JP2882286B2 - Screw joint structure, steel pipe pile and steel sheet pile - Google Patents
Screw joint structure, steel pipe pile and steel sheet pileInfo
- Publication number
- JP2882286B2 JP2882286B2 JP19506094A JP19506094A JP2882286B2 JP 2882286 B2 JP2882286 B2 JP 2882286B2 JP 19506094 A JP19506094 A JP 19506094A JP 19506094 A JP19506094 A JP 19506094A JP 2882286 B2 JP2882286 B2 JP 2882286B2
- Authority
- JP
- Japan
- Prior art keywords
- steel pipe
- joint
- pile
- screw
- main body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Piles And Underground Anchors (AREA)
- Bulkheads Adapted To Foundation Construction (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、基礎杭や地すべり抑
止あるいは土留め等地盤から受ける横方向の力を支える
ことの可能なネジ継手部に適用するためのネジ継手構
造、およびそれを適用した鋼管杭および鋼管矢板に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a threaded joint structure applicable to a threaded joint capable of supporting a lateral force received from the ground, such as foundation piles, landslide prevention or earth retaining, and the like. It relates to a steel pipe pile and a steel pipe sheet pile.
【0002】[0002]
【従来の技術】鋼管杭は、建造物の基礎を設置する地盤
の強化のための基礎杭として用いられることが多いが、
コンクリート等に比べ施工が簡単なことから、地すべり
抑止用あるいは継手を付けて土留め用鋼管矢板としても
用いられるようになってきた。これらの用途では、従来
の基礎杭に比べより大きな曲げに対して抵抗させる傾向
にある。また、市街地での鋼管杭は、杭の施工空間に制
限を受けることから小径厚肉化する傾向にある。2. Description of the Related Art Steel pipe piles are often used as foundation piles for strengthening the ground on which a building foundation is installed.
Because it is easier to construct than concrete, it has come to be used as a steel pipe sheet pile for landslide prevention or earth retaining with a joint. In these applications, there is a tendency to resist greater bending than conventional foundation piles. In addition, steel pipe piles in urban areas tend to be small-diameter and thick-walled due to restrictions on the pile construction space.
【0003】以下、主に地すべり抑止用鋼管杭を例にと
って説明するが、本発明は地すべり抑止用に限定される
ものではなく、上記した地盤から横方向の力を支える目
的の鋼管杭を対象としており、他に土留め用鋼管杭、基
礎杭および鋼管矢板にも適用される。[0003] Hereinafter, a description will be mainly given of a steel pipe pile for landslide prevention, but the present invention is not limited to a landslide prevention steel pipe and is intended for a steel pipe pile for supporting a lateral force from the ground described above. It is also applied to retaining steel pipe piles, foundation piles and steel pipe sheet piles.
【0004】たとえば、地すべり抑止用鋼管杭の場合、
地すべりが起こり易い地すべり地帯に主に設置される。
従って、その施工場所は山間部等の急傾斜地であること
が多く、杭打ち機等の重機の搬入が困難である。また、
その他の特別な機械も使用しにくく、使用したとしても
不経済である。そのため、一般に打撃により杭を打ち込
むことは不可能であり、地盤を予め削孔し(プレボーリ
ング)、その孔に杭を建て込んでいる。For example, in the case of a steel pipe pile for preventing landslides,
It is mainly installed in landslide areas where landslides are likely to occur.
Therefore, the construction site is often a steep slope such as a mountain area, and it is difficult to carry heavy equipment such as a pile driver. Also,
Other special machines are also difficult to use and are uneconomical if used. For this reason, it is generally impossible to drive a pile by hitting, and the ground is drilled in advance (pre-boring), and the pile is built in the hole.
【0005】このような地すべり抑止用鋼管杭は、上記
の外に、一般の鋼管杭に比べて、外径が小さい割に厚さ
が大きい(小径肉厚杭)という特徴がある。また、地す
べりの際の土圧に耐えるために、継手の部分にも杭本体
と同等の強度(特に曲げ強度)が要求される。[0005] In addition to the above, such a landslide-preventing steel pipe pile is characterized in that it has a large outer thickness (small diameter thick pile) compared to a general steel pipe pile. In addition, in order to withstand the earth pressure at the time of landslide, the joint part is required to have the same strength (particularly bending strength) as the pile body.
【0006】地すべり抑止用鋼管杭の全長は、現場の地
質等の状況により相違するが、一般に20〜30mに達
する場合が多い。通常、輸送等の制限があるため、複数
の杭を現場で接続(継杭)しながら施工している。この
継杭作業は、不安定な作業環境下で行われるため迅速に
行われる必要があり、同時に確実な作業が要求される。[0006] The total length of the landslide-preventing steel pipe piles varies depending on the geological conditions of the site, but generally reaches 20 to 30 m in many cases. Usually, there are restrictions on transportation, etc., so a plurality of piles are connected at the site (joint piles) while constructing. Since the joint pile operation is performed in an unstable operation environment, it needs to be performed quickly, and at the same time, a reliable operation is required.
【0007】この継杭作業は、以前から現場での溶接作
業により実施されていたが、種々の欠点があった。ま
ず、継杭作業に多くの時間を要しており、例えば、外径
300mm×厚さ30mm程度の鋼管杭の溶接作業でも、継杭作
業の場合は2 〜3 時間必要である。次に、現場が山間部
で天候が変わり易いため、溶接部の品質が天候に大きく
左右され、溶接部の強度等にばらつきが多くなる。ま
た、現場の作業環境が悪く、優れた溶接技能者を確保し
にくい。[0007] This joint pile operation has been carried out by welding on site, but has various drawbacks. First, it takes a lot of time to work on piles, for example,
Even for welding a steel pipe pile of about 300mm x 30mm in thickness, it takes 2-3 hours for joint pile work. Next, since the weather tends to change in the mountainous area at the site, the quality of the welded portion is greatly affected by the weather, and the strength and the like of the welded portion vary widely. In addition, the work environment at the site is poor, and it is difficult to secure excellent welding technicians.
【0008】また、市街地で使用される鋼管矢板の場
合、限られた空間と時間内で施工しなければならない場
合が多く、また築造される構造物と隣地境界との距離が
短いことが多い。これらの理由から、鋼管矢板の施工は
短時間で行うことが要求され、かつサイズは小径肉厚の
ものが使用される傾向にある。In the case of steel pipe sheet piles used in urban areas, it is often necessary to construct the piles within a limited space and time, and the distance between the structure to be constructed and the boundary of the adjacent land is often short. For these reasons, it is required that the construction of steel pipe sheet piles be performed in a short period of time, and there is a tendency to use small-diameter and thick steel sheet piles.
【0009】鋼管矢板の市街地での施工は、騒音・振動
の防止のため中掘り工法か先掘り建て込み工法で施工さ
れるのが大半である。これらの工法は打撃工法に比べ施
工速度が遅いという問題があり、かつ従来鋼管矢板の接
合は溶接接合に限られていたため、施工時間の3〜5割
程度を占めかつ雨天での施工が困難である溶接接合の時
間の短縮が課題の一つである。この解決策として鋼管矢
板を建て込み前に横に置いて溶接する方法もあるが、こ
の場合にも施工上建て込める長さの限界があり、かつ溶
接ヤードを別途設けなければならないという問題点を有
しているため、抜本的な解決策になっていない。市街地
で使用される鋼管矢板の寸法は通常外径が500mm〜
1000mm程度で肉厚9〜14mmである。しかし、
前記の隣地との境界の問題からさらに外径を小さくし板
厚を厚くする傾向にある。[0009] In most cases, steel pipe sheet piles are installed in a city area by a middle excavation method or a first excavation method to prevent noise and vibration. These construction methods have a problem that the construction speed is slower than the impact construction method, and since the joining of steel pipe sheet piles was conventionally limited to welding joining, it occupies about 30 to 50% of the construction time, and construction in rainy weather is difficult. One of the issues is to shorten the time for a certain welding connection. As a solution to this, there is also a method of welding by placing a steel pipe sheet pile aside before embedding it.However, in this case, there is a limit to the length that can be built in construction, and there is a problem that a separate welding yard must be provided. Is not a drastic solution. The dimensions of steel sheet piles used in urban areas usually have an outer diameter of 500 mm or more.
The thickness is about 1000 mm and the thickness is 9 to 14 mm. But,
Due to the problem of the boundary with the adjacent land, there is a tendency that the outer diameter is further reduced and the plate thickness is increased.
