JP2878592B2 - Draft gauge for heating furnace - Google Patents
Draft gauge for heating furnaceInfo
- Publication number
- JP2878592B2 JP2878592B2 JP8091394A JP8091394A JP2878592B2 JP 2878592 B2 JP2878592 B2 JP 2878592B2 JP 8091394 A JP8091394 A JP 8091394A JP 8091394 A JP8091394 A JP 8091394A JP 2878592 B2 JP2878592 B2 JP 2878592B2
- Authority
- JP
- Japan
- Prior art keywords
- heating furnace
- pressure
- draft
- cylindrical body
- downcomer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Measuring Fluid Pressure (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、大気側の気圧と加熱炉
の内圧との圧力差を測定するドラフト計に関し、更に詳
細には風速、風向に影響され難いようにして大気圧を取
り出すようにした取り出しノズルを備える加熱炉用ドラ
フト計に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a draft meter for measuring the pressure difference between the atmospheric pressure and the internal pressure of a heating furnace, and more particularly to a method for extracting atmospheric pressure in such a manner that it is hardly affected by wind speed and direction. The present invention relates to a draft meter for a heating furnace having a take-out nozzle.
【0002】[0002]
【従来の技術】加熱炉の運転では、炉内を大気圧より少
し低い圧力に常に維持し、その圧力差を利用して炉外か
ら炉内に空気を導入しつつその空気で燃料を燃焼させて
目的物を加熱している。大気圧と加熱炉内の圧力との圧
力差をドラフトと言う。図4は、加熱炉の高さ方向に対
する大気圧P及び加熱炉内静圧P′の変化を定性的に示
す。ここで、PP′間の水平距離がドラフト値である。
加熱炉内では、ドラフトは、燃焼用空気を吸い込むため
にバーナー口で最も大きく、徐々に小さくなって対流部
の入口で最も小さくなる。対流部を上に登って行くに連
れて、ドラフトは、再び大きくなってダンパー入口に到
達し、そこでダンパーの圧損によりドラフト損失が生
じ、煙突を上昇して煙突出口で零となる。即ち、煙突内
の圧力は、煙突出口で大気圧とほぼ同じになる。自然通
風炉では、バーナーの所で最大燃焼時、最低6mmH2 O
のドラフトを必要とし、このドラフトが大きいほどバー
ナー口からの空気吸い込み速度が大きく、燃料との混合
がよくなるため、燃料は完全燃焼し、炎も短くなる。一
方、最も小さくなり易い場所は、通常、対流部入口であ
って、この部分のドラフトは、常に少なくとも2mmH2
O程度となるように煙突に設けたダンパによりドラフト
を調整している。2. Description of the Related Art In the operation of a heating furnace, the inside of the furnace is constantly maintained at a pressure slightly lower than the atmospheric pressure, and fuel is burned with the air while introducing air into the furnace from outside the furnace using the pressure difference. Heating the target. The pressure difference between the atmospheric pressure and the pressure in the heating furnace is called draft. FIG. 4 qualitatively shows changes in the atmospheric pressure P and the static pressure P ′ in the heating furnace with respect to the height direction of the heating furnace. Here, the horizontal distance between PP 'is a draft value.
In the heating furnace, the draft is largest at the burner port to suck in the combustion air, becomes smaller gradually, and becomes smallest at the entrance of the convection section. As it climbs up the convection section, the draft grows again and reaches the damper inlet, where the pressure loss of the damper causes draft loss and rises up the chimney to zero at the chimney outlet. That is, the pressure in the chimney becomes substantially the same as the atmospheric pressure at the chimney. In a natural ventilation furnace, at the time of maximum combustion at the burner, at least 6 mmH 2 O
The larger the draft, the higher the air suction speed from the burner port and the better the mixing with the fuel, so that the fuel is completely burned and the flame is shortened. On the other hand, the place that is most likely to become the smallest is usually the convection section inlet, and the draft of this section is always at least 2 mmH 2
The draft is adjusted by a damper provided in the chimney so as to be about O.
【0003】加熱炉用ドラフト計は、大気圧と加熱炉の
内圧との差圧、一般には大気圧と加熱炉内で最も低い内
圧部である対流部の入口での内圧との差圧、即ちその間
のドラフトを正確に測定するための計器である。ドラフ
ト計は、大気圧に連通する第1取り出しノズルと、加熱
炉の内圧、例えば対流部入口での内圧に連通する第2取
り出しノズルと、差圧計測部とを備えている。従来のド
ラフト計では、図5(a)に示すように、第1取り出し
ノズル50は、下端52が開口された下降管54で構成
され、下端開口52で大気圧に連通して、そこを介して
大気圧に等しい圧力を下降管54内に維持している。下
降管54内の圧力に対する外乱を緩衝するためにバッフ
ァタンク56が下端開口52から僅かに上に設けてあ
る。第1取り出しノズル50は、加熱炉の炉側に設置さ
れた差圧計測部58に細い導管により接続されている。
第1取り出しノズル50の寸法例は、例えば下降管54
の呼び径が0.5インチ、バッファタンク56の直径が
15cm、高さ10cmである。[0003] A draft meter for a heating furnace uses a differential pressure between the atmospheric pressure and the internal pressure of the heating furnace, generally, the differential pressure between the atmospheric pressure and the internal pressure at the inlet of a convection section which is the lowest internal pressure part in the heating furnace, that is, It is an instrument for accurately measuring the draft during that time. The draft meter includes a first extraction nozzle communicating with the atmospheric pressure, a second extraction nozzle communicating with the internal pressure of the heating furnace, for example, the internal pressure at the inlet of the convection section, and a differential pressure measuring unit. In the conventional draft meter, as shown in FIG. 5 (a), the first take-out nozzle 50 is constituted by a downcomer 54 having an open lower end 52, and communicates with the atmospheric pressure at the lower end opening 52, through which it passes. Thus, a pressure equal to the atmospheric pressure is maintained in the downcomer 54. A buffer tank 56 is provided slightly above the lower end opening 52 in order to buffer disturbance to the pressure in the downcomer 54. The first take-out nozzle 50 is connected to a differential pressure measuring unit 58 installed on the furnace side of the heating furnace by a thin conduit.
An example of the dimensions of the first take-out nozzle 50 is, for example, the downcomer 54
Is 0.5 inch, the diameter of the buffer tank 56 is 15 cm, and the height is 10 cm.
【0004】一方、加熱炉A内の対流部Bの入口の内圧
は、加熱炉の所望の場所、例えば図5(b)に示すよう
に対流部の入口に取り付けられた第2取り出しノズル6
0を介して差圧計測部58に連通している。第1取り出
しノズル50で取り出された大気圧と第2取り出しノズ
ル60で取り出された圧力差は、ダイヤフラムまたはベ
ローで構成された差圧計測部58により測定され、電気
信号等に変換されて計器室の表示装置(図示せず)或い
はダンパ制御装置(図示せず)に伝達される。On the other hand, the internal pressure at the inlet of the convection section B in the heating furnace A is set at a desired location in the heating furnace, for example, as shown in FIG.
0 is communicated with the differential pressure measuring unit 58. The difference between the atmospheric pressure taken out by the first take-out nozzle 50 and the pressure taken out by the second take-out nozzle 60 is measured by a differential pressure measuring section 58 composed of a diaphragm or a bellows, converted into an electric signal or the like, and converted into an instrument room. Is transmitted to a display device (not shown) or a damper control device (not shown).
【0005】[0005]
【発明が解決しようとする課題】上述のように、加熱炉
用ドラフト計は、大気圧と加熱炉内の内圧との間に生じ
る2mmH2 O程度の極めて小さい差圧を正確に測定する
必要がある。さもないと、加熱炉の制御が混乱して運転
が乱れ、最悪の場合には爆発等の事故を引き起こす可能
性もあるからである。しかし、従来の加熱炉用ドラフト
計では、強い風、例えば最大瞬間風速10〜15m/se
c 、平均風速8m/sec の風が吹くと、大気圧と加熱炉
の内圧との間に生じる差圧の測定値は、図6に示すよう
に最大4.6mmH2 O程度変動する。図6は、強風の日
(1993年2月13日)に実際に測定したドラフトの
値である。しかるに、点検して見ると、差圧は実際には
変動しておらず、加熱炉内の燃焼状態を見ても大きな変
化を見い出すことはできなかった。このことは、強風時
には、差圧の測定値が真の差圧と異なっていることを意
味し、差圧の測定値を信頼して、それに基づき加熱炉を
運転すると、誤った差圧に基づいて加熱炉を制御、運転
することになる。これは極めて危険なことなので、強風
時、加熱炉の操作員は何を信頼して加熱炉を運転すべき
か混乱した状態になることがしばしばあった。As described above, a draft meter for a heating furnace needs to accurately measure an extremely small differential pressure of about 2 mmH 2 O generated between the atmospheric pressure and the internal pressure in the heating furnace. is there. Otherwise, control of the heating furnace may be disrupted and operation may be disrupted, and in the worst case, an accident such as an explosion may be caused. However, in the conventional draft meter for a heating furnace, a strong wind, for example, a maximum instantaneous wind speed of 10 to 15 m / se
c, the wind average wind speed 8m / sec blows, the measured value of differential pressure between an internal pressure of the furnace and the atmospheric pressure varies up 4.6mmH 2 O of about 6. FIG. 6 shows draft values actually measured on the day of strong wind (February 13, 1993). However, upon inspection, the differential pressure did not actually fluctuate, and no significant change could be found in the combustion state in the heating furnace. This means that in a strong wind, the measured value of the differential pressure will be different from the true differential pressure. To control and operate the heating furnace. This is extremely dangerous, and in high winds, furnace operators often become confused about what to trust to operate the furnace.
【0006】これでは、加熱炉を安全に運転することが
極めて難しく、強風時でも外乱に影響されることのない
ドラフト計の実現が要望されていた。そこで、本発明
は、強風時でも差圧を正しく測定できるドラフト計を提
供することである。In this case, it is extremely difficult to safely operate the heating furnace, and there has been a demand for a draft meter which is not affected by disturbance even in a strong wind. Accordingly, an object of the present invention is to provide a draft meter capable of correctly measuring a differential pressure even in a strong wind.
【0007】[0007]
【課題を解決するための手段】本発明者は、何故ドラフ
ト計の測定値が変動するのかについて原因を追求し、加
熱炉の過負荷、差圧計測部の応答性、或いは第1取り出
しノズルの設置場所の良否等を実験により検討した結
果、寧ろ第1取り出しノズルの形態に問題があることを
見い出した。そこで、本発明者は、出来るだけ風速、風
向に影響されないような形態に第1取り出しノズルを改
良することに着目して研究し、本発明を完成するに至っ
た。SUMMARY OF THE INVENTION The present inventor has pursued the cause of why the measurement value of the draft meter fluctuates, and overloaded the heating furnace, responsiveness of the differential pressure measuring unit, or of the first discharge nozzle. As a result of examining the quality of the installation location and the like through experiments, it was found that there was a problem with the form of the first take-out nozzle. Then, the present inventor focused on improving the first take-out nozzle so as to be as little affected by the wind speed and direction as possible, and completed the present invention.
【0008】上記目的を達成するために、本発明に係る
加熱炉用ドラフト計は、大気側の大気圧に連通する第1
取り出しノズルと、加熱炉の内圧に連通する第2取り出
しノズルと、差圧計測部とを備えて、大気圧と加熱炉の
内圧との圧力差を測定するドラフト計において、第1取
り出しノズルは、固定された下降管と、下降管に同心状
かつ回転自在に装着されている円筒体とからなり、下降
管は、第1貫通孔を管壁に備え、下端部が閉止され、他
端部が差圧計測部に接続されて第1貫通孔を介して連通
する大気圧を差圧計測部に伝達し、円筒体は、その中空
部が第1貫通孔を介して下降管に連通すると共に大気圧
に連通する第2貫通孔をその筒壁に備え、更に第2貫通
孔を挟むようにして円筒体外周面から末広がりに2枚の
羽根をそれぞれ延在させていることを特徴としている。In order to achieve the above object, a draft meter for a heating furnace according to the present invention comprises a first draft meter communicating with the atmospheric pressure on the atmosphere side.
An extraction nozzle, a second extraction nozzle communicating with the internal pressure of the heating furnace, and a differential pressure measuring unit, a draft meter that measures a pressure difference between the atmospheric pressure and the internal pressure of the heating furnace, wherein the first extraction nozzle includes: The downcomer includes a fixed downcomer, and a cylindrical body that is concentrically and rotatably mounted on the downcomer. The downcomer has a first through hole in the tube wall, a lower end portion is closed, and the other end portion is provided. Atmospheric pressure, which is connected to the differential pressure measuring unit and communicates through the first through hole, is transmitted to the differential pressure measuring unit, and the hollow body of the cylindrical body communicates with the downcomer pipe through the first through hole. It is characterized in that a second through hole communicating with the atmospheric pressure is provided in the cylinder wall, and two blades are respectively extended from the outer peripheral surface of the cylindrical body so as to sandwich the second through hole.
【0009】本発明に係るドラフト計は、加熱炉の種類
を問わず大気圧と加熱炉の内圧を測定するために適用で
き、特に大気圧と加熱炉の内圧との差圧が小さい場合の
差圧、例えば0.5mmH2 Oから2mmH2 Oの差圧を測
定するのに好適である。第1取り出しノズルの設置場所
は、特に制約はないが、出来るだけ風の影響が少ない場
所が好ましい。The draft meter according to the present invention can be applied to measure the atmospheric pressure and the internal pressure of the heating furnace irrespective of the type of the heating furnace, and particularly the difference when the differential pressure between the atmospheric pressure and the internal pressure of the heating furnace is small. It is suitable for measuring pressure, for example, a differential pressure of 0.5 mmH 2 O to 2 mmH 2 O. There is no particular limitation on the installation location of the first take-out nozzle, but a location where the influence of wind is as small as possible is preferable.
【0010】本発明の望ましい実施態様では、円筒体の
内径及び高さがそれぞれ下降管の外径の10〜20倍及
び20〜30倍の範囲、羽根の角度が30°〜60°の
範囲にあり、かつ羽根の幅が円筒体の高さの1/3以上
であることを特徴としている。それは、各構成要素がこ
の範囲にあれば、場所をそれほど要することなく、本発
明の目的を効率良く達成できることが実験で確認されて
いるからである。In a preferred embodiment of the present invention, the inner diameter and the height of the cylindrical body are in the range of 10 to 20 times and 20 to 30 times the outer diameter of the downcomer, respectively, and the angle of the blade is in the range of 30 ° to 60 °. And the width of the blade is at least 1/3 of the height of the cylindrical body. This is because experiments have shown that if each component is within this range, the object of the present invention can be efficiently achieved without requiring much space.
【0011】[0011]
【作用】請求項1の発明では、大気圧は円筒体に設けた
第2貫通孔を介して円筒体内に導入されてそこで瞬間的
変動が緩衝され、更に第1貫通孔を介して下降管に導入
される。一方、羽根は、羽根双方の間に第2貫通孔を位
置せしめていることにより、羽根の誘導により風向に向
けて円筒体の方位を変えて常に風下に円筒体の第2貫通
孔を位置させ、第2貫通孔を介して導入される大気圧に
対する風速及び風向の影響を緩和し、正確な圧力を第2
貫通孔を介して円筒体に連通する。According to the first aspect of the present invention, the atmospheric pressure is introduced into the cylindrical body through the second through-hole provided in the cylindrical body, where the instantaneous fluctuation is buffered. be introduced. On the other hand, since the blade has the second through hole positioned between both blades, the direction of the cylindrical body is changed toward the wind direction by the guidance of the blade, and the second through hole of the cylindrical body is always positioned on the leeward side. The influence of the wind speed and the wind direction on the atmospheric pressure introduced through the second through hole is reduced, and the accurate pressure is reduced to the second pressure.
It communicates with the cylindrical body through the through hole.
【0012】[0012]
【実施例】以下、添付図面を参照し、実施例に基づいて
本発明をより詳細に説明する。図1は、本発明に係るド
ラフト計の要部の斜視図である。本実施例のドラフト計
10は、従来とは異なる新規な形態の第1取り出しノズ
ル12を備えている。第1取り出しノズル12は、大気
圧を差圧計測部に連通するための大気圧取り出しノズル
であって、加熱炉の炉外に設置されており、その一端は
図1に示すように差圧計測部14に接続されている。差
圧計測部14は、計器室の表示装置(図示せず)或いは
ダンパー制御装置(図示せず)に接続されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to the accompanying drawings. FIG. 1 is a perspective view of a main part of a draft meter according to the present invention. The draft meter 10 of the present embodiment includes a first take-out nozzle 12 having a new form different from the conventional one. The first take-out nozzle 12 is an atmospheric-pressure take-out nozzle for communicating the atmospheric pressure to a differential pressure measuring section, and is installed outside the furnace of the heating furnace. One end of the first take-out nozzle 12 measures the differential pressure as shown in FIG. It is connected to the unit 14. The differential pressure measuring unit 14 is connected to a display device (not shown) or a damper control device (not shown) in the instrument room.
【0013】第1取り出しノズル12は、下降管16
と、円筒体18と、2枚の羽根20とを備えている。下
降管16は、内径6mmの銅管で形成され、その上端は差
圧計測部14に接続され、その下端は閉止されて支持体
22に固定されている。下降管16には、管壁を貫通す
る直径約2mmの第1貫通孔24が2個上下に離隔して設
けてある。The first take-out nozzle 12 is provided with a downcomer 16
, A cylindrical body 18, and two blades 20. The downcomer pipe 16 is formed of a copper pipe having an inner diameter of 6 mm, and its upper end is connected to the differential pressure measuring unit 14, and its lower end is closed and fixed to the support 22. The downcomer 16 is provided with two first through-holes 24 having a diameter of about 2 mm penetrating the tube wall and being vertically separated from each other.
【0014】下降管16の外側には、円筒体18が、下
降管16に設けられた第1貫通孔24部分を包囲するよ
うに、下降管16に対して同心状でかつ360°回転自
在に装着されている。円筒体18の筒壁に大気圧を連通
させる直径約2mmの6個の第2貫通孔26が上下に離隔
して設けてある。円筒体18の内径は75mm、高さは1
40mmである。羽根20は、第2貫通孔26の両側の円
筒体外周面から第2貫通孔26を挟むようにして円筒体
18から離れる方向に末広がりに延在する。羽根20の
幅方向は円筒体18の高さ方向に延び、その高さは円筒
体18と同じ140mm、その長さは円筒体18との接線
から図って200mm、2枚の羽根20の成す挟角は45
°である。Outside the downcomer 16, a cylindrical body 18 is concentric with the downcomer 16 and is rotatable 360 ° so as to surround the first through hole 24 provided in the downcomer 16. It is installed. Six second through holes 26 each having a diameter of about 2 mm for communicating atmospheric pressure with the cylindrical wall of the cylindrical body 18 are provided vertically separated from each other. The inner diameter of the cylindrical body 18 is 75 mm and the height is 1
40 mm. The blades 20 extend from the outer peripheral surface of the cylindrical body on both sides of the second through-hole 26 so as to sandwich the second through-hole 26 in the direction away from the cylindrical body 18 so as to expand. The width direction of the blade 20 extends in the height direction of the cylindrical body 18, and its height is 140 mm, which is the same as that of the cylindrical body 18, and its length is 200 mm as measured from a tangent line with the cylindrical body 18, and a pinch formed by the two blades 20. The corner is 45
°.
【0015】以上の構成により、円筒体18の第2貫通
孔26は、羽根28の誘導により常に風下に位置し、第
2貫通孔を介して導入される大気圧に対する風速及び風
向の影響を緩和し、正確な圧力を第2貫通孔を介して円
筒体に連通する。また、円筒体18に導入された大気圧
の瞬間的変動が円筒体18内の空間により緩和されるの
で、外乱の影響が抑制された状態で、大気圧圧力が円筒
体18から第1貫通孔24を介して下降管16に伝達さ
れる。With the above configuration, the second through hole 26 of the cylindrical body 18 is always located on the leeward side by the guidance of the blade 28, and the influence of the wind speed and the wind direction on the atmospheric pressure introduced through the second through hole is reduced. Then, accurate pressure is communicated to the cylindrical body through the second through hole. Further, since the instantaneous fluctuation of the atmospheric pressure introduced into the cylindrical body 18 is mitigated by the space in the cylindrical body 18, the atmospheric pressure is reduced from the cylindrical body 18 to the first through hole in a state where the influence of the disturbance is suppressed. It is transmitted to the downcomer 16 via 24.
【0016】最大瞬間風速15〜18m/sec 、平均風
速10m/sec の条件下で、本実施例のドラフト計10
及び図5に示す従来のドラフト計の風胴実験を行い、そ
れぞれの測定信頼性を比較評価した。その結果は、図2
に示す通りで、グラフIは従来のドラフト計による差圧
の測定値を、グラフIIは本実施例のドラフト計10によ
る差圧の測定値を示す。即ち、差圧測定値の変動幅の大
きさから判断すると、同じ風速及び風向条件の下で、本
ドラフト計10の差圧測定値に対する風の影響は、従来
のドラフト計に対する風の影響の約1/2であった。ま
た、差圧の+側の指示幅は、本ドラフト計10では約+
1mmH2 Oであるのに対し、従来のドラフト計では約+
4mmH2Oであった。これは、本ドラフト計10の測定
値の信頼性が、従来のドラフト計に比べて遙に高いこと
を示している。Under the conditions of a maximum instantaneous wind speed of 15 to 18 m / sec and an average wind speed of 10 m / sec, the draft meter 10 of the present embodiment is used.
And the wind tunnel experiment of the conventional draft meter shown in FIG. 5 was performed, and the measurement reliability of each was compared and evaluated. The result is shown in FIG.
As shown in the graph, graph I shows the measured value of the differential pressure by the conventional draft meter, and graph II shows the measured value of the differential pressure by the draft meter 10 of this embodiment. That is, judging from the magnitude of the fluctuation range of the differential pressure measurement value, under the same wind speed and wind direction conditions, the effect of the wind on the differential pressure measurement value of the draft meter 10 is about the same as the effect of the wind on the conventional draft meter. It was 1/2. In addition, the indicated width on the + side of the differential pressure is about +
1 mmH 2 O, whereas the conventional draft meter is approximately +
4 mm H 2 O. This indicates that the reliability of the measurement value of the present draft meter 10 is much higher than that of the conventional draft meter.
【0017】次に、本実施例のドラフト計10を実際の
加熱炉に取り付け、2月13日とほぼ同じ風条件の日
(1993年4月25日)にドラフト計10に対する風
の影響を調べた。その結果は、図3に太線で示す通りで
あって、差圧測定値の変動幅から判断すると、本ドラフ
ト計10の差圧測定値に対する風の影響は、細線で示し
た2月13日のドラフトの測定値に比べて、1/2以下
であった。Next, the draft meter 10 of the present embodiment was mounted on an actual heating furnace, and the effect of wind on the draft meter 10 was examined on a day with almost the same wind conditions as February 13 (April 25, 1993). Was. The result is as shown by the bold line in FIG. 3, and judging from the fluctuation range of the differential pressure measurement value, the influence of the wind on the differential pressure measurement value of the draft gauge 10 is shown by a thin line on February 13th. It was less than half the measured value of the draft.
【0018】以上の風胴実験における差圧の測定及び実
際の加熱炉に取り付けたドラフト計の差圧測定の結果か
ら判るように、測定値の変動幅及び差圧の+側偏差から
判断すると、本実施例のドラフト計10に対する風の影
響は、従来のドラフト計に対する影響に比べて遙に小さ
い。即ち、ドラフト計10は、風が強い日でも高い信頼
性でドラフトを測定することができる。As can be seen from the results of the measurement of the differential pressure in the above-mentioned wind tunnel test and the measurement of the differential pressure of the draft meter attached to the actual heating furnace, judging from the fluctuation range of the measured value and the + side deviation of the differential pressure, The effect of the wind on the draft meter 10 of this embodiment is much smaller than the effect on the conventional draft meter. That is, the draft meter 10 can measure the draft with high reliability even on a windy day.
【0019】[0019]
【発明の効果】本発明によれば、以上の構成により、円
筒体の第2貫通孔は、羽根の誘導により常に風下に位置
し、第2貫通孔を介して導入される大気圧に対する風速
及び風向の影響を緩和し、正確な圧力を第2貫通孔を介
して円筒体に連通する。また、円筒体に導入された大気
圧はその瞬間的変動が円筒体内の空間により緩和されて
下降管内に伝達されるので、大気圧圧力に対する外乱の
影響が抑制される。よって、大気圧と加熱炉の内圧との
差圧を正確に測定することが出来る。本発明に係るドラ
フト計を使用すれば、強風の日でも信頼性の高いドラフ
ト測定値を得ることができる。According to the present invention, the second through-hole of the cylindrical body is always located on the leeward side by the guidance of the blade according to the above configuration, and the wind speed with respect to the atmospheric pressure introduced through the second through-hole and The influence of the wind direction is reduced, and accurate pressure is communicated to the cylindrical body through the second through hole. In addition, since the instantaneous fluctuation of the atmospheric pressure introduced into the cylinder is mitigated by the space in the cylinder and transmitted to the downcomer, the influence of disturbance on the atmospheric pressure is suppressed. Therefore, the differential pressure between the atmospheric pressure and the internal pressure of the heating furnace can be accurately measured. By using the draft meter according to the present invention, a highly reliable draft measurement value can be obtained even on a strong wind day.
【図1】本発明に係るドラフト計の要部の斜視図であ
る。FIG. 1 is a perspective view of a main part of a draft meter according to the present invention.
【図2】本発明に係るドラフト計の実施例の風胴実験の
結果を示すグラフである。FIG. 2 is a graph showing a result of a wind tunnel experiment of an example of the draft meter according to the present invention.
【図3】本発明に係るドラフト計の実施例の実際のドラ
フト測定結果を示すグラフである。FIG. 3 is a graph showing actual draft measurement results of an embodiment of the draft meter according to the present invention.
【図4】加熱炉の各部のドラフトを模式的に示すグラフ
である。FIG. 4 is a graph schematically showing a draft of each part of the heating furnace.
【図5】図4(a)は従来のドラフト計の第1取り出し
ノズルの斜視図、図4(b)は従来のドラフト計の第2
取り出しノズルの取り付け位置を示す加熱炉の斜視図で
ある。FIG. 4A is a perspective view of a first extraction nozzle of a conventional draft meter, and FIG. 4B is a second perspective view of a second draft meter of the conventional draft meter.
It is a perspective view of the heating furnace which shows the attachment position of an extraction nozzle.
【図6】強風の日に従来のドラフト計で実際にドラフト
を測定した際の測定値の変動を示すグラフである。FIG. 6 is a graph showing a fluctuation of a measured value when a draft is actually measured by a conventional draft meter on a strong wind day.
10 本発明に係るドラフト計の実施例 12 第1取り出しノズル 14 差圧計測部 16 下降管 18 円筒体 20 羽根 22 支持体 24 第1貫通孔 26 第2貫通孔 10 Example of a draft meter according to the present invention 12 First take-out nozzle 14 Differential pressure measuring section 16 Downcomer 18 Cylindrical body 20 Blade 22 Supporter 24 First through hole 26 Second through hole
フロントページの続き (72)発明者 峰 和孝 千葉県市原市五井海岸2 コスモ石油株 式会社 千葉製油所内 (72)発明者 芳賀 祐樹 千葉県市原市五井海岸2 コスモ石油株 式会社 千葉製油所内 (72)発明者 米良 正廣 千葉県市原市五井海岸2 コスモ石油株 式会社 千葉製油所内 (56)参考文献 特開 昭58−38828(JP,A) 特開 昭59−117936(JP,A) 特開 昭56−132444(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01L 13/00 G01L 7/00 G01L 19/00 G01L 19/06 Continued on the front page (72) Inventor Kazutaka Mine 2 Goi Kaigan 2 Ichihara-shi, Chiba Cosmo Oil Co., Ltd. Chiba Refinery (72) Inventor Yuki Haga 2 Goi Kaigan 2 Ichihara-shi, Chiba Cosmo Oil Co., Ltd. Chiba Refinery (72 Inventor Masahiro Yonera 2 Goi Kaigan, Ichihara City, Chiba Pref. Cosmo Oil Co., Ltd. Chiba Refinery (56) References JP-A-58-38828 (JP, A) JP-A-59-117936 (JP, A) JP-A Sho 56-132444 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G01L 13/00 G01L 7/00 G01L 19/00 G01L 19/06
Claims (2)
ノズルと、加熱炉の内圧に連通する第2取り出しノズル
と、差圧計測部とを備えて、大気圧と加熱炉の内圧との
圧力差を測定するドラフト計において、 第1取り出しノズルは、固定された下降管と、下降管に
同心状かつ回転自在に装着されている円筒体とからな
り、 下降管は、第1貫通孔を管壁に備え、下端部が閉止さ
れ、他端部が差圧計測部に接続されて第1貫通孔を介し
て連通する大気圧を差圧計測部に伝達し、 円筒体は、その中空部が第1貫通孔を介して下降管に連
通すると共に大気圧に連通する第2貫通孔をその筒壁に
備え、更に第2貫通孔を挟むようにして円筒体外周面か
ら末広がりに2枚の羽根をそれぞれ延在させていること
を特徴とする加熱炉用ドラフト計。A first discharge nozzle communicating with the atmospheric pressure on the atmosphere side, a second discharge nozzle communicating with the internal pressure of the heating furnace, and a differential pressure measuring unit, wherein a difference between the atmospheric pressure and the internal pressure of the heating furnace is measured. In a draft meter for measuring a pressure difference, a first take-out nozzle is composed of a fixed downcomer and a cylindrical body which is concentrically and rotatably mounted on the downcomer, and the downcomer has a first through hole. The lower end is closed, the other end is connected to the differential pressure measuring unit, and the atmospheric pressure communicated through the first through hole is transmitted to the differential pressure measuring unit. Is provided with a second through hole communicating with the downcomer through the first through hole and communicating with the atmospheric pressure in the cylindrical wall thereof. Further, the two blades are spread from the outer peripheral surface of the cylindrical body so as to sandwich the second through hole. A draft meter for a heating furnace, wherein the draft meter is extended.
降管の外径の10〜20倍及び20〜30倍の範囲、羽
根の角度が30°〜60°の範囲にあり、かつ羽根の幅
が円筒体の高さの1/3以上であることを特徴とする請
求項1に記載の加熱炉用ドラフト計。2. An inner diameter and a height of the cylindrical body are respectively in a range of 10 to 20 times and 20 to 30 times an outer diameter of the downcomer, an angle of the blade is in a range of 30 ° to 60 °, and The draft meter for a heating furnace according to claim 1, wherein the width is at least 1/3 of the height of the cylindrical body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8091394A JP2878592B2 (en) | 1994-03-28 | 1994-03-28 | Draft gauge for heating furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8091394A JP2878592B2 (en) | 1994-03-28 | 1994-03-28 | Draft gauge for heating furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07270265A JPH07270265A (en) | 1995-10-20 |
JP2878592B2 true JP2878592B2 (en) | 1999-04-05 |
Family
ID=13731638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8091394A Expired - Fee Related JP2878592B2 (en) | 1994-03-28 | 1994-03-28 | Draft gauge for heating furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2878592B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4992406B2 (en) * | 2006-12-14 | 2012-08-08 | 株式会社Jvcケンウッド | Surface installation device |
-
1994
- 1994-03-28 JP JP8091394A patent/JP2878592B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07270265A (en) | 1995-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH10104037A (en) | Measuring apparatus for exhaust gas | |
US5073104A (en) | Flame detection | |
KR19980702019A (en) | Test gas leak detector | |
US3869370A (en) | Method and apparatus for continuously sensing the condition of a gas stream | |
JP2878592B2 (en) | Draft gauge for heating furnace | |
RU2397462C1 (en) | Thin-film pressure sensor | |
US20030024318A1 (en) | Probe for measuring pressure oscillations | |
US6044835A (en) | Furnace vent and intake terminal and blockage safety shut down system | |
CN214097525U (en) | Novel online flue gas velocity of flow measuring device | |
GB2037993A (en) | Dynamic gas pressure measuring device | |
US4102627A (en) | Draft tell-tale for fired furnaces | |
US4167547A (en) | Air valve type carburetor | |
US3069902A (en) | Torque sensitive device | |
US20040020304A1 (en) | Differential static pressure measuring device | |
JPH11125573A (en) | Pressure measuring device | |
US6450875B1 (en) | Monitoring air entry velocity into fume hood | |
EP0115221A1 (en) | Detecting leaks | |
CN112198335A (en) | Novel online flue gas velocity of flow measuring device | |
KR100392587B1 (en) | A Digital Testing Device For An Air-Valve | |
US4117734A (en) | Apparatus for indicating true furnace draft | |
KR19990084483A (en) | Duct leak testing machine | |
CN117491100B (en) | Flue gas constant-speed sampling device and method | |
US4080151A (en) | Furnace pressure sensor | |
CN218154314U (en) | System for be used for furnace negative pressure to measure | |
JP3081338B2 (en) | Oxygen analyzer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |