JP2880641B2 - Foundation building method - Google Patents

Foundation building method

Info

Publication number
JP2880641B2
JP2880641B2 JP7162694A JP7162694A JP2880641B2 JP 2880641 B2 JP2880641 B2 JP 2880641B2 JP 7162694 A JP7162694 A JP 7162694A JP 7162694 A JP7162694 A JP 7162694A JP 2880641 B2 JP2880641 B2 JP 2880641B2
Authority
JP
Japan
Prior art keywords
ground
foundation
cement
thickness
construction method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7162694A
Other languages
Japanese (ja)
Other versions
JPH07259075A (en
Inventor
茂良 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIWA HAUSU KOGYO KK
Original Assignee
DAIWA HAUSU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIWA HAUSU KOGYO KK filed Critical DAIWA HAUSU KOGYO KK
Priority to JP7162694A priority Critical patent/JP2880641B2/en
Publication of JPH07259075A publication Critical patent/JPH07259075A/en
Application granted granted Critical
Publication of JP2880641B2 publication Critical patent/JP2880641B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は基礎構築方法に関する。
さらに詳しくは、基礎コンクリート・ブロックを用いる
基礎構築方法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for building a foundation.
More specifically, the present invention relates to improvement of a foundation construction method using a foundation concrete block.

【0002】[0002]

【従来の技術】プレハブ住宅においては、据付け期間の
短縮および製品の品質安定化ならびに向上のために、主
要部材が工場においてあらかじめ製造された状態、いわ
ゆるプレハブ化された状態で据付け現場に出荷されてい
る。この一貫として、基礎もあらかじめ、図3に示すよ
うな基礎コンクリート・ブロック(以下、単に基礎ブロ
ックという)aの状態で据付け現場に出荷されている。
なお、図3において、bは捨てコンクリート下地、cは
砕石下地を示す。
2. Description of the Related Art In a prefabricated house, in order to shorten an installation period and stabilize and improve the quality of a product, main components are shipped to an installation site in a state where they are manufactured in advance in a factory, that is, in a so-called prefabricated state. I have. As a part of this, the foundation has been shipped to the installation site in advance in the state of a foundation concrete block (hereinafter simply referred to as a foundation block) a as shown in FIG.
In addition, in FIG. 3, b shows a discarded concrete foundation and c shows a crushed stone foundation.

【0003】しかるに、基礎設計においては、上部荷重
に応じて基礎底面積(布基礎の場合は基礎幅)が調節さ
れて、基礎底面下の地盤に作用する接地圧を地耐力以下
になるようにされている。したがって、地耐力は据付け
場所ごとに異なっている関係上、据付け場所に応じたサ
イズの基礎ブロックの製造がなされることになる。その
ため、基礎ブロックを標準化することができず、種々の
サイズの基礎ブロックを準備しておかなければならない
という問題がある。それに伴い、基礎ブロックの在庫管
理も煩雑になるという問題もある。
However, in the foundation design, the foundation bottom area (the foundation width in the case of a cloth foundation) is adjusted in accordance with the upper load so that the ground pressure acting on the ground under the foundation bottom is equal to or less than the ground bearing capacity. Have been. Therefore, since the bearing capacity differs for each installation location, a base block having a size corresponding to the installation location is manufactured. Therefore, there is a problem that the basic blocks cannot be standardized and basic blocks of various sizes must be prepared. Accordingly, there is a problem that inventory management of the basic blocks is complicated.

【0004】また、同一建物においても、例えば平屋部
分と2階建て部分とでは、基礎にかかる荷重が異なるた
め、基礎幅を変えなければならないということも、前記
諸問題を助長している。
[0004] Further, even in the same building, for example, the load applied to the foundation is different between a one-story portion and a two-story portion, so that the width of the foundation must be changed, which furthers the above problems.

【0005】この問題は、顧客のニーズが多様化および
複雑化している現状においては一層顕著となっている。
[0005] This problem has become more remarkable in a situation where customer needs are diversified and complicated.

【0006】[0006]

【発明が解決しようとする課題】本発明はかかる従来技
術の問題点に鑑みなされたものであって、地耐力あるい
は負荷荷重が異なっても、基礎ブロックを同一とするこ
とができる基礎構築方法を提供することを目的としてい
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and provides a method for constructing a foundation capable of making the same foundation block even when the ground bearing capacity or the applied load is different. It is intended to provide.

【0007】[0007]

【課題を解決するための手段】本発明の基礎構築方法
は、基礎の下部地盤の所定範囲を所定厚さにおいてセメ
ントと混合する工程と、前記セメントが混合された下部
地盤を転圧する工程と、前記転圧された下部地盤を硬化
させる工程とを含んでいる基礎構築方法であって、前記
所定厚さが、下記式により算出された値が0.1を超え
ていれば、その値に基づいた厚さとされ、その値が0.
1未満であれば、10cmとされることを特徴とする基
礎構築方法 sc =(B 3 −B 5 )/2 ここに、 sc :厚さ 〔m〕 3 :地耐力が3tf/m 2 の地盤における必要基礎幅 〔m〕 5 :地耐力が5tf/m 2 の地盤における必要基礎幅 〔m〕
[MEANS FOR SOLVING THE PROBLEMS] The basic construction method of the present invention
Is to sew a predetermined area of the lower ground of the foundation at a predetermined thickness.
Mixing with the cement, and the lower part where the cement is mixed.
Compacting the ground and hardening the compacted lower ground
Building method including the step of causingAnd said
When the thickness calculated by the following formula exceeds 0.1
If so, the thickness is determined based on the value, and the value is set to 0.
If it is less than 1, it is 10 cm.
Foundation building method.H sc = (B Three -B Five ) / 2 here, H sc :thickness [M]  B Three : Ground strength 3 tf / m Two Required Foundation Width on Ground [m]  B Five : Ground strength 5tf / m Two Required Foundation Width on Ground [m]

【0008】[0008]

【0009】 また、本発明の基礎構築方法において
は、セメントの混合割合が、一律に100kg/m3
されてもよく、あるいは現場試験により決定されてもよ
い。現場試験による場合には、材令3日のテストピース
の強度に基づいて決定されるのが好ましい。
Further, in the basic construction method of the present invention, the mixing ratio of the cement may be uniformly 100 kg / m 3 , or may be determined by an on-site test. In the case of an on-site test, it is preferable that the determination be made based on the strength of the test piece on the three-day age.

【0010】[0010]

【作用】本発明においては、基礎ブロック据付け前に、
基礎下部の地盤を所望の地耐力が得られるように改質し
ているので、地耐力あるいは負荷荷重が異なっても同一
の基礎ブロックを用いて基礎を構築できる。
In the present invention, before the foundation block is installed,
Since the ground under the foundation is modified so as to obtain a desired ground strength, the foundation can be constructed using the same foundation block even if the ground strength or the applied load is different.

【0011】[0011]

【実施例】以下、本発明を実施例に基づいて説明する
が、本発明はかかる実施例のみに限定されるものではな
い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments, but the present invention is not limited to these embodiments.

【0012】本発明の基礎構築方法では、図1に示すよ
うに、従来の工法で施されていた基礎下の砕石地業(栗
石地業)と捨てコンクリート作業を省略し、それに替わ
って基礎の下部地盤を所定の厚さ、および幅でセメント
を混合した後、転圧を行なうとともにセメントを硬化さ
せて地盤の改質を行う。この後、基礎ブロックの据付け
を行うのであるが、その際の墨出しは、この硬化したセ
メント、いわゆるソイルセメント上面においてなし得
る。
In the foundation construction method of the present invention, as shown in FIG. 1, the crushed stone work (Kuriishi ground work) and the dumping concrete work under the foundation, which were performed by the conventional method, are omitted. After the lower ground is mixed with a cement having a predetermined thickness and width, the ground is reformed by performing rolling and hardening the cement. After that, the foundation block is installed. In this case, the inking can be performed on the hardened cement, so-called soil cement upper surface.

【0013】この場合、住宅が建てられる土地の地耐力
は、3tf/m2以上のものが約8割を占めるところか
ら、改質される厚さを下記式により算出される値に基づ
いて決定しても実用上問題を生じない。Hsc=(B3
5)/2 ここに、 Hsc :厚さ 〔m〕 B3 :地耐力が3tf/m2の地盤における必要基礎幅 〔m〕 B5 :地耐力が5tf/m2の地盤における必要基礎幅 〔m〕
[0013] In this case, since the land bearing capacity of the land where the house is built is 3tf / m 2 or more occupies about 80%, the thickness to be reformed is determined based on the value calculated by the following equation. This does not cause any practical problem. H sc = (B 3
B 5 ) / 2, where, H sc : thickness [m] B 3 : required foundation width in the ground with a ground bearing capacity of 3 tf / m 2 [m] B 5 : required foundation in the ground with a ground strength of 5 tf / m 2 Width [m]

【0014】ただし、その値に基づく厚さが10cm未
満の場合に、施工の便宜上、一律に10cmとされる。
However, when the thickness based on the value is less than 10 cm, the thickness is uniformly set to 10 cm for convenience of construction.

【0015】また、混合されるセメントの割合は、前記
事情を考慮して、一律に100kg/m3とすれば、施
工性を向上させることができる。
Further, if the ratio of the cement to be mixed is uniformly set to 100 kg / m 3 in consideration of the above-mentioned circumstances, the workability can be improved.

【0016】なお、施工の厳密性を考慮すれば、施工現
場における現場試験によりセメントの混合割合を決定す
るのが好ましい。この現場試験は、例えば、図2に示す
ように、施工現場に適当な大きさの穴をいくつか堀り
(図2(a)参照)、その穴を利用してセメントの混合
割合の異なるテストピース3A(80kg/m3),3
B(100kg/m3),3C(120kg/m3)を作
製して(同(b)参照)、それを市販されている簡易締
固め測定器(例えばインパクトソイルハンマー(商品
名))4により強度を測定する(同(c)参照)ことに
よりなされる。その場合、施工工程のいたずらな長期化
を避けるために、材令3日のものにより強度試験を行い
判断するのが望ましい。
In consideration of the strictness of construction, it is preferable to determine the mixing ratio of cement by an on-site test at the construction site. In this field test, for example, as shown in FIG. 2, several holes of an appropriate size are dug at the construction site (see FIG. 2 (a)), and the holes are used to test different cement mixing ratios. Peace 3A (80 kg / m 3 ), 3
B (100 kg / m 3 ) and 3C (120 kg / m 3 ) were prepared (see (b)), and they were measured with a commercially available simple compaction measuring instrument (for example, Impact Soil Hammer (trade name)) 4. This is done by measuring the intensity (see (c)). In that case, in order to avoid unnecessarily prolonging the construction process, it is desirable to make a judgment by performing a strength test with a material age of 3 days.

【0017】以下、添付図面を参照しながら、本発明を
より具体的に説明する。
Hereinafter, the present invention will be described more specifically with reference to the accompanying drawings.

【0018】 例えば、地盤の地耐力が3tf/m2
あるとすると、従来の方法では、図3に示すように、7
00mm幅の地耐力3tf/m2用基礎aが用いられ
る。しかるに、本発明の基礎構築法により、図1に示す
ように、700mm幅で150mm厚さの範囲を改質2
したとすると、すなわちソイルセメント地業2を施した
とすると、その上に、400mm幅の5tf/m2基礎
1を据付ければ、基礎底面に作用した5tf/m2の応
力は、ソイルセメント体中を基礎構造力学の原理に従い
45度の角度で分散する。その結果、地盤に接するソイ
ルセメント底面部の応力は、3tf/m2以下に低減さ
れる。すなわち、この場合は、厚さ150mm、幅70
0mmの範囲を改質すれば、地耐力が5tf/m2の基
礎ブロックを使用できることがわかる。このことを前記
式に則して補足説明すると、前記説明から地耐力3tf
/m 2 の地盤における必要基礎幅B 3 〔m〕は0.7mで
あり、また地耐力5tf/m 2 の地盤における必要基礎
幅B 5 〔m〕は0.4mであるから、改質の必要厚さH
SC 〔m〕は前記式より0.15m、つまり150mmと
して求まる。
For example, assuming that the ground bearing capacity of the ground is 3 tf / m 2 , according to the conventional method, as shown in FIG.
A foundation a having a ground strength of 3 tf / m 2 having a width of 00 mm is used. However, according to the basic construction method of the present invention, as shown in FIG.
In other words, if soil cement groundwork 2 is applied, a 400 mm-wide 5 tf / m 2 foundation 1 is installed thereon, and the 5 tf / m 2 stress acting on the bottom of the foundation is reduced by the soil cement body. The inside is dispersed at an angle of 45 degrees according to the principle of basic structural mechanics. As a result, the stress at the bottom of the soil cement in contact with the ground is reduced to 3 tf / m 2 or less. That is, in this case, the thickness is 150 mm and the width is 70
It can be seen that if the range of 0 mm is modified, a foundation block having a ground bearing capacity of 5 tf / m 2 can be used. This is
Supplementary explanation based on the equation is as follows.
/ M 2 The required base width B 3 [m] on the ground is 0.7 m
Yes, and the necessary foundation for the ground with a ground bearing capacity of 5 tf / m 2
Since the width B 5 [m] is 0.4 m, the necessary thickness H for reforming is given.
SC [m] is 0.15 m from the above equation, that is, 150 mm.
Is determined.

【0019】この場合、ソイルセメント体は、作用する
圧縮応力に耐え得る圧縮強度を有する必要があるが、か
かる圧縮強度は、理論上は、1m3に対して数10kg
のセメントを混合すれば得られる。しかしながら、安全
をみて、例えば100kg/m3とされるのが好まし
い。その際、確実性や経済性を望むのであれば、前記の
ごとく、現場試験により決定すればよい。
In this case, the soil cement body needs to have a compressive strength that can withstand the compressive stress that acts, but the compressive strength is theoretically several tens of kg per m 3 .
Can be obtained by mixing the above cement. However, from the viewpoint of safety, for example, it is preferably 100 kg / m 3 . At this time, if certainty or economy is desired, the determination may be made by a field test as described above.

【0020】なお、地耐力がさらに小さい地盤において
は、その地盤に対応させて改質範囲を拡大すれば、40
0mm幅の5tf/m2用の基礎ブロックが使用でき
る。
In the case of a ground having a smaller ground bearing capacity, if the reforming range is expanded in accordance with the ground, the ground becomes 40
A base block for 5 tf / m 2 with a width of 0 mm can be used.

【0021】以上本発明を実施例に基づいて説明してき
たが、本発明はかかる実施例のみに限定されるものでは
なく、種々改変が可能である。例えば、地盤の改質範囲
を拡大すれば、地耐力が3tf/m2の地盤に対して
も、幅のより狭い基礎ブロックを用いることができる。
Although the present invention has been described based on the embodiments, the present invention is not limited to only the embodiments, and various modifications are possible. For example, if the ground reforming range is expanded, a narrower base block can be used even for the ground having a ground bearing strength of 3 tf / m 2 .

【0022】[0022]

【発明の効果】以上詳述したように、本発明の基礎構築
方法によれば、以下のような優れた効果が得られる。
As described in detail above, according to the basic construction method of the present invention, the following excellent effects can be obtained.

【0023】(1)基礎幅を地耐力、上部荷重の片寄り
などによらず一定として設計・施工できる。
(1) The base width can be designed and constructed to be constant irrespective of the bearing capacity of the ground and the offset of the upper load.

【0024】(2)前記利点により、基礎の種類を少な
くでき、プレハブ工法における基礎ブロックの在庫管理
を簡素化できる。
(2) Due to the above advantages, the types of foundations can be reduced, and inventory management of the foundation blocks in the prefabricated construction method can be simplified.

【0025】(3)砕石地業、捨てコンクリート工を省
略でき、工期短縮が図れる。
(3) The crushed stone industry and waste concrete work can be omitted, and the construction period can be shortened.

【0026】(4)掘削残土を少なくすることができ
る。
(4) Excavation residual soil can be reduced.

【0027】(5)コストを低減できる。(5) Cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の基礎構築方法の説明図である。FIG. 1 is an explanatory diagram of a basic construction method of the present invention.

【図2】現場試験の説明図である。FIG. 2 is an explanatory view of a field test.

【図3】従来の基礎構築方法の説明図である。FIG. 3 is an explanatory diagram of a conventional foundation construction method.

【符号の説明】[Explanation of symbols]

1 基礎コンクリート・ブロック(基礎ブロッ
ク) 2 ソイルセメント地業(地盤の改質範囲) 3 テストピース 4 簡易締固め測定器
DESCRIPTION OF SYMBOLS 1 Foundation concrete block (foundation block) 2 Soil cement ground business (ground modification area) 3 Test piece 4 Simple compaction measuring device

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) E02D 3/12 102 E02D 3/046 E02D 27/28 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) E02D 3/12 102 E02D 3/046 E02D 27/28

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基礎の下部地盤の所定範囲を所定厚さに
おいてセメントと混合する工程と、前記セメントが混合
された下部地盤を転圧する工程と、前記転圧された下部
地盤を硬化させる工程とを含んでいる基礎構築方法であ
って、前記所定厚さが、下記式により算出された値が
0.1を超えていれば、その値に基づいた厚さとされ、
その値が0.1未満であれば、10cmとされることを
特徴とする基礎構築方法 sc =(B 3 −B 5 )/2 ここに、 sc :厚さ 〔m〕 3 :地耐力が3tf/m 2 の地盤における必要基礎幅 〔m〕 5 :地耐力が5tf/m 2 の地盤における必要基礎幅 〔m〕
1. A predetermined range of a lower ground of a foundation is set to a predetermined thickness.
Mixing with the cement in the
Rolling the pressed lower ground, and the rolled lower part
And a step of hardening the ground.In
Thus, the predetermined thickness is a value calculated by the following equation:
If it exceeds 0.1, it will be a thickness based on that value,
If the value is less than 0.1, it will be 10 cm
Characteristic foundation construction method.H sc = (B Three -B Five ) / 2 here, H sc :thickness [M]  B Three : Ground strength 3 tf / m Two Required Foundation Width on Ground [m]  B Five : Ground strength 5tf / m Two Required Foundation Width on Ground [m]
【請求項2】 セメントの混合割合が、一律に100k
g/m3とされていることを特徴とする請求項1記載の
基礎構築方法。
2. The mixing ratio of cement is uniformly 100 k.
Basic construction method according to claim 1, characterized in that it is the g / m 3.
【請求項3】 セメントの混合割合が現場試験により決
定されることを特徴とする請求項1記載の基礎構築方
法。
3. The method of claim 1, wherein the mixing ratio of the cement is determined by an on-site test.
【請求項4】 セメントの混合割合が材令3日のテスト
ピースの強度に基づいて決定されることを特徴とする請
求項記載の基礎構築方法。
4. A foundation construction method according to claim 3, wherein the mixing ratio of cement is determined based on the intensity of the test piece of wood age 3 days.
JP7162694A 1994-03-15 1994-03-15 Foundation building method Expired - Lifetime JP2880641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7162694A JP2880641B2 (en) 1994-03-15 1994-03-15 Foundation building method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7162694A JP2880641B2 (en) 1994-03-15 1994-03-15 Foundation building method

Publications (2)

Publication Number Publication Date
JPH07259075A JPH07259075A (en) 1995-10-09
JP2880641B2 true JP2880641B2 (en) 1999-04-12

Family

ID=13466059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7162694A Expired - Lifetime JP2880641B2 (en) 1994-03-15 1994-03-15 Foundation building method

Country Status (1)

Country Link
JP (1) JP2880641B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11343667A (en) * 1998-04-03 1999-12-14 Daiwa House Ind Co Ltd Structure for fixing column base with underground beam made of reinforced concrete
JP7263671B2 (en) * 2018-08-09 2023-04-25 株式会社竹中工務店 pile foundation structure

Also Published As

Publication number Publication date
JPH07259075A (en) 1995-10-09

Similar Documents

Publication Publication Date Title
Ou et al. Building response and ground movements induced by a deep excavation
Basma et al. Evaluation and control of collapsible soils
US7661907B2 (en) Ground engineering method
US4817353A (en) Selfcontained integral footing form and foundation wall
Ying et al. Evaluation of excavation-induced movements through case histories in Hangzhou
Sitharam Advanced foundation engineering
JP2880641B2 (en) Foundation building method
Warner Compaction grouting-a significant case history
US11486110B2 (en) Porous displacement piles meeting filter design criteria for rapid consolidation and densification of subsurface soils and intermediate geomaterials
Mansur et al. Tie-backs in clay to support sheeted excavation
Roscoe PAPER 17 The behaviour of flight auger bored piles in sand
Sag˘ lamer et al. Ground improvement by jet grout columns for the foundations of an automobile plant in Turkey
SU690117A1 (en) Method of consolidating loess soil
Lutenegger Uplift tests on shallow cast-in-place enlarged base pedestal foundations in clay
Jayasinghe et al. Stabilised soil block technology for Sri Lanka
Fadeev et al. Effective micropiles for the strengthening of foundations
Teparaksa Behavior of deep excavations using sheet pile bracing system in soft Bangkok clay
Mejías López Design and construction of a telecommunications tower foundation using micropiles
Stark¹ et al. Specifications for constructing and load testing stone columns in clays
Sheppard Dynamic characteristics of tall, pre-1965 masonry buildings, as a basis for their seismic analysis and strengthening.
YOKOYAMA Restoration work of Niigata JNR Hospital
Hussin et al. Analysis of quick load tests on stone columns: case histories
Krutov Consideration of new results on the proneness of soils to slump-type settlement during surveys, design, and construction
JPH02200923A (en) Foundation work method for building
Chari Kannan Deep soil densification for shallow foundations

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990119