JP2875341B2 - Plasma CVD equipment - Google Patents

Plasma CVD equipment

Info

Publication number
JP2875341B2
JP2875341B2 JP13285990A JP13285990A JP2875341B2 JP 2875341 B2 JP2875341 B2 JP 2875341B2 JP 13285990 A JP13285990 A JP 13285990A JP 13285990 A JP13285990 A JP 13285990A JP 2875341 B2 JP2875341 B2 JP 2875341B2
Authority
JP
Japan
Prior art keywords
film
gas
psg
plasma cvd
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13285990A
Other languages
Japanese (ja)
Other versions
JPH0426766A (en
Inventor
康司 中坊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP13285990A priority Critical patent/JP2875341B2/en
Publication of JPH0426766A publication Critical patent/JPH0426766A/en
Application granted granted Critical
Publication of JP2875341B2 publication Critical patent/JP2875341B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、常圧CVDを行うことができる様に構成した
プラズマCVD装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a plasma CVD apparatus configured to perform normal pressure CVD.

〈従来の技術〉 現在、IC等半導体装置のパッシベーション膜として、
プラズマCVDによるシリコン窒化膜(以下P−SiN膜と記
す)が広く用いられている。しかしこのP−SiN膜は、
大きな圧縮応力を持つ為、単独でパッシベーション膜と
すると、アルミニウム配線にAlスライドやストレスマイ
グレーションを引き起こす。そこで通常は、P−SiN膜
の下層に、引張応力を持つ、常圧CVDによるPSG膜(以下
AP−PSG膜と記す)を設け、P−SiN膜の大きな圧縮応力
を緩和させる様にしている。
<Conventional technology> Currently, as a passivation film for semiconductor devices such as ICs,
A silicon nitride film (hereinafter, referred to as a P-SiN film) formed by plasma CVD is widely used. However, this P-SiN film is
Since it has a large compressive stress, if it is used alone as a passivation film, it causes Al sliding and stress migration on aluminum wiring. Therefore, usually, a PSG film (hereinafter, referred to as a PSG film) having a tensile stress under normal pressure CVD is formed under the P-SiN film.
AP-PSG film) to relieve the large compressive stress of the P-SiN film.

従来、半導体装置を形成したウエハ上に上記P−SiN/
AP−PSGの二層膜から成るパッシベーション膜を形成す
るには、先ず常圧CVD装置でAP−PSG膜を生成させ、その
後でそのウエハをプラズマCVD装置へ移してP−SiN膜を
生成させていた。
Conventionally, the above P-SiN /
In order to form a passivation film composed of a two-layer film of AP-PSG, first, an AP-PSG film is generated by a normal pressure CVD device, and then the wafer is transferred to a plasma CVD device to generate a P-SiN film. Was.

従来のプラズマCVD装置としては、例えば第2図の概
略構成図に示した様な、チャンバー31内に電極32とサセ
プタ33とを対向配置した平行平板型と呼ばれるものがあ
る。上記サセプタ33には、ヒータ34が内蔵されるととも
に、中心軸上にはガス供給管35が設けられている。又電
極32とサセプタ33間には、RF(高周波)電源36が接続さ
れている。
2. Description of the Related Art As a conventional plasma CVD apparatus, for example, there is a so-called parallel plate type in which an electrode 32 and a susceptor 33 are arranged in a chamber 31 so as to face each other as shown in the schematic configuration diagram of FIG. The susceptor 33 has a built-in heater 34 and a gas supply pipe 35 on the center axis. An RF (high frequency) power supply 36 is connected between the electrode 32 and the susceptor 33.

上記構成において、サセプタ33上に複数のウエハWを
載置した後、ガス供給管35からチャンバー31内に生成ガ
スとして、例えばSiH4とN2Oとの混合ガスを1Torr程度の
圧力で導入する。そしてヒータ34によりウエハWの温度
を300〜400℃とした状態で、RF電源36によりRFパワーを
供給して生成ガスを活性化すると、予めウエハW上に形
成されたAP−PSG膜の上にP−SiN膜が生成する。
In the above configuration, after a plurality of wafers W are mounted on the susceptor 33, a mixed gas of, for example, SiH 4 and N 2 O is introduced from the gas supply pipe 35 into the chamber 31 at a pressure of about 1 Torr. . Then, when the temperature of the wafer W is set to 300 to 400 ° C. by the heater 34 and RF power is supplied by the RF power supply 36 to activate the generated gas, the AP-PSG film formed on the wafer W in advance is activated. A P-SiN film is generated.

〈発明が解決しようとする課題〉 第3図の特性図は、五種類の膜、つまりAP−PSG単層
膜(実線I),吸湿AP−PSG単層膜(破線II),P−SiN単
層膜(実線III),P−SiN/AP−PSG二層膜(実線IV),P−
SiN/吸湿AP−PSG二層膜(破線V)を夫々シリコンウエ
ハ上に形成した試料を、室温から400℃まで一定の速さ
で昇温し、400℃で60分間保持した後、再び室温まで一
定の速さで降温した時の膜応力を測定して得られたもの
である。ここで、吸湿AP−PSG単層膜、及びP−SiN/吸
湿AP−PSG二層膜については、AP−PSG膜生成後、ウエハ
を121℃、2.1気圧、湿度100%中に放置したそのAP−PSG
膜に水分を吸収させる処理を行っている。
<Problems to be Solved by the Invention> FIG. 3 shows five types of films, namely, an AP-PSG single-layer film (solid line I), a moisture-absorbing AP-PSG single-layer film (dashed line II), and a P-SiN single layer. Layer film (solid line III), P-SiN / AP-PSG bilayer film (solid line IV), P-
Samples having SiN / moisture-absorbing AP-PSG bilayers (broken line V) formed on silicon wafers were heated at a constant rate from room temperature to 400 ° C, held at 400 ° C for 60 minutes, and then returned to room temperature. This is obtained by measuring the film stress when the temperature is lowered at a constant speed. Here, for the moisture-absorbing AP-PSG single-layer film and the P-SiN / moisture-absorbing AP-PSG bilayer film, the AP was left at 121 ° C., 2.1 atm, and 100% humidity after the AP-PSG film was formed. −PSG
The film is absorbing water.

この特性図に示される様に、上記二種類の二層膜(実
線IV,破線V)の圧縮応力(負の膜応力)は、室温では
P−SiN単層膜(実線III)に比べて大幅に軽減されてい
るにもかかわらず、300℃を越えると急激に増加し、400
℃保持中にP−SiN単層膜より大きくなっている。
As shown in the characteristic diagram, the compressive stress (negative film stress) of the above two types of two-layer films (solid line IV, broken line V) is significantly larger than that of the P-SiN single-layer film (solid line III) at room temperature. Despite being reduced to a
It is larger than the P-SiN single-layer film during the holding at ° C.

更に上記二種類の二層膜の高温での圧縮応力を比較す
ると、吸湿させたAP−PSG膜を有する二層膜の方が大き
く増加している。別の実験によれば、この高温での圧縮
応力の増加は、AP−PSG膜中の水分量に依存し、膜中水
分が多いほど大きく、又このAP−PSG膜は、大気中に放
置すると短時間で吸湿し、膜中に多量の水分を含むこと
が確認される。
Further, when comparing the compressive stress at high temperature of the above two types of two-layer films, the two-layer film having the absorbed AP-PSG film has a larger increase. According to another experiment, the increase in compressive stress at this high temperature depends on the amount of moisture in the AP-PSG film, and the greater the moisture in the film, the greater the increase. It is confirmed that the film absorbs moisture in a short time and contains a large amount of water in the film.

ところで従来のプラズマCVD装置は、当然のことなが
らプラズマCVDだけを行う様に構成されている為、P−S
iN/AP−PSG二層膜から成るパッシベーション膜を形成す
るには、上述の如く、先に常圧CVD装置でAP−PSG膜を生
成させたウエハをプラズマCVD装置へ移してP−SiN膜を
生成させることになる。この生成方法だと、AP−PSG膜
は、生成後、搬送中等に大気にさらされ、大気中の水分
を吸収してしまう。しかも室温に戻されることから、一
層吸湿し易くなる。すると上記特性図の説明の様に、吸
湿したAP−PSG膜を有するパッシベーション膜は、ファ
イナルアニール等の高温処理の際にその圧縮応力が増加
し、その結果、Alボイドを発生させるという問題が起こ
る。
By the way, since the conventional plasma CVD apparatus is configured to perform only the plasma CVD as a matter of course, the P-S
In order to form a passivation film composed of an iN / AP-PSG bilayer film, as described above, a wafer in which an AP-PSG film was previously generated by an atmospheric pressure CVD device was transferred to a plasma CVD device, and a P-SiN film was formed. Will be generated. According to this generation method, the AP-PSG film is exposed to the air during transportation or the like after generation, and absorbs moisture in the air. Moreover, since the temperature is returned to room temperature, it becomes easier to absorb moisture. Then, as described in the above characteristic diagram, the passivation film having the moisture-absorbed AP-PSG film increases its compressive stress at the time of high-temperature treatment such as final annealing, and as a result, there arises a problem that an Al void is generated. .

本発明は、この問題を解決すべく、AP−PSG膜を大気
にさらすことなく、つまりAP−PSG膜が吸湿しない状態
でP−SiN/AP−PSG二層膜から成るパッシベーション膜
を形成し得る様に、常圧CVDをも行うことのできるプラ
ズマCVD装置を提供することを目的とする。
In order to solve this problem, the present invention can form a passivation film composed of a P-SiN / AP-PSG bilayer film without exposing the AP-PSG film to the atmosphere, that is, without absorbing the AP-PSG film. As described above, an object of the present invention is to provide a plasma CVD apparatus capable of performing normal pressure CVD.

〈課題を解決するための手段〉 上記目的を達成する為に、本発明のプラズマCVD装置
では、プラズマCVD用の生成ガスと常圧CVD用の生成ガス
とウエハ冷却用ガスとを、ガス供給管を通してチャンバ
ー内へ選択的に供給する手段と、ガス供給管を冷却する
手段とを設けた。
<Means for Solving the Problems> In order to achieve the above-mentioned object, in the plasma CVD apparatus of the present invention, a gas supply pipe is used for generating a plasma CVD gas, a normal pressure CVD generated gas, and a wafer cooling gas. Means for selectively supplying the gas through the chamber and means for cooling the gas supply pipe.

〈作用〉 上記構成により、チャンバー内へ常圧CVD用の生成ガ
スを供給してAP−PSG膜を生成させ、その後ウエハ冷却
用ガスを供給して、ウエハ及びサセプタの温度をP−Si
N膜生成温度まで速やかに低下させるとともに、常圧CVD
用の生成ガスをチャンバー内から速やかに排気させる。
続いてチャンバー内へプラズマCVD用の生成ガスを供給
してP−SiN膜を生成させる。
<Operation> With the above configuration, a gas for atmospheric pressure CVD is supplied into the chamber to generate an AP-PSG film, and then a gas for cooling a wafer is supplied to reduce the temperature of the wafer and the susceptor to P-Si.
N-film formation temperature is quickly lowered and normal pressure CVD
Generated gas is quickly exhausted from the chamber.
Subsequently, a generation gas for plasma CVD is supplied into the chamber to generate a P-SiN film.

又、ガス供給管を冷却することにより、その管内への
AP−PSG膜の生成を阻止する。
Also, by cooling the gas supply pipe,
Prevents the formation of AP-PSG films.

〈実施例〉 以下、図面に基づいて本発明の一実施例を説明する。Embodiment An embodiment of the present invention will be described below with reference to the drawings.

第1図は、本発明に係るプラズマCVD装置の概略構成
図である。
FIG. 1 is a schematic configuration diagram of a plasma CVD apparatus according to the present invention.

図に示す様に、このプラズマCVD装置の基本構造は平
行平板型であり、チャンバー1内に円盤状の電極2とサ
セプタ3とが上下に対向配置されている。サセプタ3に
はヒータ4が内蔵されるとともに、中心軸上にガス供給
管5が設けられており、サセプタ3は、このガス供給管
5を軸にして図示せぬ駆動機構により回転する様に支持
されている。
As shown in the figure, the basic structure of this plasma CVD apparatus is of a parallel plate type, and a disk-shaped electrode 2 and a susceptor 3 are vertically arranged inside a chamber 1. The susceptor 3 has a built-in heater 4 and a gas supply pipe 5 provided on a central axis. The susceptor 3 is supported so as to be rotated by a driving mechanism (not shown) around the gas supply pipe 5. Have been.

上記サセプタ3の外周部とチャンバー1の内面との間
には排気用の隙間6が設けられ、チャンバー1の底面の
周辺部には排気路7が連設されている。
An exhaust gap 6 is provided between the outer peripheral portion of the susceptor 3 and the inner surface of the chamber 1, and an exhaust passage 7 is provided continuously at the peripheral portion of the bottom surface of the chamber 1.

上記電極2とサセプタ3との間には、RF(高周波)電
源8が接続されている。
An RF (high frequency) power supply 8 is connected between the electrode 2 and the susceptor 3.

又本発明に係るプラズマCVD装置の特徴として、上記
ガス供給管5には、常圧CVD用の生成ガスG1として例え
ばSiH4,O2PH3の混合ガスを供給する第一のガス供給装置
9と、ウエハ冷却用ガスG2として例えばN2等の不活性ガ
ス或いはドライエアを供給する第二のガス供給装置10
と、プラズマCVD用の生成ガスG3として例えばSiH4,N2O
の混合ガスを供給する第三のガス供給装置11とが、切換
弁12を介して接続されている。従って切換弁12を切換え
ることにより、上記三種類のガスG1,G2,G3のうちの一つ
を、ガス供給管5を通してチャンバー1内へ選択的に供
給することができる。
Further, as a feature of the plasma CVD apparatus according to the present invention, a first gas supply device 9 for supplying a mixed gas of, for example, SiH 4 and O 2 PH 3 as a generated gas G1 for normal pressure CVD to the gas supply pipe 5 is provided. When the second gas supply device for supplying an inert gas or dry air as a wafer cooling gas G2 for example N 2 or the like 10
And SiH 4 , N 2 O, for example, as a generated gas G3 for plasma CVD.
And a third gas supply device 11 for supplying the mixed gas is connected via a switching valve 12. Therefore, by switching the switching valve 12, one of the three types of gases G1, G2, G3 can be selectively supplied into the chamber 1 through the gas supply pipe 5.

更に上記ガス供給管5の管壁内には、内側環状中空部
5aと外側環状中空部5bとが、上端で連通した状態で形成
されている。この内側環状中空部5aから外側環状中空部
5bへ冷却水CWを流すことにより、ガス供給管5を冷却す
ることができる。
Further, inside the pipe wall of the gas supply pipe 5, an inner annular hollow portion is provided.
5a and the outer annular hollow portion 5b are formed so as to communicate with each other at the upper end. From this inner annular hollow part 5a to the outer annular hollow part
By flowing the cooling water CW to 5b, the gas supply pipe 5 can be cooled.

その他本実施例では、上記電極2は、その外周部がチ
ャンバー1の内面に対して、それとの隙間13が1mm以下
となる程度に近接する大きさに形成されるとともに、図
示せぬ駆動機構により上下動し得る様に支持されてい
る。又チャンバー1の天井部には、N2等の不活性ガス或
いはドライエアから成る回り込み防止用ガスG4を導入す
るガス導入管14が接続されている。
In addition, in the present embodiment, the electrode 2 is formed such that its outer peripheral portion is close to the inner surface of the chamber 1 so that the gap 13 therewith is 1 mm or less, and is driven by a driving mechanism (not shown). It is supported so that it can move up and down. The ceiling of the chamber 1, the gas introduction pipe 14 for introducing the prevention gas G4 sneak an inert gas or dry air, such as N 2 is connected.

次に、上記構成のプラズマCVD装置により、P−SiN/A
P−PSG二層膜から成るパッシベーション膜を形成する方
法を説明する。
Next, the P-SiN / A
A method for forming a passivation film composed of a P-PSG bilayer film will be described.

先ず、ウエハ冷却用ガスG2或いは回り込み防止用ガス
G4を用いてチャンバー1内を大気圧のN2或いはドライエ
アで満たし、そのチャンバー1内に、半導体装置を形成
した複数のウエハWを入れ、サセプタ2上の所定位置に
載置する。そしてヒータ4の加熱パワーを制御して、ウ
エハWの温度をAP−PSG膜の生成温度(400〜500℃)ま
で上げる。
First, wafer cooling gas G2 or wraparound prevention gas
The chamber 1 is filled with atmospheric pressure N 2 or dry air using G4. A plurality of wafers W on which semiconductor devices are formed are put into the chamber 1 and placed at predetermined positions on the susceptor 2. Then, the heating power of the heater 4 is controlled to raise the temperature of the wafer W to the AP-PSG film formation temperature (400 to 500 ° C.).

次いで電極2を降下させてサセプタ2との間隔を数mm
以下とした状態で、切換弁12を切換えて第一のガス供給
装置9から常圧CVD用の生成ガスG1を大気圧でチャンバ
ー1内に供給する。それと同時に、ガス導入管14から回
り込み防止用ガスG4を、大気圧より僅かに高い圧力で導
入する。そして排気路7からの排気量を制御して、電極
2の下方の、生成ガスG1が流れる空間の圧力を大気圧に
保つ。更に、ガス供給管5の管壁内に冷却水CWを流し
て、ガス供給管5を冷却する。
Next, the electrode 2 is lowered so that the distance from the susceptor 2 is several mm.
Under the following conditions, the switching valve 12 is switched to supply the generated gas G1 for normal pressure CVD from the first gas supply device 9 into the chamber 1 at atmospheric pressure. At the same time, the wraparound prevention gas G4 is introduced from the gas introduction pipe 14 at a pressure slightly higher than the atmospheric pressure. Then, the amount of exhaust from the exhaust path 7 is controlled to maintain the pressure in the space below the electrode 2 where the generated gas G1 flows at atmospheric pressure. Further, the cooling water CW is caused to flow in the pipe wall of the gas supply pipe 5 to cool the gas supply pipe 5.

この状態を一定時間保持することにより常圧CVDが行
われ、ウエハW上にAP−PSG膜が生成する。その際、ガ
ス供給管5が冷却されていることにより、その管内への
AP−PSG膜の生成が阻止され、ガス供給管5の詰まりや
パーティクルの発生が防止される。
By maintaining this state for a certain period of time, normal pressure CVD is performed, and an AP-PSG film is formed on the wafer W. At this time, since the gas supply pipe 5 is cooled,
The formation of the AP-PSG film is prevented, and clogging of the gas supply pipe 5 and generation of particles are prevented.

本実施例の様に、電極2をサセプタ2に近接させるこ
とによって、ウエハW上を流れる常圧CVD用の生成ガスG
1の流速を高めることができる。又、電極2の外周部と
チャンバー1の内面との隙間13を小さく設定するととも
に、回り込み防止用ガスG4を電極2下方の空間より僅か
に高い圧力でガス導入管14から導入することによって、
常圧CVD用の生成ガスG1が電極2の上方へ回り込むのを
防止し、生成ガスG1の流れを安定化させることができ
る。その結果、より良好な膜付けを行うことができる。
By bringing the electrode 2 close to the susceptor 2 as in this embodiment, the generated gas G for normal pressure CVD flowing on the wafer W
1 can increase the flow rate. Also, by setting a small gap 13 between the outer peripheral portion of the electrode 2 and the inner surface of the chamber 1 and introducing the wraparound gas G4 from the gas introducing pipe 14 at a slightly higher pressure than the space below the electrode 2,
It is possible to prevent the generated gas G1 for normal pressure CVD from flowing above the electrode 2, and to stabilize the flow of the generated gas G1. As a result, better film formation can be performed.

AP−PSG膜が所望の厚さまで生成したならば、常圧CVD
用の生成ガスG1の供給を停止するとともに、切換弁12を
切換えて第二のガス供給装置10からウエハ冷却用ガスG2
をチャンバー1内に供給する。それと同時にヒータ4の
加熱パワーを、ウエハWの温度をP−SiN膜の生成温度
(300〜400℃)とする値まで下げる。
Once the AP-PSG film is formed to the desired thickness, normal pressure CVD
The supply of the generated gas G1 is stopped, and the switching valve 12 is switched to switch the wafer cooling gas G2 from the second gas supply device 10.
Is supplied into the chamber 1. At the same time, the heating power of the heater 4 is reduced to a value at which the temperature of the wafer W is set to a P-SiN film generation temperature (300 to 400 ° C.).

上記ウエハ冷却用ガスG2を供給することにより、ウエ
ハW及びサセプタ2を冷却して、ウエハWの温度を、AP
−PSG膜の生成温度より低いP−SiN膜の生成温度へ速や
かに低下させるとともに、常圧CVD用の生成ガスG1をチ
ャンバー1内から速やかに排気させる。
By supplying the wafer cooling gas G2, the wafer W and the susceptor 2 are cooled, and the temperature of the wafer W is raised to AP
-The temperature is rapidly lowered to the P-SiN film generation temperature lower than the PSG film generation temperature, and the generated gas G1 for normal pressure CVD is quickly exhausted from the chamber 1.

次いで電極2を上昇させて、サセプタ2との間隔をプ
ラズマCVDに適した所定の値(数cm)とする。又ガス導
入管14からの回り込み防止用ガスG4の導入を停止し、そ
の導入管14を閉じる。
Next, the electrode 2 is raised, and the distance between the electrode 2 and the susceptor 2 is set to a predetermined value (several cm) suitable for plasma CVD. Further, the introduction of the wraparound preventing gas G4 from the gas introduction pipe 14 is stopped, and the introduction pipe 14 is closed.

ウエハWの温度がP−SiN膜の生成温度に安定したな
らば、切換弁12を切換えて第三のガス供給装置11からプ
ラズマCVD用の生成ガスG3をチャンバー1内に供給す
る。そして排気路7からの排気量を制御して、チャンバ
ー1内の生成ガスG3の圧力を1Torr程度とする。
When the temperature of the wafer W is stabilized at the P-SiN film generation temperature, the switching valve 12 is switched to supply the generated gas G3 for plasma CVD from the third gas supply device 11 into the chamber 1. Then, the amount of exhaust gas from the exhaust path 7 is controlled to make the pressure of the generated gas G3 in the chamber 1 about 1 Torr.

この状態でRF電源8からRFパワーを供給して生成ガス
G3を活性化することによりプラズマCVDが行われ、ウエ
ハW上のAP−PSG膜の上にP−SiN膜が生成する。これで
P−SiN/AP−PSG二層膜から成るパッシベーション膜が
形成されることになる。
In this state, RF power is supplied from the RF power source 8 to generate gas.
By activating G3, plasma CVD is performed, and a P-SiN film is generated on the AP-PSG film on the wafer W. Thus, a passivation film composed of a P-SiN / AP-PSG bilayer film is formed.

尚、上記P−SiN膜の生成温度ではガス供給管5内に
膜が生成することはない為、ガス供給管5の管壁内に冷
却水CWを流す必要はない。
It should be noted that since the film is not formed in the gas supply pipe 5 at the above-mentioned P-SiN film formation temperature, it is not necessary to flow the cooling water CW into the pipe wall of the gas supply pipe 5.

〈発明の効果〉 以上述べた様に本発明のプラズマCVD装置によれば、
常圧CVDをも行うことができる為、AP−PSG膜を生成させ
た後、そのAP−PSG膜を大気にさらすことなく、連続的
にP−SiN膜を生成させることができる。よって吸湿し
ていないAP−PSG膜を有するパッシベーション膜を形成
することができる。
<Effects of the Invention> As described above, according to the plasma CVD apparatus of the present invention,
Since normal pressure CVD can also be performed, a P-SiN film can be continuously generated after an AP-PSG film is generated without exposing the AP-PSG film to the atmosphere. Therefore, a passivation film having an AP-PSG film that has not absorbed moisture can be formed.

即ち、本発明のプラズマCVD装置により形成したP−S
iN/AP−PSG二層膜から成るパッシベーション膜では、フ
ァイナルアニール等の高温処理においても、AP−PSG膜
の応力緩和作用が有効に働くことにより圧縮応力が小さ
く抑えられる。その結果、Alポイドの発生を抑え、半導
体装置の信頼性を向上させることができる。
That is, the P-S formed by the plasma CVD apparatus of the present invention
In the passivation film composed of the iN / AP-PSG bilayer film, the compressive stress can be suppressed to a small value even in high-temperature treatment such as final annealing by effectively acting the stress relaxation action of the AP-PSG film. As a result, generation of Al poids can be suppressed, and the reliability of the semiconductor device can be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の実施例を示す概略構成図、 第2図は、従来例を示す概略構成図、 第3図は、温度対膜応力の特性図である。 1……チャンバー,2……電極, 3……サセプタ,5……ガス供給管, 9,10,11……ガス供給装置,12……切換弁。 FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention, FIG. 2 is a schematic configuration diagram showing a conventional example, and FIG. 3 is a characteristic diagram of temperature versus film stress. 1 ... chamber, 2 ... electrode, 3 ... susceptor, 5 ... gas supply pipe, 9, 10, 11 ... gas supply device, 12 ... switching valve.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】チャンバー内に、電極と、ウエハを載置す
るサセプタとを対向配置するとともに、そのサセプタの
中心軸上に、チャンバー内へ供給する生成ガスを通すガ
ス供給管を設けたプラズマCVD装置において、 プラズマCVD用の生成ガスと常圧CVD用の生成ガスとウエ
ハ冷却用ガスとを、上記ガス供給管を通してチャンバー
内へ選択的に供給する手段と、 上記ガス供給管を冷却する手段とを設けたことを特徴と
するプラズマCVD装置。
1. A plasma CVD method comprising: an electrode and a susceptor on which a wafer is mounted are opposed to each other in a chamber; and a gas supply pipe is provided on a central axis of the susceptor for passing a gas to be supplied into the chamber. In the apparatus, a means for selectively supplying a generated gas for plasma CVD, a generated gas for atmospheric pressure CVD, and a wafer cooling gas into the chamber through the gas supply pipe, and a means for cooling the gas supply pipe A plasma CVD apparatus characterized by comprising:
JP13285990A 1990-05-23 1990-05-23 Plasma CVD equipment Expired - Lifetime JP2875341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13285990A JP2875341B2 (en) 1990-05-23 1990-05-23 Plasma CVD equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13285990A JP2875341B2 (en) 1990-05-23 1990-05-23 Plasma CVD equipment

Publications (2)

Publication Number Publication Date
JPH0426766A JPH0426766A (en) 1992-01-29
JP2875341B2 true JP2875341B2 (en) 1999-03-31

Family

ID=15091203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13285990A Expired - Lifetime JP2875341B2 (en) 1990-05-23 1990-05-23 Plasma CVD equipment

Country Status (1)

Country Link
JP (1) JP2875341B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5199483A (en) * 1991-05-15 1993-04-06 Applied Materials, Inc. Method and apparatus for cooling wafers
US6013584A (en) * 1997-02-19 2000-01-11 Applied Materials, Inc. Methods and apparatus for forming HDP-CVD PSG film used for advanced pre-metal dielectric layer applications
DE10043601A1 (en) * 2000-09-01 2002-03-14 Aixtron Ag Device and method for depositing, in particular, crystalline layers on, in particular, crystalline substrates

Also Published As

Publication number Publication date
JPH0426766A (en) 1992-01-29

Similar Documents

Publication Publication Date Title
US5525550A (en) Process for forming thin films by plasma CVD for use in the production of semiconductor devices
TW413864B (en) Apparatus for forming silicon oxide film and method of forming silicon oxide film
KR101615584B1 (en) Apparatus for manufacturing semiconductor device, method for manufacturing semiconductor device, and recording medium
US7214412B2 (en) Magenta toner and method for producing same
US5112437A (en) Oxide film removing apparatus and removing method thereof using azeotropic vapor mixture
JPH09237785A (en) Semiconductor device and its manufacture
JPH07130731A (en) Semiconductor device and its manufacturing method and apparatus
KR980005399A (en) Semiconductor device manufacturing apparatus, process condition control method of manufacturing apparatus and capacitor manufacturing method using same
JP2511503B2 (en) Method for forming tungsten film
JP2002151514A (en) Method of processing silicon nitride with plasma, using argon, nitrogen and silane gas
JP3973830B2 (en) Method for manufacturing semiconductor device using polysilicon hard mask
JP2875341B2 (en) Plasma CVD equipment
KR20020026614A (en) Pre-metal dielectric rapid thermal processing for sub-micron technology
JP2003533881A (en) Method for adjusting defect contours in a crystal or crystal-like structure
WO2001024238A1 (en) Method for forming tungsten silicide film and method for fabricating metal-insulator-semiconductor transistor
JPH0964176A (en) Fabrication method of semiconductor device
KR100212704B1 (en) Ozonizer
JPS6230329A (en) Dry etching device
JPH0567577A (en) Vertical-type diffusion cvd furnace
US20010015174A1 (en) Method and apparatus for manufacturing semiconductor device
US7202182B2 (en) Method of passivating oxide/compound semiconductor interface
JP3244809B2 (en) Thin film forming method and thin film forming apparatus
JP2002134498A (en) Film-forming method and film-forming apparatus
KR20020068780A (en) Semiconductor Thermal Treatment Equipment having Suppling Gas Pre-Heating Apparatus
JP2751015B2 (en) Processing method of the object