JP2882122B2 - Quality judgment method of molded product by molten material flow analysis - Google Patents

Quality judgment method of molded product by molten material flow analysis

Info

Publication number
JP2882122B2
JP2882122B2 JP3250109A JP25010991A JP2882122B2 JP 2882122 B2 JP2882122 B2 JP 2882122B2 JP 3250109 A JP3250109 A JP 3250109A JP 25010991 A JP25010991 A JP 25010991A JP 2882122 B2 JP2882122 B2 JP 2882122B2
Authority
JP
Japan
Prior art keywords
angle
flow
weld
association
flow analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3250109A
Other languages
Japanese (ja)
Other versions
JPH07205241A (en
Inventor
敏和 石田
孝久 安沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP3250109A priority Critical patent/JP2882122B2/en
Publication of JPH07205241A publication Critical patent/JPH07205241A/en
Application granted granted Critical
Publication of JP2882122B2 publication Critical patent/JP2882122B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/7693Measuring, controlling or regulating using rheological models of the material in the mould, e.g. finite elements method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0025Preventing defects on the moulded article, e.g. weld lines, shrinkage marks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/768Detecting defective moulding conditions

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は,例えば射出成形品等の
ように溶融材料で成形した成形品について,成形時にで
きるウェルドラインの発生状態を考慮した溶融材料流動
解析によって品質を予測判断したり良否を判断する方法
に関するものである。本発明では,成形品に発生する成
形不良現象の中で特にウェルドラインの強度低下を,コ
ンピュータを使用したシミュレーションによって定量的
に予測し,成形条件,製品形状,金型設計の変更をあら
かじめ具体化することができるようにし,その結果,高
品質の成形品を得ることができるようにすることができ
る。
BACKGROUND OF THE INVENTION The present invention relates to a method for predicting and judging the quality of a molded article molded from a molten material such as an injection molded article by a molten material flow analysis in consideration of a state of a weld line generated at the time of molding. It relates to a method of judging pass / fail. In the present invention, among the molding failure phenomena occurring in the molded product, particularly, the decrease in the strength of the weld line is quantitatively predicted by simulation using a computer, and changes in molding conditions, product shapes, and mold designs are embodied in advance. And, as a result, a high-quality molded article can be obtained.

【0002】[0002]

【従来の技術】現在,プラスチック分野において,その
製品開発・材料開発を進めていくうえでCAE手法は非
常に重要な位置を占めるようになっている。従来,プラ
スチックCAEといえば射出成形における金型内樹脂流
動解析がほとんどであったが,最近では射出成形品の収
縮・反り解析,成形品不良現象の特性解析,ブロー・押
出し解析への適用,さらに,成形機制御への応用という
ように,その内容も高度化・多様化している。この中で
射出成形について見ると,成形品の不良現象をCAEに
より設計の段階で予測し最適な対策を行うことは,試作
回数の低減・開発期間の短縮によるコストの低減を実現
する。射出成形における不良現象としては,外観不良・
寸法精度・強度低下等があり,これらを理論的に説明
し,CAEにより定量的に表すことができれば,成形条
件・製品形状・金型設計の変更等の対策も具体的なもの
となる。成形品の反り現象については,最近各社でCA
Eからのアプローチが進んでおり,その実用化もまもな
くであろうが,今後はこれをベースとし,他の成形不良
現象へ展開していくことが課題となってくるであろう。
2. Description of the Related Art At present, in the field of plastics, the CAE technique has become very important in the development of products and materials. In the past, plastic CAE was mostly analyzed for resin flow in a mold during injection molding. Recently, however, it has been applied to shrinkage / warpage analysis of injection molded products, characteristic analysis of molded article failure phenomena, blow / extrusion analysis, and more. Its contents are becoming more sophisticated and diversified, such as application to molding machine control. Looking at the injection molding among them, predicting the failure phenomenon of the molded product at the design stage by CAE and taking the optimal countermeasures realizes cost reduction by reducing the number of trial production and shortening the development period. Defective phenomena in injection molding include poor appearance and
There are dimensional accuracy and strength reduction, etc. If these can be explained theoretically and quantitatively expressed by CAE, measures such as changes in molding conditions, product shapes, mold designs, etc. will also be concrete. Recently, each company has been conducting CA
The approach from E is progressing and its practical application will be soon, but it will be an issue to develop it to other molding failure phenomena based on this approach in the future.

【0003】[0003]

【本発明が解決しようとする課題】例えば,射出成形品
の成形不良現象に対して対策を施す場合,従来より,流
動解析の結果をノウハウにより行っていたので,充分で
はなかった。特に,不良現象の中でも著しい外観不良・
強度低下をもたらすウェルド部の特性は,その形成過程
により一様に決定することができず,ウェルド部の強度
を定量的に予測することは不可能であった。
[Problems to be Solved by the Invention] For example, when a countermeasure is taken against a molding failure phenomenon of an injection molded product, the result of the flow analysis has been conventionally performed by know-how, which is not sufficient. In particular, remarkable appearance defects
The properties of the welds that cause the strength to decrease can not be uniformly determined by the formation process, and it is impossible to predict the strength of the welds quantitatively.

【0004】ウェルド部の特性を左右する最大の因子は
ライン部の溶着度であり,これは樹脂流動過程における
圧力・温度の履歴により決定される。しかし,2つの流
れが直角にぶつかり,そこで流動が停止するような完全
ぶつかりウェルドに対してこれは有効であり,これまで
も種々検討されてきたが,一般の成形品に多くみられる
ように,流れが合流した後も並走を続けるウェルドライ
ン(メルドライン)では,この他に流動と流動がぶつか
り合う幾何学的条件すなわちウェルドラインの会合角・
流速の合流角が問題になると考えられる。
[0004] The greatest factor influencing the properties of the weld is the degree of welding in the line, which is determined by the history of pressure and temperature in the resin flow process. However, this is effective for a completely collapsing weld where two flows collide at a right angle and the flow stops there, and although various studies have been made so far, as seen in general molded products, In the weld line (meld line), which continues to run parallel after the flow merges, there are other geometrical conditions where the flow meets the flow, that is, the weld angle of the weld line,
It is considered that the merging angle of the flow velocity becomes a problem.

【0005】[0005]

【課題を解決するための手段および作用】本発明では,
CAE解析により求められるウェルドラインの会合角あ
るいは流速の合流角から,ウェルド特性を予測し,成形
品の品質判断を行うようにした。本発明においては,成
形品形状モデルの溶融材料流動解析を行って成形品のウ
ェルドラインの流速合流角または会合角を求め,この流
速合流角または会合角と,あらかじめ求めておいたウェ
ルドラインの流速合流角または会合角とウェルド部強度
との相関因子により,成形品の品質を定量的に予測する
ようにした。
Means and action for solving the problems In the present invention,
Weld characteristics are predicted from the weld angle of the weld line or the merging angle of the flow velocity obtained by the CAE analysis, and the quality of the molded product is determined. In the present invention, the molten material flow analysis of the molded article shape model is performed to determine the flow line merging angle or association angle of the weld line of the molded article. The quality of the molded product was quantitatively predicted by the correlation factor between the joining angle or the association angle and the weld strength.

【0006】また,成形品形状モデルの溶融材料流動解
析を行って成形品のウェルドラインの流速合流角または
会合角を求め,あらかじめ求めておいたウェルドライン
の流速合流角または会合角とウェルド部強度との相関曲
線を基にして設定した合格設定流速合流角または合格設
定会合角と,前記流動解析で求めたウェルドラインの流
速合流角または会合角を比較し,流動解析で求めた流速
合流角が合格設定流動合流角よりも小さいか,流動解析
で求めた会合角が合格設定会合角よりも大きいときに合
格と判断し,流動解析で求めた流速合流角が合格設定流
動合流角よりも大きいか,流動解析で求めた会合角が合
格設定会合角よりも小さいときに不合格と判断するよう
にした。
Further, the flow rate of the weld line of the molded article is determined by analyzing the flow of the molten material of the model of the molded article to determine the flow stream merging angle or the associated angle of the weld line and the weld strength. The acceptable flow velocity merging angle or the acceptable meeting angle set based on the correlation curve with the flow line merging angle or the association angle of the weld line determined by the flow analysis is compared. Is it judged to be pass when the meeting angle determined by the flow analysis is smaller than the acceptable flow joining angle or larger than the acceptable setting meeting angle, and is the flow velocity joining angle found by the flow analysis larger than the acceptable setting flow joining angle? When the angle of association obtained by the flow analysis is smaller than the set angle of acceptance, it is determined to be rejected.

【0007】[0007]

【実施例】つぎに,図面に示した1実施例によって本発
明を詳細に説明する。まず,ウェルドライン会合角およ
び流速の合流角とウェルド強度との相関関係を得るため
のテストピースでの実施例を説明する。なお,ウェルド
ラインの会合角と流速合流角は,つぎのように定義され
る。
Next, the present invention will be described in detail with reference to one embodiment shown in the drawings. First, an embodiment using a test piece for obtaining a correlation between the weld line association angle and the merging angle of the flow velocity and the weld strength will be described. The weld angle of the weld line and the flow velocity merging angle are defined as follows.

【0008】ウェルドライン会合角は,図6に示すよう
に,例えば,ゲートとして矢印で示しているように,左
右の2つの異なる方向から溶融樹脂が便宜上波状1で示
すように流れて来て刻々と合流する場合,左右の溶融樹
脂が会合するときにできる角θを言い,この会合角θは
左右の溶融樹脂が進むにつれて大きくなる。流速合流角
は,図7に示すように,例えば矢印で示しているよう
に,左右の2つの異なる方向から溶融樹脂が便宜上波状
1で示すように流れて来て刻々と合流する場合,溶融樹
脂の2つの流れ方向によってできる角αを言い,この流
速合流角αは2つの流れ方向が一定であれば,一定の角
としてあらわれる。なお,図6,図7において,2は左
右の溶融樹脂が合流した部分に直線状にできるウェルド
ライン発生位置である。図7におけるウェルドライン発
生位置1は,左右の溶融樹脂の流速の違いによって,流
速の遅い方に傾く。会合角θと流速合流角αは一般的に
は互いに補角の関係にある。
As shown in FIG. 6, for example, as shown by an arrow as a gate, the weld line junction angle is such that the molten resin flows from two different directions on the right and left for convenience, as shown by a wavy line 1, and is instantaneous. When the left and right molten resins meet, the angle θ formed when the left and right molten resins meet is referred to, and the association angle θ increases as the left and right molten resins advance. As shown in FIG. 7, for example, as shown by arrows, when the molten resin flows from two different directions on the right and left as shown in FIG. The angle α formed by the two flow directions is expressed as a constant angle if the two flow directions are constant. In FIG. 6 and FIG. 7, reference numeral 2 denotes a weld line generating position which can be linearly formed at the portion where the left and right molten resins have joined. The weld line occurrence position 1 in FIG. 7 is inclined to the lower flow velocity due to the difference in the flow velocity of the left and right molten resins. In general, the association angle θ and the flow velocity merging angle α are complementary to each other.

【0009】本発明においては,図1に示すように,ウ
ェルドライン会合角θまたは流速合流角αと,ウェルド
強度との相関関係をあらかじめ得ておく。そして,成形
しようとしている成形品形状モデルの溶融樹脂流動解析
を行って成形品のウェルドライン会合角θまたは流速合
流角αを求める。そして,この求めた会合角θまたは流
速合流角αと,前記あらかじめ求めておいた相関関係か
ら,ウェルド強度,例えば,曲げ強度を求め,定量的に
予測する。勿論,前記求めた会合角θまたは流速合流角
αを,前記相関関係から設定しておいた合格設定会合角
θまたは合格設定流動合流角αと比較し,流動解析
で求めた流速合流角αが合格設定流動合流角αよりも
小さいか,流動解析で求めた会合角θが合格設定会合角
θよりも大きいときに合格と判断し,流動解析で求め
た流速合流角αが合格設定流動合流角αよりも大き
いか,流動解析で求めた会合角θが合格設定会合角θ
よりも小さいときに不合格と判断するようにした。
In the present invention, as shown in FIG. 1, a correlation between the weld line association angle θ or the flow velocity merging angle α and the weld strength is obtained in advance. Then, the molten resin flow analysis of the molded product shape model to be molded is performed to determine the weld line association angle θ or the flow velocity merging angle α of the molded product. Then, a weld strength, for example, a bending strength, is obtained from the correlation obtained in advance and the obtained association angle θ or the flow velocity merging angle α, and is quantitatively predicted. Of course, the obtained association angle θ or the flow velocity merging angle α is compared with the acceptable set association angle θ 1 or the acceptable set flow merging angle α 1 set from the correlation, and the flow velocity merging angle obtained by the flow analysis. If α is smaller than the set flow joining angle α 1 or the association angle θ obtained by flow analysis is larger than the set meeting angle θ 1 , the flow is judged to be acceptable, and the flow velocity joining angle α 1 found by flow analysis is The meeting angle θ larger than the passing set flow joining angle α 1 or the meeting angle θ obtained by the flow analysis is the passing set meeting angle θ 1
When it is smaller than this, it is judged to be rejected.

【0010】本発明において,ウェルドライン会合角θ
および流速合流角αとウェルド強度との相関関係を得る
ためのテストピースでの実施例を説明する。図4におい
て,3はテストピース品であり,横縦の寸法は図示した
とおりであり,板厚は2mmである。また,テストピー
ス品3の中央部に穴4を形成するように,金型にピンを
設けておく。なお,ゲート形状はフィルムゲートとし
た。射出に用いた材料としては,ガラス繊維30%強化
66ナイロン(宇部興産製UBEナイロン2020GC
6)である。
In the present invention, the weld line association angle θ
An example using a test piece for obtaining a correlation between the flow velocity merging angle α and the weld strength will be described. In FIG. 4, reference numeral 3 denotes a test piece product, the horizontal and vertical dimensions are as shown, and the plate thickness is 2 mm. Further, a pin is provided on the mold so that the hole 4 is formed in the center of the test piece product 3. The gate shape was a film gate. As the material used for the injection, glass fiber 30% reinforced 66 nylon (Ube nylon 2020GC made by Ube Industries)
6).

【0011】図4に示すテストピース品3につき,射出
率を10,50,100,150cc/secの4種
類,樹脂温度を270,285,300℃の3種類,保
圧圧力を100,400,800kg/cmの3種類
選定し,それぞれの条件で流動解析と成形実験を行う。
なお,流動解析ソフトとしてMELTFLOW(宇部興
産製)を使用する。金型温度は80℃とした。成形によ
り得られたテストピース品3を,図5に示すように,ウ
ェルド形成開始点から5mm間隔でテストピース5を作
成し,スパン間距離20mmにて,曲げおよび引張り試
験を行う。そして,テストピース位置とウェルド強度と
の関係をプロットする。
For the test piece product 3 shown in FIG. 4, four types of injection rates of 10, 50, 100 and 150 cc / sec, three types of resin temperatures of 270, 285 and 300 ° C., and holding pressures of 100, 400 and Three types of 800 kg / cm 2 are selected, and flow analysis and molding experiments are performed under each condition.
Note that MELTFLOW (manufactured by Ube Industries) is used as flow analysis software. The mold temperature was 80 ° C. As shown in FIG. 5, a test piece 3 is formed from the test piece product 3 obtained by molding at intervals of 5 mm from the weld formation start point, and a bending and tensile test is performed at a distance between spans of 20 mm. Then, the relationship between the test piece position and the weld strength is plotted.

【0012】一方,流動解析からは,テストピース位置
とウェルドライン会合角θおよび流速の合流角αとの関
係が算出される。以上の成形実験・強度試験と流動解析
より,例えば,図2(a)〜図2(c)に示す流速合流
角とウェルド強度,この場合は曲げ強度との相関関係が
導き出される。または,例えば,図3に示すウェルドラ
イン会合角とウェルド強度,この場合は曲げ強度との相
関関係が導き出される。図2(a)は射出率,図2
(b)は保圧圧力,図2(c)と図3は樹脂温度の影響
を示す。これらの関係を,樹脂ごとにデータベース化し
ておく。
On the other hand, from the flow analysis, the relationship between the test piece position and the weld line association angle θ and the flow velocity merging angle α is calculated. From the above-described molding experiment / strength test and flow analysis, for example, the correlation between the flow velocity merging angle and the weld strength, in this case, the bending strength shown in FIGS. 2 (a) to 2 (c) is derived. Alternatively, for example, a correlation between the weld line association angle and the weld strength, in this case, the bending strength shown in FIG. 3, is derived. FIG. 2A shows the injection rate, and FIG.
2B shows the effect of the holding pressure, and FIGS. 2C and 3 show the effect of the resin temperature. These relationships are compiled into a database for each resin.

【0013】一方,目的とする製品の流動解析を行い,
それから算出されるウェルドラインの会合角および流速
の合流角から,ウェルド強度を定量的に予測する。その
結果,相応の対策手段が導き出される。すなわち,ウェ
ルドラインの発生位置やウェルドラインの会合角をコン
ピュータ上のシミュレーションで変更することにより,
要求される品質を満足する製品設計を行うことができ
る。また,成形条件,製品形状,金型設計の変更もあら
かじめ具体化することができる。そして,成形樹脂や成
形条件によっても異なるが,例えば,流速合流角αが2
0〜30度以下になるようにすることができる。なお,
流速合流角と曲げ強度との関係は,解析結果と測定結果
はほぼ一致する。
On the other hand, the flow analysis of the target product is performed,
The weld strength is quantitatively predicted from the weld angle of the weld line and the merging angle of the flow velocity calculated from the calculated angle. As a result, appropriate countermeasures are derived. In other words, by changing the weld line generation position and weld line association angle by computer simulation,
Product design satisfying required quality can be performed. Also, changes in molding conditions, product shapes, and mold designs can be embodied in advance. Although it depends on the molding resin and molding conditions, for example, the flow velocity merging angle α is 2
It can be set to 0 to 30 degrees or less. In addition,
Regarding the relationship between the flow velocity merging angle and the bending strength, the analysis results and the measurement results are almost the same.

【0014】図2(a)〜図2(c)および図3に示す
ように,曲げ強度については,ウェルドライン会合角お
よび流速の合流角との間に相関関係が認められる。これ
は,ウェルド形成過程において,金型に接する表層部分
においてはフローフロント到達と同時に固化が起こり,
その時点での状態が保たれるが,内部では固化すること
なく引続き流動が進むためフローフロント到達時の情報
は残されずに全体にわたってほぼ一定の状態となるため
である。すなわち,成形品断面の全範囲の状態が影響し
てくる引張り強度においては,わずかな表層付近の差は
現れにくいが,断面最外層の状態が影響してくる曲げ強
度においてはそれが顕著に現れたためであると考えられ
る。なお,引張試験においては,測定したデータの範囲
内では,引張強度はウェルドラインの会合角や流速合流
角に影響されない。
As shown in FIGS. 2 (a) to 2 (c) and FIG. 3, there is a correlation between the bending angle and the junction angle of the weld line and the flow velocity. This is because during the weld forming process, solidification occurs at the surface layer in contact with the mold as soon as the flow front is reached,
Although the state at that time is maintained, the flow continues without solidification inside, so that the information at the time of reaching the flow front is not left and remains almost constant throughout. In other words, a slight difference near the surface layer is unlikely to appear in the tensile strength, which is affected by the state of the entire cross section of the molded product, but is noticeable in the bending strength, which is affected by the state of the outermost layer in the section. It is considered that it is. In the tensile test, the tensile strength is not influenced by the weld angle of the weld line or the flow velocity merging angle within the range of the measured data.

【0015】ウェルド強度に対するウェルドライン会合
角と流速合流角の相関度をみてみると,両者とも角度
(ウェルドライン会合角では150deg,流速の合流
角では30deg付近)までは一定の低いレベルを保
ち,その後急激に材料本来の強度まで上昇するという形
態を示しており,特に際だった有意差は認められない。
したがって,ウェルド特性を評価する場合は,ウェルド
ライン会合角・流速合流角の両因子が使用可能である。
Looking at the correlation between the weld line association angle and the flow velocity merging angle with respect to the weld strength, both of them maintain a constant low level up to the angle (150 deg at the weld line association angle and around 30 deg at the flow velocity merging angle). After that, it shows a form in which the strength rapidly rises to the original strength of the material, and no particularly significant difference is observed.
Therefore, when evaluating the weld characteristics, both the weld line association angle and the flow velocity merging angle can be used.

【0016】各成形条件とウェルド強度との相関は,射
出率・樹脂温度いずれも高いレベルにあるほど曲げ強度
が高くなる傾向を示している。これは,流動時の温度・
圧力の上昇によりウェルド部の溶着度が増したためであ
ると考えられる。保圧圧力については3水準でほぼ同レ
ベルにあり,ウェルド部の曲げ強度は樹脂の流動過程で
決定されるといえる。
The correlation between the molding conditions and the weld strength indicates that the higher the injection rate and the resin temperature are, the higher the bending strength tends to be. This is the temperature at the time of flow
It is considered that the increase in the pressure increased the degree of welding at the weld portion. The holding pressure is almost the same at the three levels, and it can be said that the bending strength of the weld is determined by the flow process of the resin.

【0017】なお,以上は,ウェルドライン会合角また
は流動合流角とウェルド部の曲げ強度との間の相関関係
を主に見てきたが,CAEによりウェルド特性を評価す
る場合,入力データである成形条件に対してウエウルド
ラインの情報は,温度・圧力・流速・ウェルドライン会
合角あるいは流速の合流角という形で出力される。した
がって,会合角以外の情報も考慮しようとする場合は,
次式のようにしてウェルド特性の予測が可能である。 W= aF(ウェルドライン会合角あるいは流速合流
角)+aF(温度)+aF(圧力)+aF(流
速) ここで,Wはウェルド部の特性を示す定量値,Fは各因
子の関数,aは係数であり,これらはあらかじめ実験
解析とCAE解析により求められる。
In the above, the correlation between the weld line association angle or the flow merging angle and the bending strength of the weld portion has been mainly described. However, when the weld characteristics are evaluated by CAE, the molding data which is input data is used. Weld line information is output in the form of temperature, pressure, flow velocity, weld line junction angle or flow velocity merging angle with respect to conditions. Therefore, if information other than the meeting angle is to be considered,
The weld characteristic can be predicted as in the following equation. W = a 1 F (weld line association angle or flow velocity merging angle) + a 2 F (temperature) + a 3 F (pressure) + a 4 F (flow velocity) where W is a quantitative value indicating the characteristics of the weld portion, and F is each function of factors, a 1 is a coefficient, which is determined in advance by experimental analysis and CAE analysis.

【0018】[0018]

【発明の効果】本発明においては,特許請求の範囲に記
載したようにしたので,目的とする製品の流動解析を行
い,それから算出されるウェルドラインの会合角および
流速の合流角から,ウェルド強度を定量的に予測する。
その結果,相応の対策手段が導き出される。すなわち,
ウェルドライン発生位置やウェルドラインの会合角をコ
ンピュータ上のシミュレーションで変更することによ
り,要求される品質を満足する製品設計を行うことがで
きる。また,成形条件,製品形状,金型設計の変更もあ
らかじめ具体化することができる。また,流動解析で求
めた流速合流角や会合角の大きさによって合否を判断す
ることができる。
According to the present invention, as described in the claims, the flow analysis of the target product is performed, and the weld strength is calculated from the joint angle of the weld line and the confluence angle of the flow velocity calculated from the flow analysis. Is quantitatively predicted.
As a result, appropriate countermeasures are derived. That is,
By changing the weld line generation position and the weld line association angle by computer simulation, it is possible to design a product that satisfies the required quality. Also, changes in molding conditions, product shapes, and mold designs can be embodied in advance. In addition, pass / fail can be determined based on the magnitude of the flow velocity merging angle or the association angle obtained by the flow analysis.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1実施例を示すブロック線図である。FIG. 1 is a block diagram showing one embodiment of the present invention.

【図2(a)〜図2(c)】流速の合流角と曲げ強度の
関係を示すグラフである。
2 (a) to 2 (c) are graphs showing a relationship between a merging angle of flow velocity and bending strength.

【図3】ウェルドライン会合角と曲げ強度の関係を示す
グラフである。
FIG. 3 is a graph showing a relationship between a weld line association angle and a bending strength.

【図4】本発明の1実施例として用いたテストピースの
形状を示す平面図である。
FIG. 4 is a plan view showing the shape of a test piece used as one embodiment of the present invention.

【図5】テストピースによる物性測定条件を示す平面図
である。
FIG. 5 is a plan view showing physical property measurement conditions using a test piece.

【図6】ウェルドライン会合角の定義を示す説明図であ
る。
FIG. 6 is an explanatory diagram showing a definition of a weld line association angle.

【図7】流速合流角の定義を示す説明図である。FIG. 7 is an explanatory diagram showing a definition of a flow velocity merging angle.

【符号の説明】[Explanation of symbols]

θ ウェルドライン会合角 α 流速合流角 1 波状 2 ウェルドライン発生位置 3 テストピース品 4 穴 5 テストピース θ Weld line association angle α Flow velocity merging angle 1 Wavy 2 Weld line generation position 3 Test piece product 4 Hole 5 Test piece

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 天野 修、「射出成形CAEと成形不 良」、プラスチックス2月号、株式会社 工業調査会、昭和63年2月1日、第39巻 第2号、p.25−33 藤田滋外1名、「<ASPLAST> システムによる金型設計と成形条件の最 適化」、合成樹脂、社団法人 日本合成 樹脂技術協会、昭和62年11月1日、p. 2−7 (58)調査した分野(Int.Cl.6,DB名) B29C 45/00 - 45/84 G06F 15/60 310 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References Osamu Amano, “Injection molding CAE and molding failure”, February issue of Plastics, Industrial Research Institute, Ltd., February 1, 1988, Vol. 39, No. 2, No., p. 25-33 Fujita, Shigai, 1 "<ASPLAST> System for Mold Design and Optimization of Molding Conditions", Synthetic Resins, Japan Synthetic Resins Institute of Technology, November 1, 1987, p. 2- 7 (58) Field surveyed (Int. Cl. 6 , DB name) B29C 45/00-45/84 G06F 15/60 310

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 成形品形状モデルの溶融材料流動解析を
行って成形品のウェルドラインの流速合流角または会合
角を求め,この流速合流角または会合角と,あらかじめ
求めておいたウェルドラインの流速合流角または会合角
とウェルド部強度との相関因子により,成形品の品質を
定量的に予測するようにした溶融材料流動解析による成
形品の品質判断方法。
A flow analysis of a molten material of a model of a molded article is performed to determine a flow stream merging angle or an association angle of a weld line of the molded article. A method for judging the quality of a molded article by molten material flow analysis, which quantitatively predicts the quality of the molded article based on the correlation factor between the junction angle or association angle and the weld strength.
【請求項2】 成形品形状モデルの溶融材料流動解析を
行って成形品のウェルドラインの流速合流角または会合
角を求め,あらかじめ求めておいたウェルドラインの流
速合流角または会合角とウェルド部強度との相関曲線を
基にして設定した合格設定流速合流角または合格設定会
合角と,前記流動解析で求めたウェルドラインの流速合
流角または会合角を比較し,流動解析で求めた流速合流
角が合格設定流動合流角よりも小さいか,流動解析で求
めた会合角が合格設定会合角よりも大きいときに合格と
判断し,流動解析で求めた流速合流角が合格設定流動合
流角よりも大きいか,流動解析で求めた会合角が合格設
定会合角よりも小さいときに不合格と判断するようにし
た溶融材料流動解析による成形品の品質判断方法。
2. A flow rate merging angle or an association angle of a weld line of a molded product is obtained by performing a molten material flow analysis of a molded product shape model, and a flow line merging angle or an association angle of the weld line and a weld portion strength determined in advance. The acceptable flow velocity merging angle or the acceptable meeting angle set based on the correlation curve with the flow line merging angle or the association angle of the weld line obtained by the flow analysis is compared. Is it judged to be pass when the meeting angle determined by the flow analysis is smaller than the acceptable flow joining angle or larger than the acceptable setting meeting angle, and is the flow velocity joining angle found by the flow analysis larger than the acceptable setting flow joining angle? A method for determining the quality of a molded article by a molten material flow analysis, wherein a failure is determined when the angle of association obtained by the flow analysis is smaller than the set angle of acceptance.
JP3250109A 1991-06-26 1991-06-26 Quality judgment method of molded product by molten material flow analysis Expired - Lifetime JP2882122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3250109A JP2882122B2 (en) 1991-06-26 1991-06-26 Quality judgment method of molded product by molten material flow analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3250109A JP2882122B2 (en) 1991-06-26 1991-06-26 Quality judgment method of molded product by molten material flow analysis

Publications (2)

Publication Number Publication Date
JPH07205241A JPH07205241A (en) 1995-08-08
JP2882122B2 true JP2882122B2 (en) 1999-04-12

Family

ID=17202961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3250109A Expired - Lifetime JP2882122B2 (en) 1991-06-26 1991-06-26 Quality judgment method of molded product by molten material flow analysis

Country Status (1)

Country Link
JP (1) JP2882122B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3652819B2 (en) * 1996-11-01 2005-05-25 電気化学工業株式会社 Method for predicting weld line length of molded products
JP2005169909A (en) * 2003-12-12 2005-06-30 Fujitsu Ten Ltd Impact analysis method for resin molding
US7168922B2 (en) 2004-04-26 2007-01-30 Borgwarner Inc. Plastic fans having improved fan ring weld line strength
JP4807280B2 (en) * 2007-02-26 2011-11-02 トヨタ自動車株式会社 Injection molding quality prediction apparatus, method and program
JP5235573B2 (en) * 2008-09-17 2013-07-10 三菱電機株式会社 Strength analysis method, strength analysis apparatus, and strength analysis program
FR2950660B1 (en) 2009-09-29 2017-08-25 Valeo Systemes Thermiques PROPELLER, MOTOR COOLING DEVICE COMPRISING SUCH A PROPELLER, METHOD AND MOLD FOR MANUFACTURING THE SAME

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
天野 修、「射出成形CAEと成形不良」、プラスチックス2月号、株式会社工業調査会、昭和63年2月1日、第39巻第2号、p.25−33
藤田滋外1名、「<ASPLAST>システムによる金型設計と成形条件の最適化」、合成樹脂、社団法人 日本合成樹脂技術協会、昭和62年11月1日、p.2−7

Also Published As

Publication number Publication date
JPH07205241A (en) 1995-08-08

Similar Documents

Publication Publication Date Title
Fernandes et al. Modeling and Optimization of the Injection‐Molding Process: A Review
Zhao et al. Recent progress in minimizing the warpage and shrinkage deformations by the optimization of process parameters in plastic injection molding: A review
Heller et al. Planar deposition flow modeling of fiber filled composites in large area additive manufacturing
Moayyedian et al. Optimization of injection molding process based on fuzzy quality evaluation and Taguchi experimental design
Chen et al. Artificial neural network-based online defect detection system with in-mold temperature and pressure sensors for high precision injection molding
US10377066B1 (en) Molding system for preparing fiber-reinforced thermoplastic composite article
Huynh et al. Minimizing Warpage for Macro-Size Fused Deposition Modeling Parts.
US9919465B1 (en) Molding system for preparing an injection molded fiber reinforced composite article
JP2882122B2 (en) Quality judgment method of molded product by molten material flow analysis
US20230347564A1 (en) Computer-implemented method for controlling and/or monitoring at least one injection molding process
Azaman et al. Optimization and numerical simulation analysis for molded thin‐walled parts fabricated using wood‐filled polypropylene composites via plastic injection molding
Moayyedian et al. Gate design and filling process analysis of the cavity in injection molding process
Guerra et al. Influence of process parameters and post-molding condition on shrinkage and warpage of injection-molded plastic parts with complex geometry
Sandu et al. Prediction of polymer flow length by coupling finite element simulation with artificial neural network
Guo et al. Warpage of injection-molded thermoplastics parts: Numerical simulation and experimental validation
Kampker et al. Technological and economic comparison of additive manufacturing technologies for fabrication of polymer tools for injection molding
de Miranda et al. Analysis of numerical modeling strategies to improve the accuracy of polymer injection molding simulations
CN115170583A (en) Method and system for monitoring preparation of thermoplastic plastic product with complex structure
Yao et al. Direct-search-based automatic minimization of weldlines in injection-molded parts
JPH071529A (en) Estimating method of strength of weld line of injection molded product
Juraeva et al. Gate shape optimization using design of experiment to reduce the shear rate around the gate
JP2003154550A (en) Molded article, designing method therefor, and estimating method for length of weld line
US6850810B1 (en) Method and system for designing a profile extrusion capping die
BARON et al. COMPARISON OF SELECTED MATERIALS INTENDED FOR THE MANUFACTURE OF PLASTIC HOLDER FOR REVERSE PARKING SENSOR WITH THE USE OF COMPUTER SIMULATION TOOLS.
JP2002219739A (en) Method for estimating amount of change in shape of injection-molded article