【0010】更に、既存構造物の基礎の補強に用いる鋼
管杭や、地下の橋の下など施工空間の高さに制限のある
場所で施工する鋼管杭の場合、主に施工上の理由により
杭は小径肉厚で、1組の杭を構成する各杭は短いものを
使用する。そのため、杭の接合の時間の短縮は重要な課
題である。また、閉鎖された場所で施工する場合、溶接
を行うと作業環境が悪化する。さらに、化学工場内など
火器の使用を許可されない場合、溶接接合が行えない。Further, in the case of a steel pipe pile used for reinforcing the foundation of an existing structure or a steel pipe pile constructed in a place where the height of the construction space is limited, such as under an underground bridge, the pile is mainly used for construction reasons. Is a small-diameter wall, and each pile that constitutes one set of piles is short. Therefore, reducing the time for joining piles is an important issue. In addition, when the work is performed in a closed place, the working environment deteriorates when welding is performed. Further, when the use of firearms is not permitted, such as in a chemical factory, welding cannot be performed.
【0011】そこで、この溶接による継杭作業に代わっ
て、継杭にネジ継手を用いる技術が検討され、いくつか
の技術が開示されている。In view of the above, instead of the joint work by welding, a technique using a threaded joint for the joint pile has been studied, and several techniques have been disclosed.
【0012】実開昭57-133645 号公報:(以下、従来
技術という) 図12は、この公報に記載された鋼管杭の継手の断面を
示す断面図である。図中、1は鋼管杭、19は継手金物
(ニプル)、2は雌ネジ継手部、3は雄ネジ継手部をそ
れぞれ示す。雌ネジ継手部2、2と雄ネジ継手部3、3
は、それぞれ図中の上半分と下半分で互いに逆ネジにな
っている。継杭作業は、継手金物19を図示しない機械
で上下の鋼管杭1、1の雌ネジ継手部2、2にネジ込む
ことにより実施する。FIG. 12 is a sectional view showing a section of a joint of a steel pipe pile described in this publication. In the drawing, 1 indicates a steel pipe pile, 19 indicates a fitting (nipple), 2 indicates a female screw joint, and 3 indicates a male screw joint. Female threaded joints 2, 2 and male threaded joints 3, 3
Are oppositely threaded in the upper half and the lower half in the figure, respectively. The joint pile operation is performed by screwing the joint hardware 19 into the female screw joints 2 and 2 of the upper and lower steel pipe piles 1 and 1 using a machine (not shown).
【0013】実開昭59-98923号公報:(以下、従来技
術という) 図13は、この公報に記載された鋼管杭の継手の断面を
示す断面図である。図中20は継手金物(ソケット)を
示し、他の符号は図12に同じである。ネジ継手部2、
2は、それぞれ互いに逆ネジになっている。継杭作業
は、継手金物20を上の鋼管杭1の雄ネジ継手部3と、
図示しない下の鋼管杭の雄ネジ継手部にネジ込むことに
より実施する。FIG. 13 is a cross-sectional view showing a cross section of a joint of a steel pipe pile described in this publication. In the drawing, reference numeral 20 denotes a fitting (socket), and other reference numerals are the same as those in FIG. Screw joint part 2,
2 are mutually reverse-threaded. The joint pile operation is performed by connecting the joint hardware 20 to the male screw joint portion 3 of the steel pipe pile 1 above,
It is carried out by screwing into a male screw joint of a steel pipe pile (not shown).
【0014】図14は、この技術の継手部により継杭さ
れた鋼管杭の外観を示す正面図である。図中9は継手部
を示し、他の符号は図12、図13に同じである。FIG. 14 is a front view showing the appearance of a steel pipe pile joined by a joint according to this technique. In the drawing, reference numeral 9 denotes a joint portion, and other reference numerals are the same as those in FIGS.
【0015】実開平2-112728号公報:(以下、従来技
術という) 図15は、この公報に記載された鋼管杭の継手の外観お
よび断面を示す正面図である。図中の符号は図12、図
13に同じである。この技術は、建造物等の基礎杭を対
象としたネジ継手式鋼管杭を用いるものである。雌ネジ
継手部2は、図中上方の鋼管杭1の管端を拡大(拡管)
して加工してあり、雄ネジ継手部3は、図中下方の鋼管
杭1の管端にそのまま加工してある。継杭作業は、上方
の鋼管杭1を図示しない機械により回転させ、ネジ込む
ことにより行う。FIG. 15 is a front view showing an appearance and a cross section of a joint of a steel pipe pile described in this gazette. The reference numerals in the drawings are the same as those in FIGS. This technology uses a screw joint type steel pipe pile for a foundation pile such as a building. The female screw joint 2 enlarges the pipe end of the steel pipe pile 1 in the upper part of the figure (expanding).
The male screw joint part 3 is machined as it is on the pipe end of the steel pipe pile 1 below in the figure. The joint pile operation is performed by rotating the upper steel pipe pile 1 by a machine (not shown) and screwing it.
【0016】特開平4-70414 号公報:(以下、従来技
術という) 図16は、この公報に記載された鋼管杭の継手の外観と
断面を示す正面図である。また、図17は、継手部の断
面を拡大して示した拡大断面図である。これらの図中、
21はフランジを示し、他の符号は図12、図13に同
じである。雌ネジ継手部2、2と雄ネジ継手部3、3
は、従来技術、と同様、それぞれ図中の上半分と下
半分で互いに逆ネジになっている。継杭作業は、継手金
物19を図示しない機械で上下の鋼管杭1、1の雌ネジ
継手部2、2にネジ込むことにより実施する。FIG. 16 is a front view showing an appearance and a cross section of a joint of a steel pipe pile described in this publication. FIG. 17 is an enlarged cross-sectional view showing a cross section of the joint portion in an enlarged manner. In these figures,
Reference numeral 21 denotes a flange, and other reference numerals are the same as those in FIGS. Female threaded joints 2, 2 and male threaded joints 3, 3
As in the prior art, the upper half and the lower half in the figure are mutually reverse-threaded. The joint pile operation is performed by screwing the joint hardware 19 into the female screw joints 2 and 2 of the upper and lower steel pipe piles 1 and 1 using a machine (not shown).
【0017】[0017]
【発明が解決しようとする課題】しかしながら、これら
の従来技術は地すべり抑止杭、鋼管杭、鋼管矢板に用い
た場合、それぞれ次のような問題点がある。However, these prior arts have the following problems when used in landslide prevention piles, steel pipe piles, and steel pipe sheet piles.
【0018】従来技術については、継手金物(ニプ
ル)の外径が、鋼管本体に比べてかなり小さくなるた
め、断面係数を鋼管本体と同等とすることが困難であ
る。地すべり抑止杭の場合、鋼管の管厚は通常は外径の
10%程度はあるので、継手金物の外径は鋼管本体の外
径の80%程度となる。管の場合、断面係数は外径の3
乗に比例するので、継手金物の断面係数は鋼管本体の約
51%に低下することになる。なお、この場合、継手金
物の断面係数を鋼管本体と同等にするには、継手金物の
管厚さを数倍に増加させれば不可能ではないが、計算す
ると鋼管本体の外径の25%程度の厚さが必要となり、
重量等の点で実用性に乏しい。In the prior art, since the outer diameter of the fitting (nipple) is considerably smaller than that of the steel pipe main body, it is difficult to make the section modulus equal to that of the steel pipe main body. In the case of the landslide prevention pile, since the pipe thickness of the steel pipe is usually about 10% of the outer diameter, the outer diameter of the fitting is about 80% of the outer diameter of the steel pipe body. For pipes, the section modulus is 3
Since it is proportional to the power, the section modulus of the fitting is reduced to about 51% of the steel pipe body. In this case, it is not impossible to make the section modulus of the joint fitting equal to that of the steel pipe body by increasing the pipe thickness of the joint fitting by several times, but it is calculated that it is 25% of the outer diameter of the steel pipe body. About thickness is required,
Poor practicality in terms of weight and the like.
【0019】また、ネジの噛み合わせからネジ込み完了
まで、ネジ山の数だけ継手金物を回転させる必要があ
る。地すべり抑止杭、鋼管杭、鋼管矢板用鋼管杭におい
ては、ネジ山の数は15〜30山程度となるため、吊荷
重をコントロールしながら、人力で多数回回転させるこ
とは困難である。結局、ネジ込みのために特別な機械が
必要であり、これを山岳斜面上の狭い用地内や市街地の
限られた用地内で施工する地すべり抑止用鋼管杭や鋼管
矢板に用いることはできない。Further, it is necessary to rotate the joint hardware by the number of threads from the engagement of the screws to the completion of the screwing. In landslide prevention piles, steel pipe piles, and steel pipe piles for steel pipe sheet piles, the number of screw threads is about 15 to 30. Therefore, it is difficult to rotate the pile many times manually while controlling the suspension load. In the end, a special machine is required for screwing, and it cannot be used for landslide prevention steel pipe piles or steel sheet piles to be installed in narrow lands on mountain slopes or in limited lands in urban areas.
