B2 true JP2882807B2 (en) 1999-04-12

Family

ID=13225803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1063318A Expired - Lifetime JP2882807B2 (en) 1989-03-15 1989-03-15 Automatic boron concentration analyzer

Country Status (1)

Country Link
JP (1) JP2882807B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101813362B1 (en) * 2016-02-17 2017-12-29 가천대학교 산학협력단 Method and system for monitoring boron concentration
KR101870050B1 (en) * 2016-12-22 2018-06-21 가천대학교 산학협력단 Method Of Measuring Boron Concentrations And Apparatus Using The Same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19643375A1 (en) * 1996-10-21 1998-04-30 Siemens Ag Measuring device for determining a boron concentration
JP2002350369A (en) * 2001-05-30 2002-12-04 Central Res Inst Of Electric Power Ind Measuring method of boron concentration and measuring apparatus utilizing the same
US9761335B2 (en) 2013-10-21 2017-09-12 Westinghouse Electric Company Llc Method for monitoring boron dilution during a reactor outage
CN107561104A (en) * 2017-09-08 2018-01-09 中国原子能科学研究院 A kind of equipment for nuclear power plant's boron aluminum alloy materials neutron-absorbing performance detection
DE102017222344A1 (en) * 2017-12-11 2019-06-13 Framatome Gmbh Apparatus and method for determining the boron content in a medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101813362B1 (en) * 2016-02-17 2017-12-29 가천대학교 산학협력단 Method and system for monitoring boron concentration
KR101870050B1 (en) * 2016-12-22 2018-06-21 가천대학교 산학협력단 Method Of Measuring Boron Concentrations And Apparatus Using The Same

Also Published As

Publication number Publication date
JPH02242197A (en) 1990-09-26

Similar Documents

Publication Publication Date Title
Hopkins et al. Prompt neutrons from fission
Bennett Fast neutron spectroscopy by proton-recoil proportional counting
JP2882807B2 (en) Automatic boron concentration analyzer
Yule et al. Techniques and analyses of fast reactor neutron spectroscopy with proton-recoil proportional counters
US4588898A (en) Apparatus for measuring dose energy in stray radiation fields
Kamboj et al. Evaluation of Monte Carlo simulation of photon counting efficiency for germanium detectors
Cox Neutron Activation Cross Sections for Br 79, Br 81, Rh 103, In 115, I 127, and Ta 181
EP1927995A2 (en) System and method for stabilizing the measurement of radioactivity
Joo et al. Calibration of digital wide-range neutron power measurement channel for open-pool type research reactor
Reilly et al. A continuous in-line monitor for UF6 enrichment
Bennett Neutron Spectrum Measurement in a Fast Critical Assembly
Hurst et al. A generalized concept for radiation dosimetry
Cao et al. YALINA-booster subcritical assembly pulsed-neutron experiments: data processing and spatial corrections.
Kinney et al. High-resolution fast-neutron gamma-ray production cross sections for iron up to 2100 keV
EP0042099A2 (en) Self-regulating neutron coincidence counter
Tomanin et al. Design of a liquid scintillator-based prototype neutron coincidence counter for Nuclear Safeguards
Weisel et al. Neutron-proton analyzing power data between 7.6 and 18.5 MeV
JPH06160585A (en) Burnup measuring device for spent fuel
Ball The inverse kinetics method and its application to the annular core research reactor
US3089032A (en) Selective measurement of short-lived fission products in a gas flow
Drucker et al. Determination of reactor power by coolant activity monitoring
Smith Spectrometer for the investigation of gamma radiation produced by neutron-induced reactions
Cvachovec et al. Stilbene neutron spectrometer with spreading of a one parameter pulse shape discrimination dynamic range
van Belle et al. Calibration of the JET neutron yield monitors using the delayed neutron counting technique
Miller et al. The reaction 9Be (α, n) 12C

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080205

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090205

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100205

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100205

Year of fee payment: 11