JP2876021B2 - Sediment transport phenomena analysis method - Google Patents

Sediment transport phenomena analysis method

Info

Publication number
JP2876021B2
JP2876021B2 JP62173765A JP17376587A JP2876021B2 JP 2876021 B2 JP2876021 B2 JP 2876021B2 JP 62173765 A JP62173765 A JP 62173765A JP 17376587 A JP17376587 A JP 17376587A JP 2876021 B2 JP2876021 B2 JP 2876021B2
Authority
JP
Japan
Prior art keywords
sediment
acoustic
tubular body
quicksand
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62173765A
Other languages
Japanese (ja)
Other versions
JPS6418055A (en
Inventor
安正 板倉
宏 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SABO JISUBERI GIJUTSU SENTAA
Original Assignee
SABO JISUBERI GIJUTSU SENTAA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SABO JISUBERI GIJUTSU SENTAA filed Critical SABO JISUBERI GIJUTSU SENTAA
Priority to JP62173765A priority Critical patent/JP2876021B2/en
Publication of JPS6418055A publication Critical patent/JPS6418055A/en
Application granted granted Critical
Publication of JP2876021B2 publication Critical patent/JP2876021B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 [発明の目的] 本発明は流砂現象の解析方法、詳しくは土石流等の突
発的な土砂移動現象の発生、接近または通過の検知、な
らびに流水による流砂量の測定を行う方法に関する。 一般に、山地河川における流砂現象は非常に複雑であ
るので、砂防計画の立案や、土石流等の突発的に生じる
土砂災害に対する防災対策の立案のためには、現地にお
ける土砂移動現象の発生、接近または通過の検知ならび
に流砂量の監視が必須である。 山地河川における流砂現象を複雑なものにしている最
も大きな原因は、土砂生産の不連続性と生産された土砂
の粒度分布が非常に広い範囲であることにある。そし
て、山地河川における粒砂現象はマクロ的にみると土石
流等により突発的に生産される土砂量とその広い粒度分
布が河道において流砂として分級・分散される過程とし
て捉えられる。この分級・分散過程は粒径により流砂の
運動形態、流砂量が異なること、および、河道の浸食と
堆積の結果、河道の条件も刻々と変化することを意味し
ており、流砂現象は河道の形状・形態の変化、河床材料
の変化、流砂量、流水抵抗の変化などをシステムとして
評価する必要があることを示している。以上のように、
山地河川を特徴づける現象は土石流等による突発的な土
砂移動現象と、アーマコートの形成と破壊、それに伴う
河床形態の変化変形、流路変動などであり、流量の増減
に伴って様々な変化を示す。このように、流砂量と水理
量との間に一対一の対応が認められないため、突発的な
土砂移動現象の発生、接近または通過の検知ならびに流
砂量の測定を含む流砂を含む流砂現象の解析は砂防工学
上解決を急がれる問題となつている。 [従来技術] これまでに、流砂現象の解析手法としては、空中写真
判読や現地踏査で生産土砂量に関する調査を行い、その
一方で河道縦横断測量あるいは砂防ダム、貯水ダムなど
の堆砂変動測量を行つて、それらの成果を用いて土砂収
支計算を行うことにより流砂量を求めるといつた方法、
また、土石流等が発生し通過するであろう渓流にワイヤ
ーを張り土石流等がそれを切断することで発生および通
過を検知する方法が知られている。 しかし、土砂収支計算による方法については、数カ月
〜1年〜数年の時間間隔で測定するものであるため、一
出水の総流出土砂量や洪水中の刻々と変化する流砂量を
得ることができないという、そしてワイヤーによる方法
については土砂移動以外の落石や大型の動物によるワイ
ヤーの切断による誤動作があるという問題がある。 また、砂防工事を必要とするような山地急流河川で
は、 (イ)出水が急激であること (ロ)流速が大きいこと (ハ)流送砂礫の粒度範囲が広く、かつ流砂量が大きい
こと (ニ)洪水時の観測・測定作業で危険が伴うことなどの
理由により、精度よく流砂量を測定することは困難であ
つて、実際にこれまでにこれを可能とする方法は知られ
ていない。 [発明の構成] 本発明は、流砂現象を音響メディアにより捉えて流砂
現象を間接的に解析する方法を提供する。 すなわち本発明は、流砂による音響に対して選択性を
もつように材料および寸法を選択して予め定めた音響特
性をもたせた管状体とその内部に格納した音響電気信号
変換器とから成る音響センサを流砂域中に設置し、その
音響電気信号変換器から取り出した電気信号をあらかじ
め定めた手法により信号処理して流砂現象の発生、接近
または通過を検知しまたは流砂量を測定することを特等
とする流砂現象解析法を提供する。 管状体として、流砂が管状体に当たる際に発する音響
に対して選択性をもつものを使うことにより管状体を設
置した断面を通過する流砂量を精度良く測定することが
できる。 同様に、管状体として、流砂同志のまたは流砂と流砂
域床部との衝突により発生し空気中または地中を伝わつ
て管状体に到着する音響、および(または)流砂が管状
体に衝突する際に発生する音響に対して選択性をもつ管
状体を使うことにより、土砂移動現象の発生、接近また
は通過の検知を精度良く行うことができる。 管状体を、水流横断方向に複数個並べて設置すること
により横断方向の流砂量分布を計測することができるの
で、流砂量計測の精度を上げることができる。 また、水流縦断方向にも同様に複数個並べて設置する
ことにより、流砂量計測の精度をさらに上げることがで
きる。 取り出した電気信号に加える処理の例として、音の種
類を表わす振幅スペクトル分布を求める処理、衝突の瞬
間を示すある閾値以上の振幅をもつパルス数を計測する
処理、および、流砂濃度に対応する振幅の分布形を定め
る処理、管状体を水流縦断方向に複数個以上設置した場
合に得られた信号間の因果律を求める因果律解析を行う
処理等がある。 振幅のスペクトル分布を求める処理からは、土砂移動
現像の発生、接近または通過ならびに流水中の流砂の有
無を知ることができ、ある閾値をこえるパルス数の計測
処理や振幅分布形、因果律解析を行う処理からは、流砂
量を得ることができる。 [実施例] 第1図は本発明方法を実施するための電気信号取り出
し装置の1実施例(実験例)を模式的に示す斜視図であ
る。本実験は、上述の方法による流砂量の計測法の1例
として行つたものである。 適当な径の鉄パイプ(1)の中に小型のマイクロフォ
ン(2)を入れて、両端を吸音材(3,3)で封じる。こ
のパイプを約半分程河床(4)に埋めて、このパイプに
水流や流砂が当たるときの音を解析することによつて河
床近傍を移動する比較的大きな粒子(掃流砂)の流砂量
を測定する。矢印は水流の方向である。 なお、第1図に示したパイプを複数個流れの方向に一
定間隔で並べて、得られる信号の数を多くすることは、
推定の精度の向上と推定項目を増すものと期待される。 また、パイプは設置条件を一定に保つようにするため
に、固定床に設置するのが望ましい。 この方法は物がパイプをたたく時に発する音の違いか
ら、たたいたものの状態を推定する方法であるので、物
理現象から理論的に推定則を演繹することは難しく、多
くの実験の積み重ねからの経験による推定則を確立して
おく必要がある。 また、当然のことではあるが、洪水中は、流れは乱流
であり、また不定流であるため、得られる信号もさまざ
まな不規則性をもつていると予想される。たとえば、マ
イクロフォンから得られる信号は定常エルゴード性を満
たしており、流水はガウス確率過程に属し、流砂は、流
砂量が少ないときは(衝突回数が少ないときは)ポアソ
ン確率過程に属し、流砂量が多いときは(衝突回数が多
いときは)流水と同様にガウス確率過程に属すると考え
ることができる。 すると、信号は、ガウス確率過程で表される水流の信
号に、流砂(石)の衝突の際生じる信号(イノベーシヨ
ン)が加わつたものとして処理される。流砂のパイプへ
の衝突(イノベーシヨン)は衝突回数が少ない場合ポア
ソン確率過程に従うものと考えることができ、衝突回数
が多い場合はガウス分布に従うものと考えられる。 以上から、流砂量推定のためのパラメータを整理する
と次のようである。 推定項目 パラメータ (a)流水と流砂(石)の分離 スペクトル分布 (b)石の大きさ 振幅値 (c)石の衝突回数、流砂量 振幅分布、振幅のス
ペクトル分布、音の減衰特性、ある閾値以上のパルス数 解析は、マイクロフォンからの出力をA/D変換してデ
ィジタル信号としてコンピュータにより行う。出力を直
接A/D変換するか、一度アナログ記録した後、A/D変換す
るかは実験条件、又は設置状況による。また、スペクト
ル解析は色々な手法があるが、たとえば、MEM(最大エ
ントロビー法)を用いることができる。 幅30.7cm、全長12m、勾配2.2゜の水路に、次表に示す
ような外径と肉厚を変えた4通りのパイプを設置し、実
験を行つた。このうち、外径は実験に使用する砂の最大
粒径と平均粒径にほぼ合わせてある。パイプの間隔は粒
径の10倍に設定し、固定床上に上半分を露出させるよう
に設置した。 外径(mm) 10.0 30.0 長さ(cm) 30.0 30.0 肉厚(mm) 1.0 2.0 1.0 2.0 長さl、半径aの円筒閉管の半径方向の一次モードの
固有振動数は、0.61c/a、円周方向では、0.298c/a、軸
方向では、3c/4lと表させる。一方、体積V、表面積A
の室内の残響エネルギー密度はε/ε=e−13.6t/T
残響時間TはT=0.16V/αAで示される。ここで、α
は、定数である。外径30mm、長さ30cmのパイプの場合、
軸方向の一次モードの固有振動数は約700Hz、円周方向
の一次モードの固有振動数は約8kHz、半径方向の一次モ
ードの固有振動数は約20kHzと求まる。 パイプの材料、管径、長さ、吸音材を組み合わせによ
り、予め定めた音響特性、残響特性および流砂衝突条件
(回数など)をもつパイプを製作することが可能であ
る。 実験は、はじめに固定床で流水量と流砂量を変化させ
て行つた。得られた電気信号の波形を第2図〜第5図に
示す。実験条件と波形図番との関係を次表1に示す。 実験No.1〜3の電気信号をMEM解析した結果を各各第
6図、第7(a)図、第8(a)図に示す。また、実験
No.2〜3の電気信号の振幅分布を各各第7(b)図、第
8(b)図に示す。 これらのデータから次のことがわかる。 (イ)流水と流砂の分離: 水流のみの場合は、いろいろなスクトル成分を含んで
いる[第6図]が、流砂(石)が当たると、軸方向の固
有振動数に相当する約700Hz付近に固有振動を生じる
[第7(a)図および第8(a)図]。 (ロ)流砂(石)の大きさ 実験No.4と同様にして異なる重さの石を一個づつ流す
実験を行い、石の重さと振幅のピーク値を比較してみる
と、第9図のようになつた。この実験の場合、約15g、
粒径にして22mm以上では、石が重くなる程、振幅のピー
ク値が大きくなる関係が認められた。 (ハ)石の衝突回数、流砂量 石の衝突回路を、閾値として流水のみの場合の振幅分
布から得られる分散の3倍に設定し、それをこえる分の
パルス数で数えると、第3図、第4図中の矢印で示した
部分となり、どちらのケースもほぼ4〜5回/秒の衝突
回数になつている。もし、流砂がすべて同じ大きさ(重
さ)で、すべてパイプに衝突したとすると流砂一個当た
りの重さが16g〜20g、粒径が22.6mm〜24.4mmとなり、実
験に用いられた流砂の平均粒径(約1cm)より大きいが
最大粒径(約3cm)より小さな値を示すことになる。こ
の実験から、衝突回数が数えられるように、パイプの材
料、形状、マイクロフォンを選べば、流砂濃度が異なつ
ても閾値を適当に定めることによつて、流砂量の測定が
可能であることを確認することができた。 また、1秒間の衝突回数の分布形を求めると(サンプ
リング数44)、第10図に示すとおりとなる。図中、実線
Aは実験No.2に破線Bは実験No.3に各各相当する。流砂
濃度が異なつても流砂量が同じならば、同様にポアソン
的な分布形を持っていることがわかり、流砂量測定の有
力なデータとなる。 一方、第7(a)図および第8(a)図に示した、流
砂濃度が低い場合と高い場合の振幅分布から、流砂濃度
が高い方が振幅分布の広がりが大きいことがわかり、こ
れもまた流砂量測定の有力なデータとなる。 以上の解析例は、流水域中に水平に管状体を設置し、
それに流砂が衝突する際に生じる音響信号を電気信号に
変換して信号処理する流砂量測定方法について例示した
ものであるが、管状体を垂直に設置する場合、地表や固
定床等から管状体に伝わってくる音響信号を電気信号に
変換し信号処理する場合、また、土砂移動現象の発生、
接近または通過を検知する場合についても、同様にして
解析することができる。 さらに、複数個の管状体を設置し、信号の処理法とし
て多次元解析や時系列因果性解析を行うことにより、さ
らに詳細で有効な解析ができる。
[Detailed Description of the Invention] [Object of the Invention] The present invention provides a method for analyzing sediment transport phenomena, in particular, detection of occurrence, approach or passage of a sudden sediment transport phenomenon such as debris flow, and measurement of the amount of sediment transport by flowing water. About the method. Generally, the sediment transport phenomenon in mountain rivers is very complicated.Therefore, in order to formulate an erosion control plan and disaster prevention measures against sudden landslides such as debris flows, the occurrence, approach, or approach of sediment transport phenomena in the field It is essential to detect passage and monitor sediment transport. The biggest complicating factors in sediment transport in mountain rivers are the discontinuity of sediment production and the very wide range of particle size distribution of the produced sediment. From a macro perspective, the sedimentation phenomenon in mountain rivers can be understood as a process in which the amount of sediment suddenly produced by debris flow and its wide particle size distribution is classified and dispersed as sediment in the river channel. This classification / dispersion process means that the movement form and the amount of sedimentation of sediment vary depending on the particle size, and that the conditions of the riverway change every moment as a result of erosion and deposition of the riverway. This indicates that it is necessary to evaluate changes in shape and form, changes in riverbed material, changes in sediment transport, and changes in flow resistance as a system. As mentioned above,
The phenomena that characterize mountainous rivers are sudden sediment movement caused by debris flow, formation and destruction of armor coat, accompanying deformation and deformation of the riverbed, and fluctuations in flow channels. Show. Since there is no one-to-one correspondence between sediment transport and hydraulics, sediment transport phenomena including sediment transport, including detection of sudden sediment movement, approach or passage, and measurement of sediment transport Is an urgent problem in sabo engineering. [Prior art] As a method of analyzing sedimentation phenomena, surveys on sediment production have been conducted by aerial photo interpretation and site reconnaissance, while on the other hand, river cross-section surveys or sedimentation fluctuation surveys of sabo dams, storage dams, etc. And calculate the amount of sediment transport by calculating the sediment balance using those results.
There is also known a method of detecting generation and passage by attaching a wire to a mountain stream where a debris flow or the like will be generated and passing by cutting the debris flow or the like. However, since the method based on the sediment balance calculation is measured at time intervals of several months to one year to several years, it is not possible to obtain the total amount of sediment discharged from one flood or the sedimentary volume that changes every moment during a flood. That is, the method using a wire has a problem in that there is a malfunction caused by rock fall other than the movement of earth and sand or cutting of the wire by a large animal. Also, in mountain rapid rivers that require sabo works, (a) rapid flooding (b) large flow velocity (c) large particle size range of gravel and large amount of sediment ( D) It is difficult to accurately measure sediment transport because of the dangers involved in the observation and measurement work during floods, and there is no known method to make this possible. [Constitution of the Invention] The present invention provides a method for indirectly analyzing the sediment transport phenomenon by capturing the sediment transport phenomenon using acoustic media. That is, the present invention provides an acoustic sensor comprising a tubular body having a predetermined acoustic characteristic by selecting a material and dimensions so as to have selectivity with respect to the sound caused by quicksand, and an acoustoelectric signal converter stored therein. Is installed in the sediment transport area, and the electrical signal extracted from the acoustic electrical signal converter is signal-processed by a predetermined method to detect the occurrence, approach or passage of the sediment transport phenomenon, or to measure the amount of sediment transport. To provide a method for analyzing sediment transport phenomenon. By using a tubular body having selectivity to the sound emitted when the quicksand hits the tubular body, the amount of quicksand passing through the cross-section where the tubular body is installed can be accurately measured. Similarly, as a tubular body, the sound generated by the collision of quicksand between the quicksand and the quicksand area floor and transmitted through the air or the ground to reach the tubular body, and / or when quicksand collides with the tubular body The use of a tubular body having selectivity for the sound generated at the time of occurrence makes it possible to accurately detect the occurrence, approach, or passage of the sediment movement phenomenon. By arranging a plurality of tubular bodies side by side in the transverse direction of the water flow, it is possible to measure the sediment flow distribution in the transverse direction, so that it is possible to improve the accuracy of the sediment flow measurement. In addition, by arranging a plurality of pieces in the longitudinal direction of the water flow in the same manner, the accuracy of measuring the amount of sediment can be further improved. Examples of processing to be added to the extracted electric signal include processing for obtaining an amplitude spectrum distribution representing the type of sound, processing for measuring the number of pulses having an amplitude equal to or greater than a certain threshold indicating the moment of a collision, and amplitude corresponding to sediment density. And a process for performing a causal law analysis for obtaining a causal law between signals obtained when a plurality of tubular bodies are installed in the longitudinal direction of the water flow. From the process of obtaining the amplitude spectrum distribution, it is possible to know the occurrence, approach or passage of sediment movement development and the presence of sediment in running water, and to perform the measurement process of the number of pulses exceeding a certain threshold, the amplitude distribution shape, and the causality analysis The amount of quicksand can be obtained from the treatment. Embodiment FIG. 1 is a perspective view schematically showing one embodiment (an experimental example) of an electric signal extracting device for carrying out the method of the present invention. This experiment was performed as an example of the method for measuring the amount of sediment transport by the above-described method. A small microphone (2) is placed in an iron pipe (1) of an appropriate diameter, and both ends are sealed with a sound absorbing material (3, 3). About half of this pipe is buried in the riverbed (4), and the amount of relatively large particles (bedload) moving near the riverbed is measured by analyzing the sound of the pipe when it hits the stream or sediment. I do. The arrow is the direction of the water flow. It should be noted that increasing the number of signals obtained by arranging a plurality of pipes shown in FIG.
It is expected to improve the accuracy of estimation and increase the number of items to be estimated. In addition, it is desirable to install the pipe on a fixed floor in order to keep the installation conditions constant. Since this method estimates the state of the object being struck from the difference in sound emitted when the object strikes the pipe, it is difficult to deduce the estimation rule from physical phenomena theoretically. Empirical estimation rules need to be established. Also, of course, during a flood, since the flow is turbulent and irregular, the resulting signal is expected to have various irregularities. For example, the signal obtained from the microphone satisfies the steady-state ergodicity, running water belongs to the Gaussian stochastic process, and sedimentation belongs to the Poisson stochastic process when the sedimentation amount is small (when the number of collisions is small), and the sedimentation amount When it is large (when the number of collisions is large), it can be considered that it belongs to the Gaussian stochastic process like the flowing water. Then, the signal is processed as a signal of a water flow represented by a Gaussian stochastic process plus a signal (innovation) generated when a quicksand (stone) collides. The collision of quicksand with the pipe (innovation) can be considered to follow a Poisson stochastic process when the number of collisions is small, and to follow a Gaussian distribution when the number of collisions is large. From the above, the parameters for sediment transport estimation are summarized as follows. Estimated items Parameter (a) Separation of running water and quicksand (stone) Spectral distribution (b) Stone size Amplitude value (c) Number of stone impacts, sedimentation volume Amplitude distribution, amplitude spectrum distribution, sound attenuation characteristics, certain threshold The pulse number analysis described above is performed by a computer using A / D conversion of the output from the microphone as a digital signal. Whether the output is directly A / D-converted or analog-recorded once and then A / D-converted depends on experimental conditions or installation conditions. There are various methods for spectrum analysis. For example, MEM (maximum entropy method) can be used. An experiment was conducted by installing four pipes having different outer diameters and wall thicknesses as shown in the following table in a water channel having a width of 30.7 cm, a total length of 12 m, and a slope of 2.2 mm. Of these, the outer diameter is approximately matched to the maximum and average particle size of the sand used in the experiment. The interval between the pipes was set to be 10 times the particle size, and the pipes were installed so that the upper half was exposed on the fixed bed. Outer diameter (mm) 10.0 30.0 Length (cm) 30.0 30.0 Wall thickness (mm) 1.0 2.0 1.0 2.0 The natural frequency of the primary mode in the radial direction of a cylindrical closed tube of length l and radius a is 0.61 c / a, circle It is expressed as 0.298 c / a in the circumferential direction and 3c / 4l in the axial direction. On the other hand, volume V, surface area A
The reverberation energy density in the room is ε / ε 0 = e -13.6t / T
The reverberation time T is represented by T = 0.16 V / αA. Where α
Is a constant. For a pipe with an outer diameter of 30 mm and a length of 30 cm,
The natural frequency of the axial first mode is about 700 Hz, the natural frequency of the circumferential first mode is about 8 kHz, and the natural frequency of the radial first mode is about 20 kHz. By combining the pipe material, the pipe diameter, the length, and the sound absorbing material, it is possible to manufacture a pipe having predetermined acoustic characteristics, reverberation characteristics, and quicksand impact conditions (number of times). The experiment was conducted by first changing the amount of running water and the amount of sediment transported on a fixed bed. The waveforms of the obtained electric signals are shown in FIGS. Table 1 shows the relationship between the experimental conditions and the waveform chart numbers. The results of MEM analysis of the electrical signals of Experiment Nos. 1 to 3 are shown in FIGS. 6, 7 (a) and 8 (a), respectively. Also experiment
The amplitude distributions of the electrical signals Nos. 2 to 3 are shown in FIGS. 7 (b) and 8 (b), respectively. The following can be understood from these data. (B) Separation of running water and sediment: In the case of only flowing water, various sequestration components are included [Fig. 6], but when running sand (stone) hits, around 700 Hz, which corresponds to the natural frequency in the axial direction, [FIG. 7 (a) and FIG. 8 (a)]. (B) Size of quicksand (stone) An experiment was conducted in which stones of different weights were run one by one in the same manner as in Experiment No. 4, and the peak values of the stone weight and amplitude were compared. I came to. In this experiment, about 15g,
When the particle size was 22 mm or more, the peak value of the amplitude became larger as the stone became heavier. (C) Number of stone collisions and amount of sedimentation If the collision circuit of stones is set as a threshold to three times the variance obtained from the amplitude distribution in the case of only running water, and counted with the number of pulses exceeding that, Fig. 3 4, the number of collisions is almost 4 to 5 times / sec in both cases. If all of the quicksand has the same size (weight) and hits all the pipes, the weight per quicksand is 16g-20g, the particle size is 22.6mm-24.4mm, and the average of the quicksand used in the experiment It will show a value larger than the particle size (about 1 cm) but smaller than the maximum particle size (about 3 cm). From this experiment, it was confirmed that if the material, shape, and microphone of the pipe were selected so that the number of collisions could be counted, the amount of sediment could be measured by appropriately setting the threshold even if the concentration of sediment was different. We were able to. If the distribution form of the number of collisions per second is obtained (sampling number 44), the result is as shown in FIG. In the figure, the solid line A corresponds to Experiment No. 2 and the broken line B corresponds to Experiment No. 3. If the amount of sedimentation is the same even if the concentration of sedimentation is different, it can be seen that the distribution has a Poisson-like distribution form, which is useful data for measuring the amount of sedimentation. On the other hand, from the amplitude distributions in the case where the sediment concentration is low and in the case where the sediment concentration is high shown in FIGS. 7 (a) and 8 (a), it is found that the higher the sediment concentration, the larger the spread of the amplitude distribution. In addition, it will be a powerful data for measuring sediment transport. In the above analysis example, a tubular body is installed horizontally in the watershed,
It is an example of a method for measuring the amount of sediment transported by converting the acoustic signal generated when quicksand collides into an electrical signal and processing the signal. When the transmitted sound signal is converted to an electric signal and processed,
In the case of detecting approach or passage, the analysis can be performed in the same manner. Further, by installing a plurality of tubular bodies and performing a multidimensional analysis or a time series causal analysis as a signal processing method, a more detailed and effective analysis can be performed.

【図面の簡単な説明】 第1図:本発明方法の1実施例を示す説明図。 (1)パイプ(このパイプに流砂が衝突する) (2)マイクロフォン(音響信号を電気信号に変換) (3,3)吸音材(両端を吸音材で充填し、音の減衰を早
くする) (4)パイプを設置する固定床 (矢印は流れの方向を示す) 第2図:流水のみの場合の電気信号の1例を示す波形
図。 第3図:流量20/sec、流砂量4873g/min(流砂の体積
濃度0.15%)のときの電気信号の1例を示す波形図(矢
印は流砂の衝突時を示す)。 第4図:流量10/sec、流砂量4873g/min(流砂の体積
濃度0.31%)のときの電気信号の1例を示す波形図(矢
印は流砂の衝突時を示す)。 第5図:石1個(59.3g)の衝突時の電気信号の1例を
示す波形図(時間軸方向に拡大してある)。 第6図:流水のみの場合(20/sec)の振幅のスペクト
ル分布図。 第7図:流量20/sec、流砂量4873g/min(流砂の体積
密度0.31%)のときの (a)振幅のスペクトル分布図。 (b)振幅の分布図。 第8図:流量10/sec、流砂量4873g/min(流砂の体積
密度0.31%)のときの (a)振幅のスペクトル分布図。 (b)振幅の分布図。 第9図:流砂1個の衝突時の信号のピーク振幅値と石の
重さとの関係を示す説明図。 第10図:1秒当りの衝突回数の分布を示す説明図。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view showing one embodiment of the method of the present invention. (1) Pipes (quick sand collides with this pipe) (2) Microphone (converts acoustic signals into electrical signals) (3,3) Sound absorbing material (fills both ends with sound absorbing material to speed up sound attenuation) ( 4) Fixed floor on which pipes are installed (arrows indicate flow direction) FIG. 2: Waveform diagram showing an example of an electric signal in the case of flowing water only. FIG. 3: Waveform diagram showing an example of an electric signal when the flow rate is 20 / sec and the amount of sediment transport is 4873 g / min (volume concentration of the sediment transport 0.15%) (arrows indicate the time of the impact of the sediment transport). FIG. 4: Waveform diagram showing an example of an electric signal when the flow rate is 10 / sec and the amount of sediment transported is 4873 g / min (volume concentration of the sediment transported 0.31%) (arrows indicate the time of the impact of the sediment transport). FIG. 5: Waveform diagram showing an example of an electric signal at the time of collision of one stone (59.3 g) (enlarged in the time axis direction). Fig. 6: Spectrum distribution diagram of amplitude in case of only running water (20 / sec). FIG. 7: (a) Spectral distribution diagram of amplitude at a flow rate of 20 / sec and a sediment load of 4873 g / min (volume density of quicksand 0.31%). (B) Distribution diagram of amplitude. FIG. 8: (a) Amplitude spectrum distribution diagram when flow rate is 10 / sec and sediment flow is 4873 g / min (volume density of sediment transport 0.31%). (B) Distribution diagram of amplitude. FIG. 9 is an explanatory diagram showing a relationship between a peak amplitude value of a signal and a stone weight at the time of collision of one quicksand. FIG. 10 is an explanatory diagram showing the distribution of the number of collisions per second.

Claims (1)

(57)【特許請求の範囲】 1.河道の任意の地点の横断面あるいはその一部を通過
する流砂について、単位時間毎の流砂量を検出するにあ
たり、 流砂が当たる際に発生する音響に対して選択性をもつよ
うに材料および寸法を選択して予め定めた音響特性をも
たせた管状体とその内部に格納した音響電気信号変換器
とから成る音響センサを、河道横断面あるいはその一部
の床部に管状体の長軸が水流方向に対して直角方向にな
るように配置し、かつ流砂同志のまたは流砂と流砂域床
部との衝突の際に発生する音響の影響を選択的に極小に
するように固定床に一部を露出させ一部を埋め込んで設
置し、 管状体内部において発生した音響信号を音響電気信号変
換器により電気信号に変換し、 変換した電気信号に、振幅の分布形を定める処理等の統
計的信号処理または因果律解析等の処理を、あるいはあ
る閾値以上の振幅をもつパルス数を計測する処理を加え
る、 ことを特徴とする流砂現象解析法。 2.流砂量の横断分布を計測するため、管状体を水流横
断方向に複数個設置する前項(1)に記載の方法。 3.流砂量を高精度で計測するため、管状体を水流縦断
方向に複数個設置する前項(1)に記載の方法。 4.河川における流砂現象の発生、接近あるいは通過を
検出するにあたり、 河川の流砂による流砂同志のまたは流砂と流砂域床部と
の衝突の際に発生し地中を伝わる音響に対して選択性を
もつように材料および寸法を選択して予め定めた音響特
性をもたせた管状体とその内部に格納した音響電気信号
変換器とから成る音響センサを、河道の床部地中に設置
し、 管状体内部において発生した音響信号を音響電気信号変
換器により電気信号に変換し、 変換した電気信号に、振幅の分布形を定める処理等の統
計的信号処理または因果律解析等の処理を、あるいはあ
る閾値以上の振幅をもつパルス数を計測する処理を加え
る、 ことを特徴とする流砂現象解析法。 5.流砂現象の速度及び規模等を計測するため、管状体
を流砂域の地中に河道縦断方向に複数個設置する前項
(4)に記載の方法。
(57) [Claims] When detecting the amount of sediment transported per unit time for the sediment passing through a cross section or a part of an arbitrary point along the river channel, the material and dimensions should be selected so that they have selectivity to the sound generated when the sediment hits. An acoustic sensor consisting of a tubular body having a selected and predetermined acoustic characteristic and an acousto-electric signal converter housed inside the tubular body is mounted on the river cross section or on a part of the floor so that the major axis of the tubular body is in the water flow direction. And a portion exposed to the fixed floor to selectively minimize the effect of acoustics generated when quicksand collide with quicksand and the quicksand area floor. The acoustic signal generated inside the tubular body is converted into an electric signal by an acoustic-electrical signal converter, and the converted electric signal is subjected to statistical signal processing such as processing for determining the distribution form of the amplitude or the like. Causality analysis Of processing, or to perform the process of measuring the number of pulses having an amplitude of more than a certain threshold, quicksand phenomenon analysis method characterized by. 2. The method according to the above item (1), wherein a plurality of tubular bodies are installed in the water current transverse direction in order to measure the transverse distribution of the amount of sediment transport. 3. The method according to the above item (1), wherein a plurality of tubular bodies are installed in the longitudinal direction of the water flow in order to measure the amount of quicksand with high accuracy. 4. When detecting the occurrence, approach or passage of sediment transport phenomena in rivers, selectivity should be given to the sound transmitted through the ground generated by the sediment transport by river sediment or by the collision of quick sediment with the bed of the quick sediment area. An acoustic sensor consisting of a tubular body having predetermined acoustic characteristics by selecting materials and dimensions and an acoustic-electrical signal converter stored inside the tubular body is installed in the floor of a river channel, and inside the tubular body, The generated acoustic signal is converted into an electric signal by an acoustic-electrical signal converter, and the converted electric signal is subjected to statistical signal processing such as processing for determining the amplitude distribution form or processing such as causality analysis, or to an amplitude exceeding a certain threshold. A method for analyzing sediment transport phenomena, characterized by adding a process of measuring the number of pulses having 5. The method according to the above item (4), wherein a plurality of tubular bodies are installed underground in the sedimentation area in the longitudinal direction of the river channel in order to measure the speed and scale of the sedimentation phenomenon.
JP62173765A 1987-07-14 1987-07-14 Sediment transport phenomena analysis method Expired - Fee Related JP2876021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62173765A JP2876021B2 (en) 1987-07-14 1987-07-14 Sediment transport phenomena analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62173765A JP2876021B2 (en) 1987-07-14 1987-07-14 Sediment transport phenomena analysis method

Publications (2)

Publication Number Publication Date
JPS6418055A JPS6418055A (en) 1989-01-20
JP2876021B2 true JP2876021B2 (en) 1999-03-31

Family

ID=15966729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62173765A Expired - Fee Related JP2876021B2 (en) 1987-07-14 1987-07-14 Sediment transport phenomena analysis method

Country Status (1)

Country Link
JP (1) JP2876021B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102242868B1 (en) * 2020-11-16 2021-04-21 주식회사 대흥미래기술 Sediment flow measurement device using hydrophone

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3455430B2 (en) * 1998-06-09 2003-10-14 財団法人鉄道総合技術研究所 Natural disaster occurrence detection device and natural disaster occurrence detection method
JP4514730B2 (en) * 2006-05-09 2010-07-28 財団法人建設技術研究所 Method and apparatus for estimating particle size distribution of liquid sand
JP5057749B2 (en) * 2006-11-21 2012-10-24 明星電気株式会社 Method and apparatus for measuring sediment concentration in running water
JP6213816B2 (en) * 2013-07-23 2017-10-18 国立大学法人名古屋大学 Current observation method
JP7101330B2 (en) * 2017-06-14 2022-07-15 謙次 鶴田 Control method of sediment disaster warning system and sediment disaster warning system
WO2018230590A1 (en) * 2017-06-14 2018-12-20 株式会社コルバック Hydrophone signal integration voltage conversion circuit, gravel detection system, and control method
US20240310206A1 (en) * 2021-07-13 2024-09-19 Nec Corporation Quicksand amount observation system, quicksand amount observation apparatus, quicksand amount observation method, and computer-readable medium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3841144A (en) * 1972-10-12 1974-10-15 Mobil Oil Corp Sand detection probe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102242868B1 (en) * 2020-11-16 2021-04-21 주식회사 대흥미래기술 Sediment flow measurement device using hydrophone

Also Published As

Publication number Publication date
JPS6418055A (en) 1989-01-20

Similar Documents

Publication Publication Date Title
Mizuyama et al. Calibration of a passive acoustic bedload monitoring system in Japanese mountain rivers
Rickenmann et al. Bedload transport measurements with impact plate geophones: Comparison of sensor calibration in different gravel‐bed streams
Comiti et al. Recent advances in the dynamics of steep channels
Barton et al. Monitoring coarse bedload transport with passive acoustic instrumentation: A field study
Rickenmann Bedload transport measurements with geophones, hydrophones, and underwater microphones (passive acoustic methods)
Arattano On the use of seismic detectors as monitoring and warning systems for debris flows
Arattano et al. Analysis of debris-flow recordings in an instrumented basin: confirmations and new findings
JP2876021B2 (en) Sediment transport phenomena analysis method
Mizuyama et al. Laboratory tests of a Japanese pipe geophone for continuous acoustic monitoring of coarse bedload
Bogen et al. Bed load measurements with a new passive ultrasonic sensor
Koshiba et al. Application of an impact plate–Bedload transport measuring system for high-speed flows
Dell'Agnese et al. Calibration of an acoustic pipe sensor through bedload traps in a glacierized basin
Camenen et al. Tentative measurements of bedload transport in an energetic alpine gravel bed river
Rickenmann et al. Bedload transport monitoring with acoustic sensors in the Swiss Albula mountain river
Halfi et al. Novel mass‐aggregation‐based calibration of an acoustic method of monitoring bedload flux by infrequent desert flash floods
GOTO et al. Experimental and theoretical tools for estimating bedload transport using a Japanese pipe hydrophone
Mizuyama et al. Measurement of bed load with the use of hydrophones in mountain torrents
JP4514730B2 (en) Method and apparatus for estimating particle size distribution of liquid sand
Downing et al. Acoustic gravel-transport sensor: description and field tests in Little Granite Creek, Wyoming, USA
Wei et al. Measuring internal velocity of debris flows by temporally correlated shear forces
Chanson et al. Turbulence in an inundated urban environment during a major flood: implications in terms of people evacuation and sediment deposition
Geay et al. Measuring bedload grain-size distributions with passive acoustic measurements
Marineau et al. Surrogate bedload monitoring using hydrophones in the gravel-bedded Cedar river, Washington
Nasr Development of an acoustic method for bedload transport measurement in rivers
Gottesfeld et al. Bed load measurements with a passive magnetic induction device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees