JP2879663B2 - Fetal monitoring device - Google Patents

Fetal monitoring device

Info

Publication number
JP2879663B2
JP2879663B2 JP8216538A JP21653896A JP2879663B2 JP 2879663 B2 JP2879663 B2 JP 2879663B2 JP 8216538 A JP8216538 A JP 8216538A JP 21653896 A JP21653896 A JP 21653896A JP 2879663 B2 JP2879663 B2 JP 2879663B2
Authority
JP
Japan
Prior art keywords
heart rate
signal
correlogram
fetal
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8216538A
Other languages
Japanese (ja)
Other versions
JPH1028686A (en
Inventor
康人 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP8216538A priority Critical patent/JP2879663B2/en
Publication of JPH1028686A publication Critical patent/JPH1028686A/en
Application granted granted Critical
Publication of JP2879663B2 publication Critical patent/JP2879663B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の応用分野】本発明は胎児監視装置の改良にか
かり、特に信号処理上の工夫により見落しや記録途絶を
低減した該装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a fetal monitoring apparatus, and more particularly to an apparatus for reducing oversight and interruption of recording by devising a signal processing.

【0002】[0002]

【従来の技術】胎児監視装置を構成するための主要な計
測手段である胎児心拍数計は、信号源として超音波ドプ
ラ法による胎児心拍信号を用い、これをフィルタ処理
し、エンベロープ検波などの検波を行い、また若干フィ
ルタ処理しという前処理をした結果から短時間自己相関
によりその周期性を抽出し、これを瞬時心拍数値に換算
して表示また記録する。本発明者の昔の発明に成るこの
手法(1,2)の成功がもとで分娩時の胎児の安全確保
のための電子的手段は母体の腹壁上に適宜探触子を結合
するのみで所望の情報が実時間的に抽出可能となり、練
達した手技を要さぬ臨床実用上の物となった。現在では
本手法がこの目的における方式上のデ・ファクト・スタ
ンダードとなている(3)。
2. Description of the Related Art A fetal heart rate monitor, which is a main measuring means for constructing a fetal monitoring apparatus, uses a fetal heart rate signal obtained by an ultrasonic Doppler method as a signal source, filters the fetal heart rate signal, and performs detection such as envelope detection. Then, the periodicity is extracted by a short-time autocorrelation from the result of the pre-processing of slightly filtering, and this is converted into an instantaneous heart rate value and displayed or recorded. Based on the success of this technique (1, 2), which was the inventor's old invention, the only electronic means for ensuring the safety of the fetus during delivery is to attach the probe appropriately on the abdominal wall of the mother. Desired information can be extracted in real time, and it has become a clinically practical object that does not require skilled techniques. At present, this method is the de facto standard for this purpose (3).

【0003】この様な極短時間の周期性波形データにも
とづく瞬時周波数認識のための検出、処理の手法は、い
わゆる音声の自動ピッチ抽出(4)と酷似した問題であ
るが、歴史的には本領域の方が総体的に先行していたよ
うである。また真に1拍1拍の周期とその拍毎の変化に
等価な情報を要求されるので、相関処理に付して周期性
を求める対象の原始波形データの区間長を心拍数の計測
結果からフィードバック自動制御してほぼ1拍分強の長
さに限定している(5)。
The method of detection and processing for instantaneous frequency recognition based on such extremely short-period periodic waveform data is a problem very similar to the so-called automatic pitch extraction of voice (4). It seems that this area generally precedes. Also, since information equivalent to the period of each beat and the change of each beat is required, the section length of the original waveform data to be subjected to the correlation processing to obtain the periodicity is calculated from the heart rate measurement result. Feedback is automatically controlled to limit the length to just over one beat (5).

【0004】この主旨で、ある程度十分に長い、その中
ではエルゴード性を期待出来る信号データを扱う、いわ
ゆる周波数スペクトル解析やMEMなどの流れを汲む手
法は、ついにこの領域には検討も採用もされなかった。
DFT/FFTによる周波数スペクトル解析でも極短時
間の波形の瞬時周波数を自己適応的ないし遡及的に検出
できる事が提案、確認されたのはずっと時代が下ってか
ら(6)であり、本目的に関して定着したこの適応自己
相関法に伍するには至っていない。参考文献(7,8,
11)などに胎児監視装置(分娩監視装置ともいう)の
入門的解説がある。
[0004] With this in mind, techniques that use signal data, such as so-called frequency spectrum analysis and MEM, that handle signal data that is sufficiently long to some extent and in which ergodicity can be expected, have never been studied or adopted in this area. Was.
It was proposed (6) that the instantaneous frequency of an extremely short time waveform could be detected in a self-adaptive or retrospective manner even in the frequency spectrum analysis by DFT / FFT. The established adaptive autocorrelation method has yet to be traced. References (7,8,
An introductory commentary on a fetal monitoring device (also referred to as a delivery monitoring device) is given in 11).

【0005】そもそも本手法の如き統計学、推計学的手
法が心電信号や心音信号(ともに下図参照)の波形の局
所特徴点の抽出にもとづくトリガ発生形の決定論的手法
に代って用いられるに至った理由は、ドプラ胎児心拍信
号が耳で聞くと明らかな周期性を持つにも拘らず、多成
分より成り、そのエンベローブは複雑、また時として変
転きわまりない時変性がある事に由来する。システムや
信号波形が事前に判っている事を大前提としてその局所
的特徴を検出してトリガパルスを発生せんとする従来の
決定論的手法では、この様な準非定常信号を扱う事は出
来ない。
In the first place, statistical and estimating methods such as the present method are used instead of a deterministic method of a trigger generation type based on extraction of local feature points of a waveform of an electrocardiographic signal or a heart sound signal (both are shown in the following figure). Despite the fact that the Doppler fetal heartbeat signal has a clear periodicity when heard by the ear, it is composed of multiple components, the envelope of which is complex, and sometimes has an inconsistent time variant. I do. Such quasi-unsteady signals cannot be handled by conventional deterministic methods that detect local features and generate trigger pulses on the premise that the system and signal waveforms are known in advance. Absent.

【0006】しかるに信号の周期性、すなわち心拍の検
出、検証に信号処理側で万全を期さんとする本手法もま
た幾多の困難ないし問題点が指摘されて来た。ここでは
その中で信号源すなわち胎児心の逃避や追跡の問題、ま
た母児ともどもの生理現象に大きく依存する誤認ないし
適応不能の問題などは一応さておいて、信号処理の側の
問題点として指摘されていた心拍数の細変動および大き
な急変への追従性の問題、またそれに伴う演算結果の蓋
然性の検証の問題に関して、コリレトグラムないし逆数
表示コリレトグラムの上の2次元イメージ処理の手法に
よる場面毎の適応処理などの最近の進歩を紹介する。
[0006] However, the present method, which ensures the periodicity of the signal, that is, the heartbeat detection and verification on the signal processing side, has also been pointed out with a number of difficulties or problems. Here, the problem of escape and tracking of the signal source, that is, the fetal heart, and the problem of misrecognition or inability to adapt, which largely depend on the physiological phenomena of both mother and baby, are pointed out as problems on the signal processing side. For the problem of the ability to follow minute fluctuations and large sudden changes in the heart rate, and the problem of the verification of the probability of the calculation results associated with it, for each scene by means of a two-dimensional image processing method on a correlogram or a reciprocal display correlogram. Introducing recent progress such as.

【0007】従来の信号処理手法のあらましを述べる
と、図3a,b,cは胎児ドプラ信号、そのエンベロー
プ、またそれを更にバンドパス処理したもので、この最
後の波形をいわゆるFanoの短時間自己相関(9)に
付す。結果の一例を図4に示す。この相関関数像の第1
極大(主極大)を捕捉し、その位置から周期を認識す
る。自己相関という物の数学的性質として、波形の具体
形態に関係なく主極大の位置はその周期性を代弁する。
しかしここで注目しておかねばならない点は、ここでは
自己相関はS/Nの改善とか埋没信号の回復とかにでは
全くなく、ただ波形の複雑さ、またその暫変性の克服に
用いられているという点である。
3a, 3b and 3c show a fetal Doppler signal, its envelope, and a bandpass-processed version of the fetal Doppler signal. Attached to correlation (9). One example of the result is shown in FIG. The first of this correlation function image
The maximum (main maximum) is captured, and the period is recognized from the position. As a mathematical property of the thing called autocorrelation, the position of the main maximum speaks for its periodicity regardless of the specific form of the waveform.
However, it should be noted here that the autocorrelation is not used for improving the S / N or recovering the buried signal at all, but only for overcoming the complexity of the waveform and its temporary alteration. That is the point.

【0008】かかる自己相関に準拠した周期認識におい
て源信号に要求される事とは、隣接する拍の間で波形が
全く変ってしまう様な事態はなく、漸変しつつも適度に
高い相関値を持ち続ける事のみであり、ドプラ胎児信号
のフィルタされたエンベロープはこの要求を全く良く満
していると言える。またエンベロープ信号を直接相関処
理に付すよりは図示の如く更にバンドパス処理をして周
期性情報が最も顕著に含まれる部分を処理た方が、特に
ビット数の少ない相関器の場合には有利である。これは
音声認識の場合と共通の現象で、周期認識には基本波は
必ずしも必須ではないからである。
In the period recognition based on the autocorrelation, what is required of the source signal is that there is no situation in which the waveform changes between adjacent beats at all, and a moderately high correlation value while changing gradually. It can be said that the filtered envelope of the Doppler fetal signal satisfies this requirement quite well. Further, it is more advantageous to perform a bandpass process as shown in the figure to process a portion containing the most remarkable periodicity information, particularly in the case of a correlator having a small number of bits, rather than subjecting the envelope signal to the direct correlation process. is there. This is a phenomenon common to the case of speech recognition, and the fundamental wave is not necessarily essential for period recognition.

【0009】これらは多少とも数式表現を借りると次の
様に表現出来る。
These can be expressed as follows by borrowing some mathematical expressions.

【数1】 (Equation 1)

【0010】この式中の指数関数項を適宜調節して結果
に貢献している過去の相関値の成分を大略1拍分強に制
限する事で拍毎の瞬時周期、ひいては瞬時心拍数値と主
張できる情報を抽出する。図5はかくして得られた「ド
プラ・自己相関」胎児心拍数図の一例を示す。
By appropriately adjusting the exponential function term in this equation to limit the components of the past correlation value contributing to the result to approximately a little over one beat, the instantaneous period for each beat, and hence the instantaneous heart rate value, is claimed. Extract the information that can be done. FIG. 5 shows an example of the “Doppler / autocorrelation” fetal heart rate chart thus obtained.

【0011】[0011]

【発明が解決しようとする課題】現行方式の問題点の総
集編はMorgensternらの商用機の分析評価
(10)に見られる。彼の指摘する事項、およびその他
の意見や経験則に照合すると、未だに大略以下の3件が
問題として存在する。
A summary of the problems of the current system can be found in Morgenstern et al.'S analysis and evaluation of commercial machines (10). Compared to what he points out, as well as other opinions and rules of thumb, there are still roughly three issues as follows.

【0012】(1)拍々変動への追従性、ないしその表
現の忠実度 自己相関はもともと一種の統計処理なので、結果に貢献
している過去のデータの発言力に注意が必要である。新
しい拍と直前の拍の相関関数が育成されていく途上で主
極大の位置には新旧交替が発生し、演算される心拍数値
は新しい拍間時間の物に推移するのであるが、真に瞬時
心拍数計であり得るためにはこの時点で古い拍間の相関
関数は支配的な発言力を持ってはならず、演算に付すデ
ータ長の管理を先に述べた通り自動適応的に管理する事
が必要である。さらに抽出された心拍数値のトレンドデ
ータを時間軸上でフィルタ処理する(お化粧する)とい
う思想があるが、これは臨床医学側から強く戒められて
いる事であり、一見ノイジーな心拍数図が(それが入力
信号の品質の悪さに由来するノイジーさでない限り)実
は最も正しく心拍数細変動を表現した、診断学上価値の
ある情報である。装置商品の設計技術ないし設計思想に
おいてこの点は未だに多々誤解を孕む点である。
(1) The ability to follow the beat-to-beat variation, or the fidelity of its expression Since autocorrelation is a kind of statistical processing, attention must be paid to the ability of past data to contribute to the results. While the correlation function between the new beat and the immediately preceding beat is being developed, a change of old and new occurs at the position of the main maximum, and the calculated heart rate value changes to that of the new beat time, but it is truly instantaneous. In order to be a heart rate meter, the correlation function between the old beats at this point must not have a dominant voice, and the management of the data length for the operation is automatically and adaptively managed as described above. Things are necessary. There is also the idea of filtering (make up) the extracted trend data of the heart rate value on the time axis, but this is strongly warned by the clinical medicine side, and seemingly noisy heart rate charts In fact, it is diagnostically valuable information that most accurately describes heart rate variability (unless it is noisy due to poor input signal quality). This point is still misleading in the design technology or design philosophy of equipment products.

【0013】(2)大きな急変に対する追従性、ないし
忠実度 この様な心拍数図の微細構造の忠実な再現と、陣痛の時
などの高速な大変動への追従性とは一見矛盾する様で実
は同根の問題である。いづれも相関関数の育成とその主
極大の探索において如何に適切に過去の演算結果を参考
に利用し、また利用しないか、という問題である。多く
の知能的な処理装置や処理アルゴリズムでは視点の異な
る複数個のアルゴリズムを常に平行走行させておき、重
み付け多数決などのルールで選択運用している。
(2) The ability to follow large sudden changes or fidelity At first glance, the faithful reproduction of the fine structure of the heart rate chart and the ability to follow high-speed large fluctuations at the time of labor, etc. seem to be contradictory. In fact, it is the same problem. In any case, there is a problem of how to appropriately use the past calculation result as a reference and not use it in the training of the correlation function and the search for its main maximum. In many intelligent processing devices and processing algorithms, a plurality of algorithms having different viewpoints are always run in parallel, and selected and operated by rules such as weighted majority.

【0014】(3)蓋然性の検証 現時点で把握している主極大とその位置が正当な物か、
アリアスやローカルピークを誤認していないか、の問題
は、統計的に判明している信号の性質と、演算された心
拍数の値と前後の経緯とで判断するしかなく、この判別
能力の点で機械装置やソフトウエアは未だに人間の知恵
にははるかに及ばない。しかし後述の遡及処理が実用的
に用いられる様になればかなりの所が救済可能である。
(3) Verification of Probability Is the main local maximum and its position known at the present time valid?
The problem of whether aliases or local peaks are misidentified is determined only by the nature of the signal that is statistically known, the calculated heart rate value, and the background history. Machinery and software are far below human wisdom. However, if the retrospective processing described later is practically used, a considerable portion can be remedied.

【0015】これらの点は相関演算の手順、手法、また
その主極大の解釈し方に大きくかかわる。Morgen
stern(10)は相関関数の育成が(即ち統計積分
が)困難になる様な波形変化の激しい場面でのコリレト
グラムを掲載して主極大の位置追跡が困難な場面を説明
している。また著者の分析(1,11)によるとこの様
な主極大の細変動への追従性と見失う事の防止とは相互
に裏腹の関係にあり、 a:信号の状態が良く、心拍数値が安定していて主とし
て細変動のみ観測される場合には、主極大の位置精度が
最高に得られる如く、関数形がなるだけ鋭くなる様に前
処理のパラメーターを高域選択の側に加重する。 b:信号の状態が劣化し、または心拍数値が刻々激変し
ている様な状況では、主極大の太りによるその位置精度
の悪化を物ともせずに大局的にそれを見失わない様に、
前処理パラメーターを低域強調の側に加重する。 c:主極大と副極大が一時的に紛らわしい場合、また主
極大の次数を取り違えて倍ないし半分の計測値を誤認す
るおそれのある場合には、心拍数値の変動の経緯や、生
理的蓋然性の知識をもとに判断する。
[0015] These points greatly affect the procedure and method of correlation calculation and how to interpret the main maximum. Morgen
Stern (10) describes a case where it is difficult to track the position of the main local maximum by posting a correlogram in a scene where a waveform change is severe such that it is difficult to develop a correlation function (that is, statistical integration). According to the author's analysis (1, 11), the ability to follow such fine fluctuations of the main maximum and the prevention of losing are mutually contrary. A: Good signal condition, stable heart rate value If only fine fluctuations are observed, the preprocessing parameters are weighted toward the high-frequency selection side so that the function form becomes as sharp as possible so that the position accuracy of the main maximum is obtained at the highest level. b: In a situation where the signal condition is deteriorating or the heart rate value is fluctuating every moment, so as not to lose sight of it globally without regard to the deterioration of its position accuracy due to the fattening of the main maximum,
Weight the preprocessing parameters to the low-frequency emphasis side. c: When the main maxima and the submaximum are temporarily confusing, or when the order of the main maxima is mistaken and there is a risk of erroneously recognizing double or half the measured value, the history of the heart rate fluctuation and the physiological probability Judge based on knowledge.

【0016】これらの適応制御をぬかりなく実施するな
らば分娩中を通して信号状況や生理状況の変転の大部分
を吸収して心拍数図の描出を維持できる。しかしそれで
も肝心な場面で計測を維持できなくなる事は無視できな
い頻度で発生する。従来の装置や手法の設計思想は“誤
診を招く様な嘘をつくな”の方を優先する結果、紛らわ
しい場合にはすべからく計測結果を廃棄し、記録を中止
していた。しかるにこの様な棄却が頻発すると心拍数図
はもはや解読不能の低品位の物しか得られない(1
1)。
If these adaptive controls are carried out without fail, most of the changes in the signal status and physiological status can be absorbed throughout the delivery and the heart rate chart can be maintained. However, even if it is not possible to maintain the measurement in a critical situation, it occurs at a considerable frequency. The design philosophy of the conventional apparatus and method puts priority on "don't lie so as to cause misdiagnosis". As a result, if it is confusing, all measurement results are discarded and recording is stopped. However, if such rejections occur frequently, the heart rate chart can no longer be obtained unless it is indecipherable and of low quality (1).
1).

【0017】[0017]

【問題を解決するための手段】前記の心拍数値抽出やそ
の適応化制御は全て式(1)の短時間自己相関関数が整
定する事を前提にその育成、解釈を競う物である。これ
をMorgenstern(10)はコンタログラフィ
ー表記のコリレトグラムにより説明している。しかるに
その素となる相関関数は式(1)に定義の通り時間差軸
の関数を時間軸方向への重み付け積分結果として一義的
に得てしまった後の物であり、事後に遡及的に過去の信
号を再検討する手がない。トリガ式の決定論的心拍数計
においてさえも直前過去の誤認識の遡及救済が出来れば
品位が格段に向上する事が知られている。ここで僅かな
待ち時間の介在を許容して疑似的に前向き後向き両様の
処理が併用できれば自己相関法でも脱落データの多くを
救済できる可能性がある。これは式(1)の相関関数の
積分結果を単位としてコリレトグラムを構成せしめる事
よりも、その積和の要素となる個々の乗積値を(積分し
てしまわないで)参加要素とする形の拡張されたコリレ
トグラムを考る。即ち数式表現を借りると、式(1)か
らエクスポネンシャル重み付け積分の作業を排除した単
純な形となり、個々のピクセルが積和の要素項より成
る。
Means for solving the problem The above-mentioned heartbeat value extraction and its adaptation control are all competing in the training and interpretation on the premise that the short-time autocorrelation function of equation (1) is settled. Morgenstern (10) explains this with a correlogram in contalographic notation. However, the original correlation function is obtained after the function of the time difference axis is uniquely obtained as the result of weighted integration in the time axis direction as defined in equation (1). There is no way to review the signal. It is known that even in a trigger-type deterministic heart rate meter, if retroactive remedy for erroneous recognition in the immediately preceding past can be remedied, the quality will be significantly improved. Here, if both the forward and backward processes can be performed in a pseudo manner by allowing a slight waiting time, there is a possibility that much of the missing data can be rescued by the autocorrelation method. Rather than constructing a correlogram using the result of integration of the correlation function of Equation (1) as a unit, each product value that is an element of the product sum is used as a participating element (without integration). Consider the expanded correlogram. In other words, when the mathematical expression is borrowed, it becomes a simple form in which the operation of the exponential weighting integration is eliminated from the equation (1), and each pixel is formed by an element term of the sum of products.

【0018】[0018]

【数2】 (Equation 2)

【0019】これに2次元的な局所重み付けスムージン
グフィルタを課する事でその主極大の発見、同定を行う
事が出来る。主極大の発見が容易な場面ではこの2次元
フィルタの覆域は適度に狭く、高域強調的な性格を与
え、位置精度を向上させる。逆に容易ならざる場面にお
いては拡副して見失わない事を優先する。このフィルタ
はコリレトグラムのイメージに対する作業用のフィルタ
であり、禁忌とされる心拍数値のトレンドに対する時間
軸フィルタではない。しかしこの様な拡張コリレトグラ
ムは積和の要素項を全て保存した形を採るので、長時間
分を一時記憶せんとすると膨大な量のメモリを占拠し、
実際的でない。しかしここで提案の作業には高々数秒な
いし十数秒もあれば十分であり、昨今のPCやWSの、
またエンベッデッドプロセッサの搭載メモリ量はこれに
十分耐え得る。
By imposing a two-dimensional local weighting smoothing filter on this, the main maximum can be found and identified. In a scene where it is easy to find the main maximum, the coverage of the two-dimensional filter is appropriately narrow, giving a high-frequency emphasis character and improving the position accuracy. Conversely, in situations where it is not easy, priority is given to not expanding and missing. This filter is a working filter for the image of the correlogram, not a time axis filter for the contraindicated heart rate trend. However, such an extended correlogram takes a form that saves all the element terms of the sum of products, so occupying an enormous amount of memory if temporary storage is not performed for a long time.
Impractical. However, a few seconds to ten and a few seconds are enough for the proposed work here.
In addition, the amount of embedded memory of the embedded processor can sufficiently withstand this.

【0020】図6aは実在の胎児ドプラ信号のエンベロ
ープから得られたコリレトグラムの一例を輝度変調によ
り階調性表示に付して見た例であり、主極大、副極大、
アリアスなどの全てのピークが一望に観察できる。この
各頂点の位置をすべてプロットすると図6bの如くトレ
ンドを疑似的に線画化する事になる。これを“目を細め
て見る”と、この中に正しい心拍周期をたどる線(矢
印)が1本貫通しているのが理解される。
FIG. 6A shows an example of a correlogram obtained from the envelope of a real fetal Doppler signal, which is applied to gradation display by luminance modulation.
All peaks such as Arias can be observed at a glance. If all the positions of the vertices are plotted, the trend is pseudo-line-drawn as shown in FIG. 6B. When this is "squinted", it is understood that one line (arrow) tracing the correct heartbeat cycle has penetrated therein.

【0021】即ち、この様なコリレトグラムないしその
頂点の軌跡を線画化したイメージから場面場面の状況に
応じてその主役を発見、同定し、途切れや汚染を除去す
る事は、画像処理の問題としては局所2次元ローパスフ
ィルタないしメディアンフィルタなどに帰結出来る比較
的易しい作業である。これが本発明の提案する、新た
な、より好ましい手法であり、前記の如き信号の状況に
応じた適応処理と、前向き後向き(遡及)両方向の処理
とを併用する解決策である。
That is, it is a problem of image processing to find and identify the main role of such a correlogram or the trajectory of the vertex thereof in a line drawing image according to the situation of the scene, and to remove the interruption or contamination. This is a relatively easy task that can result in a local two-dimensional low-pass filter or median filter. This is a new and more preferable method proposed by the present invention, and is a solution that uses both the adaptive processing according to the signal situation as described above and the processing in both the forward and backward (retrospective) directions.

【0022】コリレトグラム上での時間差軸(垂直)方
向への処理は相関に付された信号の周波数軸上での処理
に相当する。またその実時間軸(水平)方向への処理は
この様な前向き後向き(遡及)併用処理を意味し、これ
により小区間の脱落や異常なデータを判別、排除し、ま
た補間ないし補填する事が出来る。遡及処理は因果律に
反するが、必要程度の僅な遅延(この場合一例として2
〜3秒)を設ければ実用上問題なく実施できる。
The processing in the time difference axis (vertical) direction on the correlogram corresponds to the processing on the frequency axis of the signal with correlation. Further, the processing in the real time axis (horizontal) direction means such a forward / backward (retrospective) combined processing, whereby it is possible to discriminate and eliminate missing or abnormal data of a small section, and to interpolate or supplement. . Retrospective processing violates causality, but requires only a small delay (in this case, for example, 2
33 seconds) can be implemented without practical problems.

【0023】前記の線画化されたイメージ、即ち“線画
化コリレトグラム”を、更に縦軸を心拍周期の逆数であ
る心拍周波数(心拍数値)で表して見ると図6c、dの
如くである。これは“逆数表示線画化コリレトグラム”
と言う。
FIG. 6C and FIG. 6D show the line-drawn image, that is, the "line drawing correlogram", in which the vertical axis is represented by a heartbeat frequency (heartbeat value) which is the reciprocal of the heartbeat period. This is "Reciprocal display line drawing correlogram"
Say

【0024】図7aは上記の逆数表示線画化コリレトグ
ラムをさらに浄書して得られた胎児心拍数図である。ま
た図7bは同じ信号を常識の通り従来手法で処理して得
られた胎児心拍数図である。両者の比較において明らか
な如く、かかる処理によれば従来手法では救済できない
見落しや脱落、擾乱を救済でき、臨床実用上好ましい。
FIG. 7A is a fetal heart rate chart obtained by further purifying the reciprocal display linear drawing correlogram described above. FIG. 7B is a fetal heart rate chart obtained by processing the same signal by a conventional method according to common sense. As is clear from the comparison between the two, such processing can relieve oversight, dropout, and disturbance that cannot be remedied by the conventional method, which is clinically preferable.

【0025】前記2次元フィルタの内容としては、前記
の如きローパスフィルタやメディアンフィルタに限らず
あらゆる対称、非対称、線形、非線形のフィルタが必要
と効果に応じて採用でき、この点での実施上の自由度は
無限にある。従って本発明の主旨がこの2次元フィルタ
の内容それ自身によって拘束される事はない。またどの
程度の範囲を処理の対象とするか、即ちフィルタの大き
さ(寸法)の選択も、実施上の自由度の内である。
The contents of the two-dimensional filter are not limited to the low-pass filter and the median filter as described above, and any symmetrical, asymmetrical, linear, or non-linear filter can be adopted as necessary and effective. The degrees of freedom are endless. Therefore, the gist of the present invention is not restricted by the content of the two-dimensional filter itself. Also, the extent of the range to be processed, that is, the selection of the size (dimension) of the filter is within the degree of freedom in implementation.

【0026】またこの2次元フィルタの内容を、信号の
品位(例えばS/N)や、その時点での、また直前過去
のある範囲内での心拍数値に、またはその変動状況に応
じて経験的、ないし適応的に変化させる事は従来技術に
おけると同様に有益な事である。即ち信号の品位が悪か
ったり、心拍数が急変している場面では計測の精度や忠
実度を求めるよりは相関ピークを見失わない事の方に重
点を置くようにフィルタの寸法を大きくし、また蓋然性
判別の許容範囲を広める。また信号の品質がある程度以
上良く、また心拍数が大略一定の場面では心拍細変動の
状況が忠実に記録される様に、精度や忠実度を重視して
フィルタの寸法は必要最低限に止め、また蓋然性判別の
許容範囲を適切である限りに絞り込み、維持する。さら
に脱落や擾乱があった場合などには、一時記憶されてい
るコリレトグラムに立返り、種々のフィルタとピーク検
出アルゴリズムとを試行的に運用し、各々が出力する結
果から最も蓋然性の高い物を採用する。
The contents of the two-dimensional filter are empirically determined according to the quality (eg, S / N) of the signal, the heart rate value at that time, or within a certain range in the immediately preceding past, or depending on the fluctuation status thereof. Or adaptively changing is as beneficial as in the prior art. In other words, when the signal quality is poor or the heart rate is changing suddenly, the size of the filter is increased so that the emphasis is on finding the correlation peak rather than seeking the measurement accuracy and fidelity, and the probability is high. Increase the allowable range of discrimination. Also, in situations where the signal quality is better than a certain level and the heart rate is almost constant, the size of the filter is kept to the minimum necessary with emphasis on accuracy and fidelity so that the situation of minute heart rate variability is faithfully recorded, In addition, the allowable range of the probability determination is narrowed down and maintained as long as appropriate. Furthermore, if there is a drop or disturbance, go back to the temporarily stored correlogram and try various filters and peak detection algorithms on a trial basis, and use the most likely one from the results output by each. I do.

【0027】[0027]

【発明の効果】本発明においては、ドプラ胎児信号を入
力とし、自己相関法により周期性を観測する形の胎児心
拍計測における未だに完全には解決されていないいくつ
かの問題点を指摘、また分析するとともに、新たな改良
された処理手順として逆数表示線画化コリレトグラムに
基づく手法を提案した。これは従来手法を拡張して、場
面場面への適応化の段階をこのコリレトグラム上のイメ
ージ処理に還元し、再試行も、前向き後向き両様処理も
自在に併用出来る様にして自由度を増した物であり、こ
れにより従来は逸失されていた困難な場面の心拍数図の
多くが救済出来るものである。
The present invention points out and analyzes some problems in fetal heart rate measurement in which Doppler fetal signals are input and the periodicity is observed by the autocorrelation method, which has not yet been completely solved. In addition, a method based on reciprocal display line drawing correlogram was proposed as a new and improved processing procedure. This is an extension of the conventional method, in which the stage of adaptation to the scene is reduced to image processing on this correlogram, and the degree of freedom is increased by allowing both retry and forward-backward processing to be used freely. Thus, many of the heart rate charts in difficult scenes that have been lost in the past can be rescued.

【0028】更にコリレトグラムとして通常手法による
相関関数を要素とする手法の他に、積分前の積和の要素
項のすべてをピクセルとして登録する形の拡張コリレト
グラムを用いる事を提案した。これによれば相関関数を
得る段階での積分の重み付けの再試行まで含めてあらゆ
る事後遡及処理の自由度が保証され、更に高度な処理ア
ルゴリズムが適用可能となる。
Further, in addition to the method using the correlation function as an element as the correlogram, it has been proposed to use an extended correlogram in which all the element terms of the product sum before integration are registered as pixels. According to this, the degree of freedom of any retrospective processing including the retry of weighting of the integral at the stage of obtaining the correlation function is guaranteed, and a more advanced processing algorithm can be applied.

【0029】[0029]

【参考文献】[References]

(1)竹内、穂垣、”Adaptive Correl
ation Ratemeter,A New Met
hod for Dopplerfetal hear
t rate measurement”Ultras
onics 16−3,127−137.1978 (2)竹内、U.S.Pat.3,991,365(対
応日本特許は特公昭56−7592) (3)”FIGO News,Guideline f
or the useof fetal monito
ring”(FIGO subcommitteeon
standards in perinatal m
edicine,Zurich,March 22−2
8,1985)Intl J GynaecolObs
tet,25:159−167,1987 (4)自己相関による音声の自動ピッチ抽出に関しては
無数の文献がある。復習という意味で次の文献およびそ
れに引用されている文献を示唆しておく。D.A.Kr
ubsack and R.J.Niederjoh
n,”AnAutocorrelation Pitc
h Detector andVoicing Det
ection with Confidence Me
asures Developed for Nois
e−CorruptedSpeech”,IEEE T
r.Signal Processing,Vol.3
9,No.2,319−329 Feb.1991 (5)上記(1),(2)のほか(7)などを参照 (6)高澤嘉光、“時間窓幅調整によるピッチ周波数の
精密計算法”日本音響学会音楽音響研究会資料、MA9
2−13,1992年11月 (7)坂元、穂垣、原、竹内、“胎児情報のとらえ方、
実時間自己相関による胎児心拍計測システム”産婦人科
治療 30,595−601,1975 (8)(財)医療機器センター監修“医療機器辞典”、
産業調査会 (9)R.M.Fano,”Short time a
utocorrelation function a
nd power spectra”JASA22,5
46−(1950) (10)J.Morgenstern et.al.”
CTG−GerateTest′93”Medizin
ische Einrichtungender He
inlich Heine Universitat,
Frauenklinik, Dusseldorf,
1994/1995 (11)竹内、“胎児心拍計測の信頼性、現象およびハ
ードウエアの面について”産婦人科の実際Vol.4
3,No.13,1777−1784 (金原出版、1
994) (12)山田、牧野、林、“相関法におけるピーク追跡
の手順に関する検討”日本音響学会講演論文集 演題番
号3−8−5、平成3年(1991)10月、553−
554頁
(1) Takeuchi, Hogaki, "Adaptive Correl
ation Ratemeter, A New Met
hod for Dopplerfetal gear
rate measurement "Ultras
onics 16-3, 127-137.1978 (2) Takeuchi, U.S.A. S. Pat. 3,991,365 (corresponding Japanese patent is Japanese Patent Publication No. 56-7592) (3) "FIGO News, Guideline f
or the useof fetal monoto
ring ”(FIGO subcommitteon
standards in perinatal m
editine, Zurich, March 22-2
8, 1985) Intl J GynaecolObs
tet, 25: 159-167, 1987 (4) There are countless documents on automatic pitch extraction of speech by autocorrelation. In the sense of review, I suggest the following documents and the documents cited therein. D. A. Kr
ubsack and R.S. J. Niederjoh
n, "AnAutocorrelation Pict
h Detector and Voiceing Det
edition with Confidence Me
asures Developed for Nois
e-CorruptedSpeech ", IEEE T
r. Signal Processing, Vol. 3
9, No. 2,319-329 Feb. 1991 (5) In addition to the above (1) and (2), see (7), etc. (6) Yoshimitsu Takazawa, "Precise Calculation Method of Pitch Frequency by Adjusting Time Window Width", Acoustical Society of Japan Society of Acoustics, MA9
2-13, November 1992 (7) Sakamoto, Hogaki, Hara, Takeuchi, "How to capture fetal information,
Fetal heart rate measurement system using real-time autocorrelation "Obstetrics and gynecology treatment 30,595-601,1975" (8)
Industry Research Committee (9) M. Fano, "Short time a
utocorrelation function a
nd power spectrum "JASA22,5
46- (1950) (10) J. Morgenstern et. al. "
CTG-GerateTest '93 "Medizin
ische Einrichtender He
inrich Heine University,
Frauenlink, Dusseldorf,
1994/1995 (11) Takeuchi, "Reliability, Phenomena and Hardware Aspects of Fetal Heart Rate Measurement" in Obstetrics and Gynecology, Vol. 4
3, No. 13, 1777-1784 (Kanehara Publishing, 1
994) (12) Yamada, Makino, Hayashi, "Study on Peak Tracking Procedure in Correlation Method" Proceedings of the Acoustical Society of Japan, 3-8-5, 1991 (1991) October, 553-
554 pages

【図面の簡単な説明】[Brief description of the drawings]

【図1】胎児心電信号の一例を示す。これは母体腹壁誘
導の胎児心電信号である。
FIG. 1 shows an example of a fetal electrocardiogram signal. This is the maternal abdominal wall fetal ECG signal.

【図2】胎児心音信号の一例を示す。FIG. 2 shows an example of a fetal heart sound signal.

【図3】ドプラ胎児心拍信号の一例を示す。a,b,c
は処理の途上の各段階のオシロ波形である。
FIG. 3 shows an example of a Doppler fetal heartbeat signal. a, b, c
Is an oscilloscope waveform at each stage in the process.

【図4】ドプラ胎児心拍信号より得られた自己相関関数
の一例を示す。
FIG. 4 shows an example of an autocorrelation function obtained from a Doppler fetal heartbeat signal.

【図5】ドプラ胎児心拍信号により従来手法で得られた
胎児心拍数図の一例を示す。
FIG. 5 shows an example of a fetal heart rate diagram obtained by a conventional method from a Doppler fetal heart rate signal.

【図6】本発明の処理手順に見られるコリレトグラム
(a)および線画化コリレトグラム(b)、またそれら
を逆数表示した物(c,d)を示す、ディスプレイ上に
表示された中間調画像である。
FIG. 6 is a halftone image displayed on a display showing a correlogram (a) and a line drawing correlogram (b) observed in the processing procedure of the present invention, and objects (c, d) obtained by reciprocally displaying them. .

【図7】本発明の手法により得られた胎児心拍数図の一
例を示す。
FIG. 7 shows an example of a fetal heart rate diagram obtained by the method of the present invention.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 超音波ドプラ胎児心拍信号のエンベ
ロープの自己相関にもとづき胎児心拍数を求める胎児監
視装置において、フィルタされ、検波され、さらにまた
フィルタされた該信号のコリレトグラムを作成し、該コ
リレトグラムの上で2次元画像処理を行ったのちにその
第1主極大の位置を求め、該第1主極大の位置に基づき
胎児心拍数値を求める如く構成された胎児監視装置。
1. A fetal monitoring apparatus for determining a fetal heart rate based on an autocorrelation of an envelope of an ultrasonic Doppler fetal heart rate signal, generates a correlogram of the filtered, detected, and filtered signal, and generates a correlogram of the correlogram. A fetal monitoring apparatus configured to determine the position of the first main maximum after performing the two-dimensional image processing above, and obtain a fetal heart rate value based on the position of the first main maximum.
【請求項2】 上記2次元画像処理の処理内容が、
処理される信号、ないし現在および直前過去のの心拍数
値、またその変化状況などの状況に応じて適応的に可変
である事を特徴とする、請求項1に記述の該装置。
2. The processing content of the two-dimensional image processing is as follows:
2. The device according to claim 1, characterized in that it is adaptively variable depending on the signal to be processed, the current and previous and past heart rate values, and the status of its change.
【請求項3】 前記コリレトグラムとして拡張コリ
レトグラムを用いた事を特徴とする、請求項1および2
に記述の該装置。
3. The method according to claim 1, wherein an extended correlogram is used as said correlogram.
The device described in 1.
JP8216538A 1996-07-15 1996-07-15 Fetal monitoring device Expired - Fee Related JP2879663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8216538A JP2879663B2 (en) 1996-07-15 1996-07-15 Fetal monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8216538A JP2879663B2 (en) 1996-07-15 1996-07-15 Fetal monitoring device

Publications (2)

Publication Number Publication Date
JPH1028686A JPH1028686A (en) 1998-02-03
JP2879663B2 true JP2879663B2 (en) 1999-04-05

Family

ID=16690016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8216538A Expired - Fee Related JP2879663B2 (en) 1996-07-15 1996-07-15 Fetal monitoring device

Country Status (1)

Country Link
JP (1) JP2879663B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101453644B1 (en) 2013-01-15 2014-10-22 연세대학교 산학협력단 Peak detection method, peak detection apparatus and fetal heart beat detection apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001242127A1 (en) * 2000-03-16 2001-09-24 Cedara Software Corp. System and method for processing an image sequence
JP3729143B2 (en) * 2002-03-14 2005-12-21 株式会社デンソー Pulse wave measuring device
ES2232223B1 (en) * 2002-03-26 2006-02-16 Osatu, S. Coop. METHOD FOR THE DETERMINATION OF THE FREQUENCY OF WAVE FORM OF AN ECG SIGNAL.
JP2006255322A (en) * 2005-03-18 2006-09-28 Matsushita Electric Ind Co Ltd Ultrasonic doppler blood flowmeter
JP6403311B2 (en) * 2014-06-05 2018-10-10 国立大学法人福井大学 Heart rate analysis device
JP6793077B2 (en) * 2017-03-22 2020-12-02 株式会社日立製作所 Ultrasonic diagnostic equipment and waveform processing method
JP6653046B2 (en) 2017-06-29 2020-02-26 アトムメディカル株式会社 Maternal and fetal monitoring device, display device for monitoring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101453644B1 (en) 2013-01-15 2014-10-22 연세대학교 산학협력단 Peak detection method, peak detection apparatus and fetal heart beat detection apparatus

Also Published As

Publication number Publication date
JPH1028686A (en) 1998-02-03

Similar Documents

Publication Publication Date Title
US9198634B2 (en) Medical decision support system
Abibullaev et al. A new QRS detection method using wavelets and artificial neural networks
Kovács et al. A rule-based phonocardiographic method for long-term fetal heart rate monitoring
Karvounis et al. Fetal heart rate extraction from composite maternal ECG using complex continuous wavelet transform
US8690789B2 (en) Categorizing automatically generated physiological data based on industry guidelines
Dewangan et al. ECG arrhythmia classification using discrete wavelet transform and artificial neural network
WO2019234458A1 (en) Detecting abnormalities in ecg signals
US10368755B2 (en) Apparatus and method for feature extraction and classification of fetal heart rate
WO2019234457A1 (en) Detecting abnormalities in ecg signals
US5582176A (en) Methods and apparatus for automatically determining edge frequency in doppler ultrasound signals
JP2879663B2 (en) Fetal monitoring device
Karvounis et al. Detection of fetal heart rate through 3-D phase space analysis from multivariate abdominal recordings
US20230277111A1 (en) System and method for saliency detection in long-term ecg monitoring
CN111839498A (en) Electrocardiogram analysis device and electrocardiogram analysis method thereof
EP3189776A1 (en) An apparatus and method for generating fetal heart rate data
US20190298298A1 (en) Ultrasound imaging method
CN105138823B (en) A kind of physiological signal quality determining method based on auto-correlation function
Rajan et al. Wavelet based bank of correlators approach for phonocardiogram signal classification
Chappell et al. A method for the automated detection of venous gas bubbles in humans using empirical mode decomposition
Ari et al. On a robust algorithm for heart sound segmentation
Yang et al. Heart rate estimation from facial videos based on convolutional neural network
JP6715397B1 (en) Data processing device, data processing method and program
CN111345815A (en) Method, device, equipment and storage medium for detecting QRS wave in electrocardiosignal
Mazidi et al. Detection of heart attack using cross wavelet transformation and support vector machine
CN115177267B (en) Heart beat artifact identification method and system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees