JP2874291B2 - Method for treating massive particles generated by fluidized bed denitration - Google Patents

Method for treating massive particles generated by fluidized bed denitration

Info

Publication number
JP2874291B2
JP2874291B2 JP15567890A JP15567890A JP2874291B2 JP 2874291 B2 JP2874291 B2 JP 2874291B2 JP 15567890 A JP15567890 A JP 15567890A JP 15567890 A JP15567890 A JP 15567890A JP 2874291 B2 JP2874291 B2 JP 2874291B2
Authority
JP
Japan
Prior art keywords
particles
fluidized bed
denitration
massive
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15567890A
Other languages
Japanese (ja)
Other versions
JPH0447293A (en
Inventor
敏雄 小野下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP15567890A priority Critical patent/JP2874291B2/en
Publication of JPH0447293A publication Critical patent/JPH0447293A/en
Application granted granted Critical
Publication of JP2874291B2 publication Critical patent/JP2874291B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、原子力分野における再処理等の工程におい
て、硝酸ウラニル及び/又は硝酸プルトニウム溶液を流
動床等の反応装置を使用して脱硝する場合に生成する塊
状粒子の処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a case where a uranyl nitrate and / or plutonium nitrate solution is denitrated using a reactor such as a fluidized bed in a process such as reprocessing in the field of nuclear power. And a method of treating the aggregated particles generated in the above.

(従来技術とその問題点) 本発明は、硝酸ウラニル溶液又は硝酸プルトニウム溶
液又はそれらの混合溶液を熱分解にて脱硝し、酸化物に
転換する場合に適用できるものであるが、代表例として
硝酸ウラニル溶液の脱硝を例にとつて説明する。
(Prior art and its problems) The present invention can be applied to a case where a uranyl nitrate solution or a plutonium nitrate solution or a mixed solution thereof is denitrified by thermal decomposition to be converted to an oxide. The denitration of the uranyl solution will be described as an example.

従来技術では、原子力分野の再処理等の工程におい
て、分離・精製された硝酸ウラニル溶液は流動床等の反
応装置を用いて、加熱により熱分解し、酸化物(UO3
粉末に転換する。具体的には、数ミクロン〜数百ミクロ
ン程度の粒度分布を持つ酸化物(UO3)粒子を流動させ
ながら、その中に噴霧ノズル等を用いて硝酸ウラニル溶
液を噴霧供給し、外部から加熱して酸化物(UO3)粒子
を生成させる。
In the prior art, in a process such as reprocessing in the field of nuclear power, a separated and purified uranyl nitrate solution is thermally decomposed by heating using a reactor such as a fluidized bed to form oxides (UO 3 ).
Convert to powder. Specifically, while urging the oxide (UO 3 ) particles having a particle size distribution of about several microns to several hundred microns, a uranyl nitrate solution is sprayed and supplied thereto using a spray nozzle or the like, and heated from the outside. To produce oxide (UO 3 ) particles.