【0020】更に、継手金具のネジが、上下で互いに逆
ネジとなっているため、上下の鋼管杭に同時にネジ込む
必要がある。もしずれると、先にネジ込みが始まった方
の鋼管杭が継手金物の中央に到達しても、他方が到達せ
ず隙間があくことになる。この隙間をなくして締め付け
るためには、一方の杭を回転させる必要があるが、そう
すると、今度はそちらの杭と継手金物の間のネジが緩む
という問題がある。Further, since the screws of the joint fittings are reversely screwed up and down, it is necessary to screw them into the upper and lower steel pipe piles at the same time. If it shifts, even if the steel pipe pile on which screwing started earlier reaches the center of the fitting, the other will not reach and there will be a gap. In order to eliminate this gap and tighten, it is necessary to rotate one of the piles, but this causes a problem that the screw between the pile and the fitting is loosened.
【0021】従来技術については、継手金物がソケッ
ト形式のため、外径が鋼管杭の外径より大きくなる。従
って、地盤に削孔する孔の内径を、鋼管杭の外径より大
きくする必要があり、施工コストが増大する。その結
果、一般に工事費全体が前述の溶接による継杭作業より
高くなり、現実的でない。また、鋼管矢板の場合、継手
部に矢板継手部材を取り付けることが困難である。In the prior art, the outer diameter is larger than the outer diameter of the steel pipe pile because the fitting is a socket type. Therefore, it is necessary to make the inside diameter of the hole drilled in the ground larger than the outside diameter of the steel pipe pile, and the construction cost increases. As a result, the overall construction cost is generally higher than the above-mentioned joint pile work by welding, which is not practical. Further, in the case of a steel pipe sheet pile, it is difficult to attach a sheet pile joint member to the joint.
【0022】また、継手金物の断面係数は、容易に鋼管
本体と同等にできるが、鋼管杭の雄ネジ継手部は、ネジ
加工で肉厚が減るため本体より断面係数が低下するのみ
ならず、引張強度、剪断強度いずれも低下する。The section modulus of the fitting can be easily made equal to that of the steel pipe main body. However, the male threaded joint of the steel pipe pile is reduced in wall thickness by threading, so that not only the section modulus is lower than that of the main body, but also. Both tensile strength and shear strength decrease.
【0023】また、継手金具のネジが、上下で互いに逆
ネジとなっているため、従来技術と同様、上下の鋼管
杭のネジ込みを一致させるのが困難である。Further, since the screws of the joint fittings are reversely screwed up and down, it is difficult to match the screwing of the upper and lower steel pipe piles as in the prior art.
【0024】従来技術については、従来技術と同
様、継手部の外径が鋼管本体の外径より大きくなる。そ
の結果、地盤に削孔する孔の内径を、鋼管本体の外径よ
り大きくする必要があるため、施工コストが増大する。
また、矢板継手を取り付けて鋼管矢板として用いること
ができない。In the prior art, the outer diameter of the joint is larger than the outer diameter of the steel pipe main body, as in the prior art. As a result, it is necessary to make the inner diameter of the hole drilled in the ground larger than the outer diameter of the steel pipe main body, so that the construction cost increases.
Further, a sheet pile joint cannot be attached and used as a steel pipe sheet pile.
【0025】また、鋼管杭の端部の雌ネジ継手部は、鋼
管杭をそのまま又は拡径してからネジ加工するため、ネ
ジの谷部で肉厚が減ることが避けられない。そのため、
鋼管杭の雌ネジ継手部は、杭本体より断面係数が低下す
るのみならず、引張強度、剪断強度いずれも低下する。Further, since the female threaded joint at the end of the steel pipe pile is threaded after the steel pipe pile is used as it is or after the diameter thereof is increased, it is inevitable that the wall thickness is reduced at the root of the screw. for that reason,
The female threaded joint of the steel pipe pile not only has a lower section modulus than the pile body, but also has a lower tensile strength and shear strength.
【0026】従来技術については、強く締め付けるこ
とにより曲げ強度を大きくすることができると記載され
ているが、締め付け力は理論上曲げ強度の増加には寄与
しない。その他、この技術は、従来技術と同様の形式
の継手を用いており、従って、継手金物の曲げ強度が低
く、ネジ込みに要する回転数が多く、逆ネジのため締め
付けが困難という同様の問題がある。In the prior art, it is described that the bending strength can be increased by strongly tightening, but the tightening force does not theoretically contribute to an increase in bending strength. In addition, this technology uses a joint of the same type as the conventional technology, and therefore has the same problem that the bending strength of the joint hardware is low, the number of rotations required for screwing in is large, and tightening is difficult due to the reverse screw. is there.
【0027】更にこれらの従来技術に共通する問題点が
いくつかある。まず、いずれの技術においても、ネジ込
み作業においてトルク管理が必要である。トルク管理の
ためには特別な機械が必要であり、市街地で施工する鋼
管杭、鋼管矢板及び山岳斜面上の狭い現場で施工する地
すべり抑止用鋼管杭の継手としては不適当である。Further, there are some problems common to these prior arts. First, in any of the techniques, torque management is required in the screwing operation. A special machine is required for torque control, and it is not suitable as a joint for steel pipe piles, steel sheet piles, and landslide prevention steel pipe piles to be constructed at narrow sites on mountain slopes.
【0028】また、鋼管杭、鋼管矢板には曲げの力が作
用するが、これは継手部に対して、曲げの内側には圧縮
力、曲げの外側には引張力として同時に作用する。その
際、従来技術で用いられているネジ継手のネジ山には、
半径方向の分力が発生する。従来技術では、ネジ山の斜
面が中心軸の方向に対してなす角度があまり大きくない
(通常60度)ので、大きな分力が発生する。その結
果、雄ネジが内側に雌ネジが外側に変形し、いわゆるネ
ジ山の逃げが大きくなり、継手管が楕円形に変形し、最
終的にネジの結合状態が保てなくなるという問題があ
る。A bending force acts on the steel pipe pile and the steel sheet pile, which acts on the joint as a compressive force on the inside of the bend and a tensile force on the outside of the bend. At that time, the thread of the screw joint used in the prior art,
A radial component is generated. In the prior art, a large component force is generated because the angle formed by the slope of the thread with respect to the direction of the central axis is not so large (usually 60 degrees). As a result, there is a problem in that the male screw is deformed inward and the female screw is deformed outward, so-called thread relief is increased, the joint pipe is deformed into an elliptical shape, and finally the screw connection state cannot be maintained.
【0029】図18〜図20は、従来技術におけるネジ
継手部の断面を示す断面図である。図18に示すネジ継
手部のネジ山の断面は、通常の三角形であり、図19は
台形、図20は矩形のネジが加工されている。この中
で、三角形と台形の断面のネジ山を持つネジ継手は、ネ
ジ山の斜面が、継手の引張・圧縮方向に対して60度前
後の角度となっている。また、図20の矩形の断面のネ
ジは、上記のような問題はないが、ネジ込みの際の摩擦
力が大きく、ネジ込み作業が困難となる。FIGS. 18 to 20 are cross-sectional views showing a cross section of a threaded joint according to the prior art. The thread cross section of the threaded joint shown in FIG. 18 has a normal triangular shape, FIG. 19 shows a trapezoidal shape, and FIG. 20 shows a rectangular shaped screw. Among them, in a threaded joint having a thread having a triangular and trapezoidal cross section, the slope of the thread has an angle of about 60 degrees with respect to the tension / compression direction of the joint. Although the screw having the rectangular cross section in FIG. 20 does not have the above-described problem, the frictional force at the time of screwing is large, and the screwing work becomes difficult.
【0030】この発明は、これらの従来技術の課題を解
決するため、傾斜地や都市部等の施工上不利な環境でも
継杭作業が容易となり、かつ、曲げ変形に対して継手部
の外れが起きにくいネジ継手構造ならびにそれに基づく
ネジ継手を備えた鋼管杭および鋼管矢板を提供する。The present invention solves these problems of the prior art. Therefore, the joint pile operation is facilitated even in an unfavorable construction environment such as an incline or an urban area, and the joint portion comes off due to bending deformation. A steel pipe pile and a steel pipe sheet pile provided with a difficult screw joint structure and a screw joint based thereon.
【0031】[0031]
【課題を解決するための手段】請求項1の発明は、鋼管
杭又は鋼管矢板を接続するため鋼管本体の端部に設けら
れる雄ネジ継手部および雌ネジ継手部のネジ継手構造に
おいて、(イ)このネジ継手部のネジはテーパネジであ
り、(ロ)このネジ継手部のネジ山の2つの斜面の内、
鋼管本体側の斜面と中心軸とのなす角度が75度以上で
あり、(ハ)雄ネジ継手部は、鋼管本体の板厚より小さ
い段差のショルダ部を有し、(ニ)雌ネジ継手部の外径
については、鋼管本体の外径と同等であることを特徴と
するネジ継手構造である。According to the first aspect of the present invention, there is provided a threaded joint structure of a male threaded joint and a female threaded joint provided at an end of a steel pipe main body for connecting a steel pipe pile or a steel pipe sheet pile. ) The thread of this threaded joint is a tapered thread, and (b) of the two slopes of the thread of this threaded joint,
(C) the male threaded joint has a shoulder with a step smaller than the thickness of the steel pipe main body, and (d) the female threaded joint. Is a threaded joint structure characterized in that the outer diameter is equal to the outer diameter of the steel pipe main body.
【0032】請求項2の発明は、ネジ継手部のネジのテ
ーパの大きさが、1/3〜1/10であることを特徴と
する請求項1のネジ継手構造である。According to a second aspect of the present invention, there is provided the threaded joint structure according to the first aspect, wherein the taper of the thread of the threaded joint portion is 1/3 to 1/10.
【0033】請求項3の発明は、請求項1又は請求項2
記載の継手構造に基づく雄ネジ継手部又は雌ネジ継手部
を、鋼管本体の少なくとも1つの端部に備えていること
を特徴とする鋼管杭又は鋼管矢板である。[0033] The invention of claim 3 is the invention of claim 1 or claim 2.
A steel pipe pile or a steel pipe sheet pile, characterized in that a male screw joint or a female screw joint based on the joint structure described above is provided at at least one end of a steel pipe main body.
【0034】[0034]
【作用】まず、ネジ継手部がテーパネジなので、ネジ継
手部に設けられたネジ山の数が多くても、ネジ込みの最
初から継手部を回転させる必要はない。このネジ継手部
の軸方向の移動だけで、ネジ山にして数山を残す程度ま
で、雄ネジと雌ネジを重ね合わせることができる。従っ
て、数回の回転でネジ込みが完了する。First, since the threaded joint is a tapered thread, it is not necessary to rotate the joint from the beginning of screwing even if the number of threads provided on the threaded joint is large. By simply moving the screw joint in the axial direction, the male screw and the female screw can be overlapped to the extent that a few threads are left. Therefore, screwing is completed by several rotations.
【0035】次に、テーパネジとすることにより、ネジ
継手部の肉厚をこれを取りつける鋼管本体の板厚よりそ
れ程厚くせずに、継手の強度を確保することができる。
一般に、ネジ継手においては、その付け根の部分(鋼管
本体側)の断面性能が鋼管本体と同等かそれ以上であれ
ばよいことが知られている。従って、ネジ継手部の肉厚
を端部に近づくにつれて薄くすること、即ちテーパネジ
とすることは強度上全く問題がない。Next, by using a tapered thread, the strength of the joint can be ensured without making the thickness of the threaded joint portion much larger than the thickness of the steel pipe main body to which the threaded joint portion is attached.
Generally, it is known that a threaded joint only needs to have a cross-sectional performance at a root portion (on a steel pipe main body side) of the steel pipe main body or more. Therefore, reducing the thickness of the threaded joint portion toward the end portion, that is, forming a tapered thread, has no problem in strength.
【0036】また、雄ネジ継手部の鋼管本体側の外径
(ネジの部分)は、鋼管本体の外径より雌ネジ継手部の
端部の肉厚だけ小さくなるが、テーパネジであるためそ
れ程小さくせずに済む。従って、雄ネジ継手部の肉厚を
鋼管本体と比べて多少厚くするだけで、鋼管本体と同等
の断面係数が得られることになる。The outer diameter (thread portion) of the male threaded joint portion on the steel pipe main body side is smaller than the outer diameter of the steel pipe main body by the thickness of the end of the female threaded joint portion. You don't have to. Therefore, the section modulus equivalent to that of the steel pipe main body can be obtained only by slightly increasing the thickness of the male screw joint part as compared with the steel pipe main body.
【0037】次に、鋼管杭または鋼管矢板に引張力が作
用した場合は、双方のネジ継手部のネジ山の斜面のうち
鋼管本体の方向を向いている斜面、即ち鋼管本体側の斜
面に力が作用し、半径方向の分力を発生する。この分力
は、中心軸と斜面とのなす角度θを大きくすることによ
り減少し、θが90度の場合0となる。この発明ではこ
の角度θを75度以上、好ましくは80度以上、更に好
ましくは85度以上としているので、通常のネジ山(θ
は60度前後)に比べて、半径方向の分力を1/2程度
以下にまで小さくできる。その結果、同じ大きさの引張
力に対して雄ネジと雌ネジのネジ山どうしの逃げが少な
くなるので、ネジの結合状態を保ち易くなり曲げの外側
におけるネジの外れが起こりにくくなる。Next, when a tensile force acts on the steel pipe pile or the steel pipe sheet pile, force is applied to the slope facing the steel pipe main body, that is, the slope of the thread slope of both screw joints, that is, the slope on the steel pipe main body side. Acts to generate a radial component force. This component force is reduced by increasing the angle θ between the central axis and the slope, and becomes zero when θ is 90 degrees. In the present invention, the angle θ is set to 75 degrees or more, preferably 80 degrees or more, and more preferably 85 degrees or more.
(Around 60 degrees), the component force in the radial direction can be reduced to about 1/2 or less. As a result, the escape of the threads of the male screw and the female screw is reduced with respect to the tensile force of the same magnitude, so that it is easy to maintain the connected state of the screws, and it is difficult for the screws to come off outside the bend.
【0038】また、雄ネジ継手部はショルダ部を有して
いるので、雌ネジ継手部の端部とこのショルダ部とを密
着できるよう加工しておくことにより、鋼管杭等からこ
のネジ継手部に作用する圧縮力の一部を受け止めること
ができる。従って、曲げの内側におけるネジ継手部のネ
ジ山どうしの外れを防ぐことができる。Further, since the male screw joint has a shoulder, the end of the female screw joint and the shoulder are processed so as to be in close contact with each other. Can receive part of the compressive force acting on the Therefore, it is possible to prevent the threads of the threaded joint portion from coming off inside the bend.
【0039】更に、継手部のネジ込みの際、双方のネジ
継手部をネジ込んで行くと、最終的にこのショルダ部に
雌ネジ継手部の端部(先端)が接触し、それ以上の無理
なネジ込みが防止され、ネジ山の破壊を回避できる。こ
のショルダ部の段差の寸法は、鋼管本体の板厚より大き
くなると、雄ネジ継手部の断面係数が小さくなるので、
鋼管本体の板厚より小さくする。Further, when screwing in the joint portion, when the two screw joint portions are screwed in, the end portion (tip) of the female screw joint portion finally comes into contact with the shoulder portion, and any further force is applied. Screwing can be prevented, and breakage of the screw thread can be avoided. If the dimension of the shoulder of the shoulder part is larger than the plate thickness of the steel pipe main body, since the section modulus of the male screw joint part becomes small,
Make it smaller than the thickness of the steel pipe body.
【0040】最後に、雌ネジ継手部の外径をそれを取り
つける鋼管本体と同等とすることにより、ネジ継手部を
含めた鋼管杭全体又は鋼管矢板全体の外径が同一とな
る。Finally, by making the outer diameter of the female screw joint portion equal to that of the steel pipe main body to which the female screw joint portion is attached, the outer diameter of the entire steel pipe pile or the entire steel pipe sheet pile including the screw joint portion becomes the same.
【0041】請求項2の発明について、ネジ継手部のテ
ーパの大きさの限定理由を説明する。まず、上限の1/
3は、継手強度を確保するための数値限定であり、テー
パの大きさが1/3を超えるとネジ部の中心軸方向の長
さが短くなり、必要なネジ山の数が確保できなくなるた
め強度が確保できない。Regarding the second aspect of the present invention, the reason for limiting the size of the taper of the threaded joint will be described. First, 1 / of the upper limit
Numeral 3 is a numerical limitation for securing the joint strength. If the taper size exceeds 1/3, the length of the thread portion in the central axis direction becomes short, and the number of necessary threads cannot be secured. Strength cannot be secured.
【0042】下限の1/10については、これ未満では
通常の平行ネジに近くなり、雄ネジ継手の端部の外径と
雌ネジ継手の端部の内径との差(クリアランス)が小さ
くなる。その結果、継杭作業における先行杭と後行杭の
ネジ継手部が合わせ難くなる。また、テーパが小さいと
ネジ込みに要する鋼管杭または鋼管矢板の回転数が増加
し、テーパネジによるネジ込みの容易さが損なわれる。
以上より、ネジ継手部のテーパの大きさについて、1/
10以上、1/3以下とする。With respect to the lower limit of 1/10, if it is less than this, it will be close to a normal parallel thread, and the difference (clearance) between the outer diameter of the end of the male threaded joint and the inner diameter of the end of the female threaded joint will be small. As a result, it becomes difficult to align the screw joints of the leading pile and the trailing pile in the joint pile operation. Further, when the taper is small, the number of rotations of the steel pipe pile or the steel pipe sheet pile required for screwing increases, and the ease of screwing by the taper screw is impaired.
From the above, regarding the size of the taper of the threaded joint, 1 /
10 or more and 1/3 or less.
【0043】請求項3の発明は、請求項1又は請求項2
の発明のネジ継手構造が鋼管杭又は鋼管矢板に適用され
ているので、ネジ継手部のネジ込みに要する鋼管本体の
回転数も少なくて済む。従って、鋼管杭又は鋼管矢板を
接続する継杭作業が容易となる。また、ネジ継手の強度
が鋼管本体と同等又はそれ以上であるので、曲げ変形等
に対する強度に関して、長尺の鋼管杭又は鋼管矢板を用
いた場合と同等の性能が得られる。The third aspect of the present invention is the first or second aspect.
Since the threaded joint structure of the invention is applied to a steel pipe pile or a steel pipe sheet pile, the number of rotations of the steel pipe main body required for screwing the threaded joint portion can be reduced. Therefore, the joint pile work for connecting the steel pipe pile or the steel pipe sheet pile is facilitated. In addition, since the strength of the threaded joint is equal to or higher than that of the steel pipe main body, the same performance as that obtained when a long steel pipe pile or a steel pipe sheet pile is used can be obtained with respect to the strength against bending deformation and the like.
【0044】[0044]
【実施例】図1は、この発明の1実施例の外観および断
面を示す正面図である。図中、1は鋼管本体、1cは鋼
管本体の外面、1dは鋼管本体の内面、2は雌ネジ継手
部、3は雄ネジ継手部をそれぞれ示す。図2は、上記実
施例のネジ継手部の断面を示す断面図である。図中、2
aは雌ネジ継手部の先端部、8はショルダ部をそれぞれ
示し、他の符号は図1に同じである。FIG. 1 is a front view showing an external appearance and a cross section of an embodiment of the present invention. In the figure, 1 indicates a steel pipe main body, 1c indicates an outer surface of the steel pipe main body, 1d indicates an inner surface of the steel pipe main body, 2 indicates a female screw joint, and 3 indicates a male screw joint. FIG. 2 is a cross-sectional view showing a cross section of the threaded joint of the above embodiment. In the figure, 2
a indicates the tip of the female screw joint, 8 indicates a shoulder, and other reference numerals are the same as those in FIG.
【0045】図3は、ネジ継手部を結合させた状態での
ネジ山の断面形状を示す断面図である。図中、Rはネジ
継手をネジ込む方向、14はネジ山の端部側の斜面、1
6はネジ山の本体側の斜面を示し、他の符号は図1に同
じである。ネジ込む方向Rは、継手の端部側の方向でも
ある。FIG. 3 is a cross-sectional view showing a cross-sectional shape of a screw thread in a state where the screw joint portion is connected. In the drawing, R is the direction in which the threaded joint is screwed, 14 is the slope on the end side of the thread, 1
Reference numeral 6 denotes an inclined surface on the body side of the screw thread, and other reference numerals are the same as those in FIG. The screwing direction R is also a direction on the end side of the joint.
【0046】図4は、この発明の鋼管杭の継杭作業中に
おけるネジ継手部について、ネジ山の接触状況を示す断
面図である。図中、15は接触部、17は隙間を示し、
他の符号は図1および図3に同じである。接触部15
は、ネジがテーパネジであるため、ネジ山の断面形状が
直線であっても斜面の一部の接触に留まり、平行ネジに
比べてネジ込みの際の摩擦力を軽減できる。FIG. 4 is a cross-sectional view showing a thread contact state of the threaded joint portion during the joining operation of the steel pipe pile according to the present invention. In the figure, 15 is a contact portion, 17 is a gap,
Other reference numerals are the same as in FIGS. 1 and 3. Contact part 15
Since the screw is a tapered screw, even if the cross-sectional shape of the screw thread is straight, the screw stays only partially in contact with the slope, and the frictional force at the time of screwing can be reduced as compared with the parallel screw.
【0047】更に、ネジ山の斜面の内、鋼管杭の端部側
の斜面については、中心軸となす角度を45〜85°、好ま
しくは60〜85°とするのがよい。下限未満では、ネジ込
みの際の接触面(ネジ山の斜面)に作用する垂直抗力が
大きくなり、それに伴いこの接触面に作用する摩擦力が
大きくなるため、ネジ込み作業が困難となる。Further, among the slopes of the thread, the slope formed on the end side of the steel pipe pile is preferably formed at an angle of 45 to 85 °, more preferably 60 to 85 °, with the central axis. Below the lower limit, the normal reaction acting on the contact surface (slope of the screw thread) during screwing becomes large, and the frictional force acting on this contact surface becomes large accordingly, making screwing work difficult.
【0048】鋼管杭の端部側の斜面が中心軸となす角度
の上限は、図4に示したネジ山の斜面の間の隙間17を
確保するための制限である。この上限を超えると隙間1
7が小さくなり過ぎ、矩形ネジの場合と同様ネジ込みの
過程でネジ山の2つの斜面が両側とも接触するようにな
る。その結果、摩擦力が大きくなり、ネジ込み作業が困
難となる。The upper limit of the angle formed by the slope on the end side of the steel pipe pile and the central axis is a limit for securing the gap 17 between the slopes of the thread shown in FIG. If this upper limit is exceeded, gap 1
7 becomes too small and the two slopes of the thread come into contact on both sides during the screwing process, as in the case of the rectangular screw. As a result, the frictional force increases and the screwing operation becomes difficult.
【0049】なお、この鋼管杭の端部側の斜面につい
て、その断面形状の一部、好ましくは端部側の斜面全部
の断面形状を曲線に加工しておけば、図4に示した接触
部15は基本的に線接触となり、ネジ込みの際の摩擦力
が大幅に軽減できる。If a part of the cross section of the slope on the end side of the steel pipe pile, preferably the entire cross section of the slope on the end side is processed into a curve, the contact portion shown in FIG. 15 is basically in line contact, and the frictional force at the time of screwing can be greatly reduced.
【0050】図5は、鋼管杭に曲げ応力が加わった時の
応力状態を示す説明図である。図中、1は鋼管杭、9は
ネジ継手部、18は中心軸を示す。中心軸18を境に、
応力状態は、曲げの外側で引張、内側で圧縮となる。FIG. 5 is an explanatory view showing a stress state when bending stress is applied to the steel pipe pile. In the figure, 1 indicates a steel pipe pile, 9 indicates a threaded joint, and 18 indicates a central axis. Around the central axis 18,
The stress state is tension outside the bend and compression inside.
【0051】図6は、仮に継手部におけるショルダ部が
無かった場合の、曲げ変形におけるネジ継手部の変形挙
動を示す説明図である。図中、2aは雌ネジ継手部の先
端部を示す。曲げの内側で圧縮された時、ショルダ部が
あれば、先端部2aがそこに密着することにより、圧縮
力を緩和できる。しかし、この図の場合はショルダ部が
無いので、圧縮力をネジ継手のネジ山の端部側の斜面で
受け止める必要がある。この斜面は、中心軸とのなす角
があまり大きくないので、半径方向の分力が無視できな
い大きさで発生し、最終的にネジが外れることになる。FIG. 6 is an explanatory view showing the deformation behavior of the threaded joint part in bending deformation when there is no shoulder part in the joint part. In the figure, reference numeral 2a denotes a tip of the female screw joint. When compressed inside the bend, if there is a shoulder portion, the tip portion 2a is in close contact with the shoulder portion, so that the compression force can be reduced. However, in the case of this figure, since there is no shoulder portion, it is necessary to receive the compressive force on the slope on the thread end side of the threaded joint. Since the angle formed by the slope with the central axis is not so large, a component force in the radial direction is generated with a magnitude that cannot be ignored, and the screw will eventually come off.
【0052】図7は、この2本の鋼管杭を継杭した時の
断面を示す断面図である。図中、4は溶接部、9はネジ
継手部、10はネジ結合部をそれぞれ示し、他の符号は
図1に同じである。FIG. 7 is a cross-sectional view showing a cross section when the two steel pipe piles are joined together. In the drawing, reference numeral 4 denotes a welded portion, 9 denotes a screw joint portion, and 10 denotes a screw joint portion, and other reference numerals are the same as those in FIG.
【0053】杭本体としては、外径318.5mm ×厚さ25mm
の寸法を有する鋼管を使用した。この鋼管本体を2本用
意し、1本の鋼管の端部にテーパ状の雌ネジ継手部を、
他の1本の鋼管の端部にテーパ状の雄ネジ継手部を、そ
れぞれ工場で溶接して製作した。材料は、杭本体1、1
が65キロ級の鋼、ネジ継手部がそれより材料強度が高
い80キロ級の鋼を用いた。The pile body has an outer diameter of 318.5 mm and a thickness of 25 mm.
Was used. Two steel pipe bodies are prepared, and a tapered female screw joint is provided at the end of one steel pipe.
An external threaded joint having a tapered shape was welded to the end of another steel pipe at a factory. Material is pile body 1, 1,
Used was 65 kg-class steel, and 80 kg-class steel having a material strength higher than that of the screw joint portion.
【0054】ネジ継手部については、テーパの大きさ
(中心軸方向の距離に対する外径又は内径の変化量)を
1/6 、ネジのピッチを8.5mm 、ネジ山の高さを2.4 〜2.
5 mmとして加工した。ネジ山の斜面の角度は、中心軸に
対して、端部側は60度、本体側は87度にそれぞれ形成し
た。For the threaded joint, the magnitude of the taper (the amount of change in outer diameter or inner diameter with respect to the distance in the center axis direction) is determined.
1/6, screw pitch 8.5mm, screw height 2.4 ~ 2.
Processed as 5 mm. The angle of the slope of the thread was 60 degrees on the end side and 87 degrees on the main body side with respect to the center axis.
【0055】ここで、雄ネジ継手部の厚さを、少なくと
もショルダ部に近い部分で、鋼管本体と同等以上とする
ことにより、ネジ継手部の強度を鋼管本体の強度と同等
以上とすることができる。一般に、ネジ継手部に作用す
る力は、鋼管本体側では鋼管本体と同様の大きさであり
端部に近づくにつれて低下する。従って、少なくともこ
のショルダ部で肉厚が確保されていれば、端部に近づく
につれて肉厚を薄くしても継手強度の点で何ら問題はな
い。Here, the strength of the threaded joint is made equal to or greater than the strength of the steel pipe main body by making the thickness of the male screw joint at least at a portion close to the shoulder part equal to or greater than that of the steel pipe main body. it can. In general, the force acting on the threaded joint has the same size on the steel pipe main body side as the steel pipe main body, and decreases as it approaches the end. Therefore, as long as the thickness is secured at least at the shoulder portion, there is no problem in terms of the joint strength even if the thickness is reduced as approaching the end portion.
【0056】次に、このネジ継手部について曲げ強度を
調べた。図9は、ネジ継手部の曲げ強度を調べるため
の、4点載荷純曲げ試験の概要を示す説明図である。図
中、11は支点、12は載荷点、Pは試験荷重をそれぞ
れ示す。試験条件は、支点11、11の間隔が5400mm、
載荷点12、12の間隔が1500mmである。試験材にはネ
ジ継手部を曲げ中央に配置したもの、比較材には試験材
の杭本体と同じ材質、寸法の鋼管を用いた。Next, the bending strength of the threaded joint was examined. FIG. 9 is an explanatory view showing an outline of a four-point loading pure bending test for examining the bending strength of the threaded joint. In the figure, 11 indicates a fulcrum, 12 indicates a loading point, and P indicates a test load. The test conditions are as follows: the distance between the fulcrums 11, 11 is 5400 mm,
The interval between the loading points 12, 12 is 1500 mm. For the test material, a screw joint was arranged at the center of the bend, and for the comparative material, a steel pipe having the same material and dimensions as the pile body of the test material was used.
【0057】図9は、曲げ試験の結果を示す荷重・変位
線図である。図中、縦軸は荷重(tf:トン重)、横軸は
中央部の変位(中央変位:mm)、曲線Aは試験材、曲線
Bは比較材の結果をそれぞれ示す。図より、試験材(ネ
ジ継手部)においては、同一の変位に対する荷重が比較
材(杭本体)と同等かそれよりやや大きいことがわか
る。FIG. 9 is a load / displacement diagram showing the results of the bending test. In the figure, the vertical axis shows the load (tf: ton weight), the horizontal axis shows the displacement at the center (central displacement: mm), the curve A shows the results for the test material, and the curve B shows the results for the comparative material. From the figure, it can be seen that in the test material (screw joint), the load for the same displacement is equal to or slightly larger than the comparative material (pile body).
【0058】なお、図中の縁降伏荷重(86.15tf )、全
断面降伏荷重(118.45tf)は、鋼材の降伏強度から理論
的に推定した値である。ここで、前者は曲げ変形におけ
る応力が最大となる部分(一般に杭の外縁)が降伏し始
める時の荷重、後者は杭全体が降伏する(曲げ破壊す
る)時の荷重である。また、この図の試験では、中央変
位50〜100mm 付近に荷重0 に戻る荷重・変位曲線がある
が、これは曲げ試験の途中で一旦除荷し再度載荷したた
めである。図にも見られるとおり、載荷後は除荷前の状
態に戻っており、曲げ試験としては試験を中断せず連続
して行った場合と同等の結果となることが知られてい
る。The edge yield load (86.15 tf) and the total section yield load (118.45 tf) in the figure are values theoretically estimated from the yield strength of steel. Here, the former is a load when a portion where stress in bending deformation becomes maximum (generally, an outer edge of the pile) starts to yield, and the latter is a load when the entire pile yields (bends and breaks). In the test in this figure, there is a load / displacement curve that returns to a load of 0 near the center displacement of 50 to 100 mm. This is because the load was once unloaded and loaded again during the bending test. As can be seen from the figure, it is known that after loading, the state returns to the state before unloading, and that the bending test has the same result as the case where the test is continuously performed without interruption.
【0059】同様に、杭本体として外径406.4mm ×厚さ
25mmの寸法を有する鋼管を使用し、材料は、杭本体1、
1が65キロ級の鋼、ネジ継手部がそれより材料強度が
高い80キロ級の鋼を用いて曲げ試験を行った。Similarly, the outer diameter of the pile body is 406.4 mm × thickness
The steel pipe with the dimensions of 25mm is used, and the material is the pile body 1,
A bending test was performed using a steel of 65 kg class 1 and a steel of 80 kg class having a material strength higher than that of the screw joint part.
【0060】ネジ継手部については、テーパの大きさを
1/4 、ネジのピッチを8.7mm 、ネジ山の高さを3.0mm と
して加工した。ネジ山の斜面の角度は、中心軸に対して
端部側は80度、鋼管本体側は87度にそれぞれ形成した。
このネジ継手部の曲げ強度を調べた。試験方法および試
験条件は、図10に示した実施例におけると同様であ
る。For the threaded joint, the size of the taper
1/4, the pitch of the screw was 8.7mm, and the height of the screw thread was 3.0mm. The angle of the slope of the thread was 80 degrees on the end side and 87 degrees on the steel pipe main body side with respect to the central axis.
The bending strength of this threaded joint was examined. The test method and test conditions are the same as those in the embodiment shown in FIG.
【0061】図10は、曲げ試験の結果を示す荷重・変
位線図である。図中、縦軸、横軸、曲線A、曲線Bは、
図9に同じである。図より、試験材(ネジ継手部)にお
いては、同一の変位に対する荷重が、比較材(杭本体)
と同等かやや大きいことがわかる。FIG. 10 is a load / displacement diagram showing the results of the bending test. In the figure, the vertical axis, horizontal axis, curve A and curve B are
This is the same as FIG. As shown in the figure, in the test material (screw joint part), the load for the same displacement is compared with the comparative material (pile body).
It turns out that it is equal to or slightly larger than.
【0062】このように、この発明では、ネジ継手部の
曲げ強度を、鋼管杭本体の曲げ強度と同等かやや大きく
することができる。その結果、この発明の鋼管杭は、継
杭された状態で、ネジ継手部を含む全長にわたって、杭
本体と同等の曲げ強度即ち曲げ耐力をほぼ均一に有して
いることがわかる。As described above, according to the present invention, the bending strength of the threaded joint can be made equal to or slightly larger than the bending strength of the steel pipe pile main body. As a result, it is understood that the steel pipe pile of the present invention has substantially the same bending strength as the pile main body, that is, the bending strength, over the entire length including the threaded joint portion in the spliced state.
【0063】ネジの寸法諸元については、特別に大径の
鋼管杭を除き、通常の外径の範囲(外径300 〜800 )で
は、ピッチ5mm 以上15mm以下、ネジ山の高さ2mm 以上5m
m 以下とするのが好ましい。その理由は、次のようにな
る。Regarding the dimensions of the screw, except for the special steel pipe pile having a large diameter, the pitch is 5 mm or more and 15 mm or less, and the height of the screw thread is 2 mm or more and 5 m in the normal outer diameter range (outer diameter 300 to 800).
m or less. The reason is as follows.
【0064】まず、ピッチが 5mm未満ではネジが細かく
なりすぎ、ネジ込みのための回転数が増加し、継杭作業
の能率が低下する。また、ネジ山の数が多くなるためネ
ジ込みの際の摩擦力が大きくなり、人力でのネジ込み作
業が困難となる。ピッチが15mmを超えると、ネジ山の数
が少なくなり、継手強度が低下する。また、ネジ山1個
当たりの負担する力が大きくなり、ネジ山の側面の応力
が高くなりすぎる。First, if the pitch is less than 5 mm, the screw becomes too fine, the number of rotations for screwing increases, and the efficiency of the joint pile operation decreases. Further, since the number of screw threads is increased, the frictional force at the time of screwing is increased, and it becomes difficult to manually screw the screw. If the pitch exceeds 15 mm, the number of threads decreases, and the joint strength decreases. In addition, the force borne by one thread is large, and the stress on the side surface of the thread is too high.
【0065】ネジ山の高さについては、2mm 未満では低
すぎ、曲げ荷重によるネジ継手部の変形で容易に抜けて
しまう。ネジ山の高さが5mm を超えると、ネジの底部が
肉厚不足となる。また、ネジ山の斜面の接触面積が増加
し、摩擦力が大きくなる。その結果、人力でのネジ込み
作業が困難となる。If the height of the thread is less than 2 mm, it is too low, and the thread is easily removed by deformation of the threaded joint due to bending load. If the height of the screw thread exceeds 5mm, the bottom of the screw will be insufficiently thick. Further, the contact area of the slope of the screw thread increases, and the frictional force increases. As a result, it becomes difficult to manually screw in the screws.
【0066】以上の実施例は、主に鋼管杭について説明
したが、鋼管矢板においても基本的には適用可能であ
る。Although the above embodiment has mainly been described with respect to a steel pipe pile, it is basically applicable to a steel pipe sheet pile.
【0067】次に、この発明の鋼管杭について、継杭作
業を実施した。図11は、継杭作業の様子を示す説明図
である。図中、5はワイヤ、6は仮設足場、7は作業
者、13は孔、22は山岳斜面をそれぞれ示し、他の符
号は図1〜2に同じである。Next, a joint pile operation was performed on the steel pipe pile of the present invention. FIG. 11 is an explanatory diagram illustrating a state of the joint pile operation. In the figure, 5 is a wire, 6 is a temporary scaffold, 7 is a worker, 13 is a hole, 22 is a mountain slope, and the other symbols are the same as in FIGS.
【0068】まず、ウィンチ又はクレーン(図示せず)
を用いて後行杭1bを吊り下げ、先行杭1aと中心軸を
合わせた後、ワイヤ5を繰出し徐々に後行杭1bを降下
させた。更に、後行杭1bの雄ネジ継手部3の先端を先
行杭1aの雌ネジ継手部2の中に降下させ、それ以上降
下できなくなったところで、ワイヤ5の繰り出しを停止
した。First, a winch or crane (not shown)
, The trailing pile 1b was suspended, and the center axis was aligned with the leading pile 1a. Then, the wire 5 was fed out and the trailing pile 1b was gradually lowered. Further, the tip of the male threaded joint 3 of the trailing pile 1b was lowered into the female threaded joint 2 of the preceding pile 1a, and when it could no longer descend, the feeding of the wire 5 was stopped.
【0069】この時、ワイヤ5は完全には緩めず後行杭
1bの重量の一部をワイヤ5で負担するように、半吊り
状態にした。この状態で、仮設足場6の上の作業者7
が、後行杭1bを約2回転手動で回転させネジ継手部を
ネジ込んだ。双方のネジ継手部のネジ山は接触している
が、後行杭1bの重量は一部がかかるのみであるから、
容易に回転可能である。次いで、チェーントングを後行
杭1bに掛け回して、雌ネジ継手部2の先端が雄ネジ継
手部3のショルダ部に当たるまで、更に約1.5回転締
め込んだ。At this time, the wire 5 was placed in a semi-suspended state so that the wire 5 was not completely loosened and a part of the weight of the trailing pile 1b was borne by the wire 5. In this state, the worker 7 on the temporary scaffold 6
However, the trailing pile 1b was manually rotated about two turns to screw the threaded joint. Although the threads of both threaded joints are in contact, the weight of the trailing pile 1b is only partially applied,
It is easily rotatable. Next, the chain tongue was hung around the trailing pile 1b, and further tightened about 1.5 turns until the tip of the female screw joint portion 2 hit the shoulder portion of the male screw joint portion 3.
【0070】このように、この発明の鋼管杭では、継杭
作業に特別な機械を必要としないので、ネジ継手の締め
付けやトルク管理のための機械の搬入が不要である。こ
れは、道路が整備されていない山間部の斜面のような現
場では、非常に意味がある。また、図に見るように、作
業床は作業者が作業できればよいので仮設足場6でよ
く、機械を据えつけるような本格的な作業デッキを構築
する必要はない。従って、この発明の鋼管杭を用いるこ
とにより、継杭作業のための付帯作業も大幅に削減でき
る。As described above, in the steel pipe pile of the present invention, no special machine is required for the joint pile operation, so that there is no need to carry in a machine for tightening a screw joint or controlling torque. This is very meaningful on sites such as mountain slopes where roads are not well maintained. Also, as shown in the figure, the work floor may be a temporary scaffold 6 as long as the work can be performed by an operator, and there is no need to construct a full-scale work deck for installing a machine. Therefore, by using the steel pipe pile of the present invention, the incidental work for the joint pile work can be significantly reduced.
【0071】また、現場における施工性を調査した結果
は、次のとおりである。調査は、外径350mm 、厚さ20m
m、長さ7mの鋼管杭を用いた。ネジ継手の寸法諸元は、
テーパ1/6 、ネジ山の高さ2.5mm 、ピッチ8.7mm であ
る。The results of an investigation on the workability at the site are as follows. Investigation is 350mm outside diameter, 20m thickness
A 7 m long steel pipe pile was used. The dimensions of the threaded joint are
The taper is 1/6, the thread height is 2.5 mm, and the pitch is 8.7 mm.
【0072】現場施工は、長野県の山岳地帯において実
施し、上記の鋼管杭50本について、5 本ずつ継杭して全
長35m の地すべり防止用鋼管杭を10本、傾斜地面に建て
込んだ。従って、継手数は、各地すべり防止用鋼管杭に
ついて4箇所、合計40箇所である。継杭作業における後
行杭のネジ込みは、作業者2人で行った。The on-site construction was carried out in a mountainous area in Nagano Prefecture. Of the 50 steel pipe piles described above, five were piled together, and ten landslide-preventing steel pipe piles having a total length of 35 m were built on the sloping ground. Therefore, the number of joints is four in each case for slip prevention steel pipe piles, for a total of 40 joints. Screwing of the succeeding pile in the joint pile work was performed by two workers.
【0073】結果は、継杭作業時間は、継手1箇所あた
り平均で18分であり、その内ネジ込みに要した時間は
僅か4分で済んだ。作業性も、作業者2人で容易にネジ
込みができた。比較のため、上記の鋼管本体部分に開先
加工を施した鋼管杭について、以前から行われている溶
接による継杭作業を行った。溶接による継杭作業では、
継杭作業時間は継手1箇所あたり平均で90分もかかっ
た。As a result, the joint pile operation time was 18 minutes on average per one joint, and the time required for screwing was only 4 minutes. As for the workability, two workers could easily screw in. For comparison, a joint pile operation by welding, which has been performed before, was performed on a steel pipe pile in which the above-described steel pipe main body was grooved. In the joint pile work by welding,
It took 90 minutes on average for each joint to work.
【0074】[0074]
【発明の効果】この発明では、鋼管杭及び鋼管矢板のネ
ジ継手部に適用するネジ継手構造に、テーパネジを用い
ているので、ネジ込みに要する回転数が大幅に削減さ
れ、人力で容易にネジ込みが可能となる。その結果、締
め付け用の機械を用いる必要がなくなり、継杭作業の準
備も含め作業全体の工事期間及び費用を大幅に低減でき
る。According to the present invention, a tapered screw is used in a screw joint structure applied to a screw joint of a steel pipe pile and a steel pipe sheet pile, so that the number of rotations required for screwing is greatly reduced, and the screw can be easily screwed by manpower. Can be included. As a result, it is not necessary to use a tightening machine, and it is possible to greatly reduce the construction period and cost of the entire operation including preparation of the joint pile operation.
【0075】また、ネジ山の斜面の角度等ネジ継手の形
状を適切に規定することにより、ネジ継手部の外径を鋼
管本体より拡大することなく、ネジ継手部の強度を鋼管
本体と同等あるいはそれ以上とすることができる。Further, by appropriately defining the shape of the threaded joint, such as the angle of the slope of the thread, the strength of the threaded joint can be made equal to or less than that of the steel pipe main body without increasing the outer diameter of the threaded joint. It can be more.
【図1】この発明の1実施例の外観および断面を示す正
面図。FIG. 1 is a front view showing an appearance and a cross section of an embodiment of the present invention.
【図2】上記実施例のネジ継手部の断面を示す断面図。FIG. 2 is a sectional view showing a section of the threaded joint part of the embodiment.
【図3】ネジ継手部を結合させた状態でのネジ山の断面
形状を示す断面図。FIG. 3 is a cross-sectional view showing a cross-sectional shape of a screw thread in a state where a screw joint portion is connected.
【図4】継杭作業中におけるネジ継手部のネジ山の接触
状況を示す断面図。FIG. 4 is a cross-sectional view showing a contact state of a thread of a threaded joint portion during a joint pile operation.
【図5】鋼管杭に曲げ応力が加わった時の応力状態を示
す説明図。FIG. 5 is an explanatory diagram showing a stress state when bending stress is applied to a steel pipe pile.
【図6】ショルダ部が無い場合のネジ継手部の変形挙動
を示す説明図。FIG. 6 is an explanatory diagram showing a deformation behavior of the threaded joint when there is no shoulder.
【図7】継杭作業の様子を示す説明図。FIG. 7 is an explanatory view showing a state of a joint pile operation.
【図8】鋼管杭を継杭した時の断面を示す断面図。FIG. 8 is a sectional view showing a section when a steel pipe pile is joined.
【図9】4点載荷純曲げ試験の概要を示す説明図。FIG. 9 is an explanatory diagram showing an outline of a four-point loading pure bending test.
【図10】曲げ試験の結果を示す荷重・変位線図。FIG. 10 is a load / displacement diagram showing the results of a bending test.
【図11】曲げ試験の結果を示す荷重・変位線図。FIG. 11 is a load / displacement diagram showing a result of a bending test.
【図12】従来技術の鋼管杭の継手の断面を示す断面
図。FIG. 12 is a sectional view showing a section of a joint of a conventional steel pipe pile.
【図13】従来技術の鋼管杭の継手の断面を示す断面
図。FIG. 13 is a sectional view showing a section of a joint of a conventional steel pipe pile.
【図14】従来技術の鋼管杭の継手の外観を示す正面
図。FIG. 14 is a front view showing the appearance of a joint of a conventional steel pipe pile.
【図15】従来技術の鋼管杭の継手の外観を示す正面
図。FIG. 15 is a front view showing the appearance of a joint of a conventional steel pipe pile.
【図16】従来技術の鋼管杭の継手の外観を示す正面
図。FIG. 16 is a front view showing the appearance of a joint of a conventional steel pipe pile.
【図17】従来技術の鋼管杭の継手の断面を示す断面
図。FIG. 17 is a sectional view showing a section of a joint of a conventional steel pipe pile.
【図18】従来技術におけるネジ継手部の断面を示す断
面図(3角ネジ)。FIG. 18 is a cross-sectional view (triangular screw) showing a cross-section of a threaded joint in a conventional technique.
【図19】従来技術におけるネジ継手部の断面を示す断
面図(台形ネジ)。FIG. 19 is a cross-sectional view (trapezoidal screw) showing a cross-section of a threaded joint in the prior art.
【図20】従来技術におけるネジ継手部の断面を示す断
面図(矩形ネジ)。FIG. 20 is a cross-sectional view (rectangular screw) showing a cross-section of a threaded joint in a conventional technique.
1 鋼管本体 2 雌ネジ継手部 3 雄ネジ継手部 8 ショルダ部 9 ネジ継手部 16 ネジ山の鋼管本体側の斜面 DESCRIPTION OF SYMBOLS 1 Steel pipe main body 2 Female screw joint part 3 Male screw joint part 8 Shoulder part 9 Screw joint part 16 Slope of steel pipe main body side of thread
フロントページの続き (72)発明者 森 玄 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 前野 博之 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (56)参考文献 特開 平6−193054(JP,A) 特許2827845(JP,B2) (58)調査した分野(Int.Cl.6,DB名) E02D 5/24 E02D 5/04 Continuation of the front page (72) Inventor Gen Mori, 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Inventor Hiroyuki Maeno 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (56) References JP-A-6-193054 (JP, A) Patent 2827845 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) E02D 5/24 E02D 5/04
Claims (3)
本体の端部に設けられる雄ネジ継手部および雌ネジ継手
部のネジ継手構造において、(イ)このネジ継手部のネ
ジはテーパネジであり、(ロ)このネジ継手部のネジ山
の2つの斜面の内、鋼管本体側の斜面と中心軸とのなす
角度が75度以上であり、(ハ)雄ネジ継手部は、鋼管
本体の板厚より小さい段差のショルダ部を有し、(ニ)
雌ネジ継手部の外径については、鋼管本体の外径と同等
であることを特徴とするネジ継手構造。In a threaded joint structure of a male threaded joint portion and a female threaded joint portion provided at an end of a steel pipe main body for connecting a steel pipe pile or a steel pipe sheet pile, (a) the screw of the threaded joint portion is a tapered screw. (B) Of the two slopes of the thread of the threaded joint portion, the angle between the slope on the steel pipe main body side and the central axis is at least 75 degrees, and (c) the male threaded joint portion is a plate of the steel pipe main body. It has a shoulder with a step smaller than the thickness.
A screw joint structure, wherein an outer diameter of the female screw joint is equal to an outer diameter of the steel pipe main body.
1/3〜1/10であることを特徴とする請求項1のネ
ジ継手構造。2. The taper size of a screw of a threaded joint part is
The screw joint structure according to claim 1, wherein the ratio is 1/3 to 1/10.
基づく雄ネジ継手部又は雌ネジ継手部を、鋼管本体の少
なくとも1つの端部に備えていることを特徴とする鋼管
杭又は鋼管矢板。3. A steel pipe pile or steel pipe provided with a male screw joint or a female screw joint based on the joint structure according to claim 1 at at least one end of a steel pipe main body. Sheet pile.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19506094A JP2882286B2 (en) | 1994-08-19 | 1994-08-19 | Screw joint structure, steel pipe pile and steel sheet pile |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19506094A JP2882286B2 (en) | 1994-08-19 | 1994-08-19 | Screw joint structure, steel pipe pile and steel sheet pile |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0860652A JPH0860652A (en) | 1996-03-05 |
JP2882286B2 true JP2882286B2 (en) | 1999-04-12 |
Family
ID=16334894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19506094A Expired - Fee Related JP2882286B2 (en) | 1994-08-19 | 1994-08-19 | Screw joint structure, steel pipe pile and steel sheet pile |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2882286B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3756675B2 (en) * | 1998-07-29 | 2006-03-15 | 株式会社ジオトップ | Jointing method |
JP4645268B2 (en) * | 2005-03-31 | 2011-03-09 | Jfeスチール株式会社 | Joint structure of steel pipe pile for landslide prevention and steel pipe pile for landslide prevention provided with the same |
JP5379467B2 (en) * | 2008-12-24 | 2013-12-25 | カヤバ工業株式会社 | Vehicle height adjustment device |
JP6363964B2 (en) * | 2015-02-17 | 2018-07-25 | 鹿島建設株式会社 | Steel pipe sheet pile connection structure |
CN112211185A (en) * | 2020-09-29 | 2021-01-12 | 王庆利 | Screw-in type circular steel tube concrete pile lengthening structure and construction method |
-
1994
- 1994-08-19 JP JP19506094A patent/JP2882286B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0860652A (en) | 1996-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5335200B2 (en) | Spiral steel pipe pile | |
US7510350B2 (en) | Helical anchor with hardened coupling sections | |
US8079781B2 (en) | Push pier assembly with hardened coupling sections | |
CN100567659C (en) | The base configuration of iron tower | |
JP4645268B2 (en) | Joint structure of steel pipe pile for landslide prevention and steel pipe pile for landslide prevention provided with the same | |
US10590619B2 (en) | Helical pier with thickened hexagonal coupling ends and method of manufacture | |
JP2882286B2 (en) | Screw joint structure, steel pipe pile and steel sheet pile | |
JP3170756B1 (en) | Screw-in type steel pipe pile and its construction method | |
JP3216048B2 (en) | Screw-in type steel pipe pile | |
JP2001348867A (en) | Screwed type steel pipe and its work execution method | |
US5286142A (en) | Reduced moment anchor hub | |
JP2800656B2 (en) | Steel pipe pile for landslide prevention | |
JP2827845B2 (en) | Steel pipe pile for landslide prevention | |
JP2005139731A (en) | Connection structure of pipe pile head, and method of constructing pipe pile head | |
JP4508854B2 (en) | Pile and footing joint structure | |
JP4844477B2 (en) | Synthetic wall structure and its construction method | |
KR20050076589A (en) | Anchor-nail device for slope-reinforcement-construction | |
KR101217488B1 (en) | Extension structure of pile foundation | |
JPH0525966B2 (en) | ||
CN110468830A (en) | A kind of rapid anchor ingot stake and construction method | |
GB2563002B (en) | A rock bolt coupling system, and method of manufacture | |
JPH08246444A (en) | Steel pipe pile with screw joint | |
WO2022050133A1 (en) | Screw joint, steel pipe with screw joint, structure, method for building structure, landslide prevention pile, method for constructing landslide prevention pile, method for designing screw joint, method for producing screw joint, and method for producing steel pipe with screw joint | |
JP6905813B2 (en) | Synthetic segment and ring | |
CN112127549A (en) | Mechanical lapping method for steel bars connected through bolts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990105 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080205 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090205 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100205 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100205 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110205 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120205 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120205 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130205 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130205 Year of fee payment: 14 |
|
LAPS | Cancellation because of no payment of annual fees |