この際、酸化物(UO3)粒子が生成する過程におい
て、湿つた粒子同士の凝集あるいはノズルの先端等に付
着する液滴が乾燥(熱分解)することによつて塊状の酸
化物(UO3)粒子が生成するのが常である。この塊状粒
子の生成量は全体の数パーセント以下であり、そう多く
はないが、現在、この生成量をゼロにする技術は見当た
らない。この塊状粒子自体の組成は目的とする製品であ
る粉末状の酸化物(UO3)粒子と化学的に同じものであ
るが、通常、数ミリメートルから最大で約40〜50ミリメ
ートル程度の塊りであり、後続の工程(例えば、このよ
うにして生成されたUO3は原子炉燃料として再利用する
ため、六フッ化ウランへ等への転換が行われる。)の原
料として考える場合に取扱い及び反応性の点から問題と
なる。すなわち、塊状粒子の場合は微粉状の粒子に比較
して、ハンドリングの際に装置内において閉塞を生じた
り、化学反応の際に反応に関与する比表面積が小さいた
め反応収率が低くなる等の問題点があり、そのままでは
後続の工程の原料としては適切とはいえない。従つて、
通常の場合は生成する粉末状の酸化物(UO3)粒子の中
から、この塊状粒子をフルイ等によつて選り分け、微粉
状の酸化物(UO3)粒子のみを製品とする。ここで選り
分けられた塊状のUO3粒子は、現状では硝酸溶液で溶解
して硝酸ウラニル溶液とし、原料液である硝酸ウラニル
溶液と混合して再度流動床反応装置に供給し、脱硝して
粉末状の酸化物(UO3)粒子とするのが一般的である。
At this time, in the process of forming the oxide (UO 3 ) particles, agglomeration of wet particles or drying (pyrolysis) of droplets adhering to the tip of a nozzle or the like causes a massive oxide (UO 3) ) Particles are usually formed. The production amount of the agglomerated particles is less than a few percent of the whole, and not very much, but at present, there is no technique for reducing this production amount to zero. The composition of the agglomerated particles themselves is chemically the same as the powdery oxide (UO 3 ) particles, which is the target product, but is usually a few millimeters to a maximum of about 40 to 50 millimeters. Yes, handling and reaction when considered as a raw material for subsequent processes (for example, UO 3 generated in this way is converted to uranium hexafluoride etc. for reuse as reactor fuel) This is problematic in terms of gender. That is, in the case of agglomerated particles, compared to the finely divided particles, clogging occurs in the apparatus during handling, or the reaction yield decreases due to a small specific surface area involved in the reaction during the chemical reaction. There is a problem, and it cannot be said that it is appropriate as a raw material for the subsequent process. Therefore,
Powdered oxides to produce for normal among (UO 3) particles, sorting Yotsute the massive particles sieve or the like to fine powder of oxide only (UO 3) particles and products. At present, the massive UO 3 particles selected are dissolved in a nitric acid solution to form a uranyl nitrate solution, mixed with a uranyl nitrate solution as a raw material solution, supplied again to the fluidized bed reactor, denitrated, and powdered. In general, oxide (UO 3 ) particles are used.

このように、従来技術では、 ・ 塊状粒子の受け容器 ・ 受け容器の搬送装置 ・ 溶解槽への供給装置 ・ 溶解槽 ・ 溶解液受槽 ・ 溶解液(硝酸及び水)供給のための装置 ・ 溶解のための蒸気及び冷却水の供給装置 ・ 溶解時に発生する槽類オフガス処理装置 ・ 漏洩液の拡大防止設備(ドリツプトレイ等) ・ 上記の機器、装置等に付属するポンプ、計装設備等 の機器・装置等が必要なうえ、これらの機器、装置等
は、生成される酸化物(UO3)粒子が水分を嫌う(UO3
水和性を持つ物質で、水と反応して強固な固体状の物質
に変化して、粉末としての取扱いが困難になる)ため、
微粉末状の酸化物粒子を取り扱うスペースとは隔離した
別のスペースで処理する必要があり、かつ、塊状粒子を
処理するために以下のような操作が必要となる。
As described above, in the prior art, a receiving container for agglomerated particles, a transfer device for the receiving container, a supply device to the dissolving tank, a dissolving tank, a dissolving solution receiving tank, an apparatus for supplying a dissolving solution (nitric acid and water),・ Steam and cooling water supply equipment ・ Tank off-gas treatment equipment generated during dissolution ・ Equipment for preventing leakage liquid from spreading (Drip tray etc.) ・ Equipment and equipment such as pumps and instrumentation equipment attached to the above equipment and equipment In addition to these, these devices and equipment require that the oxide (UO 3 ) particles generated dislike water (UO 3 is a hydrating substance, which reacts with water to form a strong solid Changes to a substance, making it difficult to handle as a powder)
It is necessary to treat in a space separate from the space where the fine powdery oxide particles are handled, and the following operation is required to treat the massive particles.

・ 塊状粒子の受け容器の本体装置との切離し→搬送
(輸送)→供給装置への接続・離し及びこの逆操作 ・ 溶解操作 ・ 生成される液(硝酸ウラニル溶液)の処理操作:移
送、濃縮、脱硝等 これらの操作並びに装置、機器等を設置するために
は、微粉末状の酸化物粒子を取り扱うスペースとは隔離
した別の大きなスペースが必要であり、スペースの確保
及び機器、装置等のための設備コストが大となる。ま
た、従来の方法では一度酸化物に転換されたUO3を硝酸
溶液に変えこれを濃縮及び脱硝するために加熱(電気加
熱等)が必要であり、かつ、塊状粒子の溶解には溶解操
作を円滑に行うために、先ず最初に溶解用の硝酸液を加
熱(温度が低いと溶解速度が遅いので、通常50〜70℃程
度に加熱する)しておき、UO3の溶解がある程度進んだ
時点で冷却(溶解熱の発生による温度上昇の抑制のた
め)するため、この加熱及び冷却にも蒸気及び冷却水等
の使用が必要であり、この両方にエネルギーを消費す
る。また、放射性物質の取扱いに固有の問題として閉じ
込め機能の維持が求められるため、これらを取り扱う空
間(スペース)は換気等を行うことによつてそのスペー
ス内を負圧に維持することが必要であり、前述の如くス
ペースを大きく必要とする従来の方法によれば、この換
気のための設備が必要であると同時にエネルギー(電力
量)消費もかなりの量となる。
・ Separation of the bulk container from the main unit → transport (transport) → connection / disconnection to the supply device and the reverse operation ・ Dissolution operation ・ Processing operation of the generated liquid (uranyl nitrate solution): transfer, concentration, Denitration, etc.In order to install these operations and devices, equipment, etc., a large space separate from the space that handles fine powder oxide particles is necessary, and it is necessary to secure space and to use equipment, equipment, etc. Equipment cost increases. In the conventional method, heating (electric heating or the like) is necessary to convert UO 3 once converted into oxide into nitric acid solution and concentrate and denitrate the solution, and a dissolving operation is required to dissolve the aggregated particles. First, the nitric acid solution for dissolution is heated (the temperature is low, the dissolution rate is slow, so it is usually heated to about 50 to 70 ° C.), and the dissolution of UO 3 has progressed to some extent. (For suppressing the rise in temperature due to the generation of heat of dissolution), the heating and cooling also require the use of steam and cooling water, and both consume energy. In addition, the maintenance of the confinement function is required as a problem peculiar to the handling of radioactive materials. Therefore, it is necessary to maintain a negative pressure in the space (space) for handling these materials by providing ventilation. According to the conventional method which requires a large space as described above, equipment for this ventilation is required, and at the same time, energy (electric power) consumption is considerable.

次に、従来技術の一例を図面により説明する。 Next, an example of the related art will be described with reference to the drawings.

第1−(a)図は従来技術による脱硝施設のプロセス
の流れの一例を示したものであり、第1−(b)図は従
来技術の塊状粒子の処理方法(溶解)のプロセスの流れ
の一例を示したものである。
FIG. 1- (a) shows an example of a process flow of a denitration facility according to the prior art, and FIG. 1- (b) shows a process flow of a process (dissolution) of a lump particle of the prior art. An example is shown.

第1−(a)図において、原料である硝酸ウラニル溶
液aは、硝酸ウラニル貯槽1に受入れられ、蒸発缶2に
て蒸気bで加熱され、蒸発濃縮される。濃縮された硝酸
ウラニル溶液は濃縮液受槽3を経由して脱硝塔4へ供給
される。濃縮液受槽も保温のため蒸気bで加熱されてい
る。また、脱硝塔4は硝酸ウラニル溶液を熱分解するた
め電気ヒータc等で加熱されている。脱硝塔内で熱分解
反応により生成されるUO3粉末はシール槽5にを経由し
て抜き出されるが、この中には前述の塊状粒子が含まれ
るので、フルイ6にてフルイ分け、粉末(フルイ下)の
UO3はUO3受槽7に受入れられる。一方、塊状のUO3(フ
ルイ上)は塊状粒子受槽8に受入れられた後、塊状粒子
受け容器9に充填され、搬送装置10にて溶解工程に搬送
される。
In FIG. 1- (a), a uranyl nitrate solution a, which is a raw material, is received in a uranyl nitrate storage tank 1, heated by a vapor b in an evaporator 2, and concentrated by evaporation. The concentrated uranyl nitrate solution is supplied to the denitration tower 4 via the concentrated liquid receiving tank 3. The concentrated liquid receiving tank is also heated with steam b for keeping the temperature. The denitration tower 4 is heated by an electric heater c or the like to thermally decompose the uranyl nitrate solution. The UO 3 powder generated by the thermal decomposition reaction in the denitration tower is extracted through the sealing tank 5, which contains the above-mentioned agglomerated particles. Under the screen)
UO 3 is received in the UO 3 receiving tank 7. On the other hand, the massive UO 3 (on the screen) is received in the massive particle receiving tank 8, filled in the massive particle receiving container 9, and transported by the transport device 10 to the melting step.

なお、脱硝塔4の停止時には、内部に残留するUO3
子を、脱硝塔4の底部より抜き出すが、この中にも粉末
状のUO3と塊状粒子が混在しており、これもフルイ6に
てフルイ分けられる。
When the denitration tower 4 is stopped, UO 3 particles remaining inside are extracted from the bottom of the denitration tower 4, and powdered UO 3 and agglomerate particles are also mixed therein. And sieved.

次に、溶解工程の操作を第1−(b)図において説明
する。脱硝の工程より搬送されてくる塊状粒子dは、溶
解槽への供給装置11(通常はホツパー、バルブ、計装装
置等で構成される)より溶解槽12に供給され溶解され
る。本例では二連式の溶解槽を示しているが、溶解槽12
には溶解用の硝酸eおよび濃度調整用の純水fが使用さ
れる。また、同時に加熱、冷却のために蒸気gおよび冷
却水hを使用するのが一般的である。
Next, the operation of the dissolving step will be described with reference to FIG. 1- (b). The massive particles d conveyed from the denitration process are supplied to the dissolution tank 12 by a supply device 11 for the dissolution tank (usually composed of a hopper, a valve, an instrumentation device, etc.) and dissolved therein. In this example, a double-type dissolving tank is shown.
For this, nitric acid e for dissolution and pure water f for concentration adjustment are used. It is common to use steam g and cooling water h for heating and cooling at the same time.

溶解された液(この状態では硝酸ウラニル溶液iとな
つている)は、溶解液貯槽13に受入れた後、ポンプ等で
第1−(a)図の硝酸ウラニル貯槽へ移送される。
The dissolved liquid (in this state, a uranyl nitrate solution i) is received in a dissolved liquid storage tank 13 and then transferred to a uranyl nitrate storage tank shown in FIG. 1- (a) by a pump or the like.

また、この工程には液の漏洩・拡大を防止するため
の、ドリツプトレイ14が設置され、各槽から発生するガ
スはオフガス処理設備へ送られ処理される。なお、これ
らの操作を行う工程全体を設置するスペース(部屋等)
は全体が換気設備等で負圧に維持されている。
In this step, a drip tray 14 is installed to prevent leakage and expansion of the liquid, and gas generated from each tank is sent to an off-gas processing facility for processing. A space (room, etc.) where the entire process for performing these operations is installed
The whole is maintained at a negative pressure by ventilation equipment.

(発明の目的) 本発明者らは上記従来技術の問題点を解決し、流動床
脱硝で生成する塊状粒子を簡単かつ有効に処理できる方
法を提供すべく、研究した結果、塊状粒子を選別して該
塊状粒子のみを微粉化することにより上記目的を達成し
得ることを見出し、本発明に到達した。
(Objects of the Invention) The present inventors have studied to solve the above-mentioned problems of the prior art and to provide a method capable of easily and effectively treating the agglomerated particles generated by fluidized bed denitration. As a result, it has been found that the above object can be achieved by pulverizing only the massive particles, and the present invention has been achieved.

(発明の構成) すなわち本発明によれば、硝酸ウラニル及び/又は硝
酸プルトニウム溶液を流動床反応装置にて熱分解脱硝し
て対応する酸化物粒子を製造するに際して、生成した前
記酸化物粒子中に混在する塊状粒子を処理する方法であ
って、流動床反応装置から抜き出された前記の酸化物粒
子を微粉状粒子と塊状粒子とに分別し、分別された塊状
粒子を乾式粉砕して微粉化し、得られた微粉化粒子を前
記の微粉状粒子と混合することを特徴とする流動床脱硝
で生成する塊状粒子の処理方法、が得られる。
(Constitution of the Invention) That is, according to the present invention, when the uranyl nitrate and / or plutonium nitrate solution is subjected to thermal decomposition denitration in a fluidized bed reactor to produce corresponding oxide particles, the produced oxide particles A method of treating mixed massive particles, wherein the oxide particles extracted from the fluidized bed reactor are separated into fine powder particles and massive particles, and the separated massive particles are pulverized by dry grinding. And a method for treating massive particles generated by fluidized bed denitration, characterized by mixing the obtained finely divided particles with the finely divided particles.

次に、本発明を実施例により具体的に説明するが、本
実施例は本発明の範囲を限定するものではない。
Next, the present invention will be described specifically with reference to examples, but the examples do not limit the scope of the present invention.

本実施例を第2図を用いて説明する。第2図において
脱硝塔101からシール槽102を経由して抜き出されるUO3
はフルイ103にて一旦フルイ分けられ、微粉状粒子と塊
状粒子に分けられるが、塊状粒子は乾式粉砕機105に受
入れられ、粉砕された後、微粉化粒子粒子としてUO3
槽104に受入れ、フルイを通過した前記の微粉状粒子と
混合して製品とする。粉砕機105には、受けホツパーを
兼ねたものが多く、この方式のものを使用すれば第1−
(a)図の塊状粒子受槽8も省略できる。また、本実施
例では、乾式粉砕機として1段式のものを例示したが、
塊状粒子の性状等によつては粗粉砕機と微粉砕機の組合
せて使用することも考慮される。
This embodiment will be described with reference to FIG. In FIG. 2, UO 3 extracted from the denitration tower 101 via the sealing tank 102
Is sieved once by a sieve 103 and is divided into fine powder particles and agglomerated particles.The massive particles are received by a dry mill 105, pulverized, and then received as finely divided particle particles in a UO 3 receiving tank 104. Is mixed with the above-mentioned fine powdery particles to obtain a product. Many pulverizers 105 also serve as receiving hoppers.
(A) The massive particle receiving tank 8 in the figure can also be omitted. In this embodiment, a one-stage dry crusher is exemplified.
Depending on the properties of the agglomerated particles, the use of a combination of a coarse pulverizer and a fine pulverizer may be considered.

(発明の効果) 本発明は、上記構成をとることによつて、次の効果が
期待できる。すなわち、本発明によれば塊状粒子の溶解
操作がなくなるため、 (1)溶解のための操作がなくなり、省力化が見込める
こと。
(Effects of the Invention) By adopting the above configuration, the present invention can expect the following effects. That is, according to the present invention, the operation of dissolving the agglomerated particles is eliminated.

(2)溶解のための機器・装置(第1−(a)図に示す
8,9,10および第1−(b)図に示す11,12,13,14等の装
置)類が不要になること。
(2) Equipment / apparatus for dissolution (shown in FIG. 1- (a)
(8), (9), (10) and devices (11, 12, 13, 14, etc.) shown in FIG.

(3)溶解した液の処理するためのエネルギー(第1−
(a)図に示すb,cおよび第1−(b)図に示すe,f,g,h
等)が節約でき、かつ、それらのエネルギーを供給する
装置等も省略できること。
(3) Energy for processing the dissolved liquid (No. 1-
(A) b, c shown in FIG. 1 and e, f, g, h shown in FIG. 1- (b)
Etc.) can be saved, and a device for supplying such energy can be omitted.

(4)機器・装置等の省略並びに湿式工程のなくなるこ
とにより、機器・装置等の設置に要する部屋およびスペ
ース(空間容積)が減るため、換気に要する機器の大き
さを小さくでき、この点からも使用エネルギーの削減が
計れること。
(4) The elimination of equipment and devices and the elimination of the wet process reduce the room and space (space volume) required for the installation of equipment and devices, thereby reducing the size of equipment required for ventilation. Can also reduce energy consumption.

【図面の簡単な説明】[Brief description of the drawings]

第1−(a)図は従来技術による脱硝施設のプロセスの
流れの一例を示したものであり、第1−(b)図は従来
技術の塊状粒子の処理方法(溶解)のプロセスの流れの
一例を示したものであり、第2図は本発明の実施例を示
すものである。 図において、 a……硝酸ウラニル溶液、1……硝酸ウラニル貯槽 b……蒸気(加熱用)、2……蒸発缶 c……電気(加熱用)、3……濃縮液受槽 d……塊状粒子、4……脱硝塔 e……硝酸、5……シール槽 f……純水、6……フルイ g……蒸気(加熱用)、7……UO3受槽 h……冷却水、8……塊状粒子受槽 i……硝酸ウラニル溶液、9……塊状粒子受け容器 p……ポンプ、10……搬送装置 11……溶解槽への供給装置 12……溶解槽 13……溶解液受槽 14……ドリツプトレイ 101……脱硝塔 102……シール槽 103……フルイ 104……UO3受槽 105……乾式粉砕機
FIG. 1- (a) shows an example of a process flow of a denitration facility according to the prior art, and FIG. 1- (b) shows a process flow of a process (dissolution) of a lump particle of the prior art. FIG. 2 shows an example of the present invention. In the figure, a ... uranyl nitrate solution, 1 ... uranyl nitrate storage tank b ... steam (for heating), 2 ... evaporator c ... electricity (for heating), 3 ... concentrated liquid receiving tank d ... massive particles , 4 ...... denitrating tower e ...... nitrate, 5 ...... seal tank f ...... pure water, 6 ...... sieve g ...... steam (for heating), 7 ...... UO 3 receiving tank h ...... cooling water, 8 ...... Lumped particle receiving tank i: uranyl nitrate solution, 9: Lumped particle receiving vessel p: pump, 10: transport device 11: supply device to the dissolving tank 12 ... dissolving tank 13 ... dissolving liquid receiving tank 14 ... Drip tray 101: denitration tower 102: seal tank 103: screen 104: UO 3 receiving tank 105: dry mill

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】硝酸ウラニル及び/又は硝酸プルトニウム
溶液を流動床反応装置にて熱分解脱硝して対応する酸化
物粒子を製造するに際して、生成した前記酸化物粒子中
に混在する塊状粒子を処理する方法であって、流動床反
応装置から抜き出された前記の酸化物粒子を微粉状粒子
と塊状粒子とに分別し、分別された塊状粒子を乾式粉砕
して微粉化し、得られた微粉化粒子を前記の微粉状粒子
と混合することを特徴とする流動床脱硝で生成する塊状
粒子の処理方法。
1. A method for producing a corresponding oxide particle by subjecting a uranyl nitrate and / or plutonium nitrate solution to thermal decomposition denitration in a fluidized bed reactor to treat massive particles mixed in the produced oxide particle. A method, wherein the oxide particles extracted from the fluidized bed reactor are separated into fine powder particles and bulk particles, and the separated bulk particles are pulverized by dry pulverization, and the obtained micronized particles are obtained. Is mixed with the finely divided particles described above, a method for treating massive particles generated by fluidized bed denitration.
JP15567890A 1990-06-14 1990-06-14 Method for treating massive particles generated by fluidized bed denitration Expired - Fee Related JP2874291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15567890A JP2874291B2 (en) 1990-06-14 1990-06-14 Method for treating massive particles generated by fluidized bed denitration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15567890A JP2874291B2 (en) 1990-06-14 1990-06-14 Method for treating massive particles generated by fluidized bed denitration

Publications (2)

Publication Number Publication Date
JPH0447293A JPH0447293A (en) 1992-02-17
JP2874291B2 true JP2874291B2 (en) 1999-03-24

Family

ID=15611185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15567890A Expired - Fee Related JP2874291B2 (en) 1990-06-14 1990-06-14 Method for treating massive particles generated by fluidized bed denitration

Country Status (1)

Country Link
JP (1) JP2874291B2 (en)

Also Published As

Publication number Publication date
JPH0447293A (en) 1992-02-17

Similar Documents

Publication Publication Date Title
US3008904A (en) Processing of radioactive waste
EP1225973B1 (en) Single stage denitration
JP3911288B2 (en) Process for producing powdered metal oxide mixtures from metal oxide nitrates in the nuclear industry.
US4152287A (en) Method for calcining radioactive wastes
JP2874291B2 (en) Method for treating massive particles generated by fluidized bed denitration
JP3524743B2 (en) Reprocessing of spent LWR fuel
JPS5924738B2 (en) Nuclear fuel conversion device
GB1594370A (en) Treatment of waste
JPH03333B2 (en)
JPH0627276A (en) Manufacture of uo2 fuel pellet from metallic uranium without generating waste
JPH0727070B2 (en) How to dispose of radioactive waste
JPH11109087A (en) Uniformization mixing method of uranium/plutonium mixed oxide
JP3170468B2 (en) Method for producing nuclear fuel pellets
JPH0780686B2 (en) Method for passivating the surface of uranium particulate oxide
JP2020536728A (en) Equipment and methods for low temperature grinding using a merging jet
US3376116A (en) Fluid bed denitration of thorium nitrate
JPS58194742A (en) Denitration of uranium
Dickey et al. High-level waste solidification: applicability of fluidized-bed calcination to commercial wastes
JPS6175300A (en) Pellet for blast
JP2002275478A (en) Method for coal liquefaction
JPS6144811B2 (en)
JPH10232294A (en) Nuclear fuel scrap dry recovering apparatus
Jonke et al. PRELIMINARY STUDIES ON FLUID-BED CALCINATION OF PUREX PROCESS WASTES
Kemmler et al. Pilot-scale testing of pyrolysis for the volume reduction of organic waste
DD145023A3 (en) PROCESS FOR GASIFICATION OF SOLID BREADS

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees