JP2873996B2 - Wireless communication device - Google Patents

Wireless communication device

Info

Publication number
JP2873996B2
JP2873996B2 JP7097550A JP9755095A JP2873996B2 JP 2873996 B2 JP2873996 B2 JP 2873996B2 JP 7097550 A JP7097550 A JP 7097550A JP 9755095 A JP9755095 A JP 9755095A JP 2873996 B2 JP2873996 B2 JP 2873996B2
Authority
JP
Japan
Prior art keywords
signal
transmission
circuit
quadrature
wireless communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7097550A
Other languages
Japanese (ja)
Other versions
JPH08274681A (en
Inventor
芳彦 赤岩
裕之 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IDO TSUSHIN SHISUTEMU KAIHATSU KK
Original Assignee
IDO TSUSHIN SHISUTEMU KAIHATSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IDO TSUSHIN SHISUTEMU KAIHATSU KK filed Critical IDO TSUSHIN SHISUTEMU KAIHATSU KK
Priority to JP7097550A priority Critical patent/JP2873996B2/en
Publication of JPH08274681A publication Critical patent/JPH08274681A/en
Application granted granted Critical
Publication of JP2873996B2 publication Critical patent/JP2873996B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は無線通信装置に関し、
特に自動車電話や携帯電話などの移動通信に使用され、
ディジタル無線通信での送信および受信を同一周波数の
搬送波を用いて交互に行う無線通信装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radio communication device,
Especially used for mobile communications such as car phones and mobile phones,
The present invention relates to a wireless communication device that performs transmission and reception in digital wireless communication alternately using carrier waves of the same frequency.

【0002】[0002]

【従来の技術】移動通信では、電波伝搬路が見通し外に
なるために、多数の伝搬路を通った電波が不規則に強め
合ったり弱め合ったりして受信機に入力される、いわゆ
るフェージング現象が起こり、電波が弱め合って信号レ
ベルが基準感度以下になると、受信信号品質が著しく劣
化することになる。
2. Description of the Related Art In mobile communications, a radio wave propagation path is out of line of sight, so that a radio wave passing through a large number of propagation paths is irregularly strengthened or weakened and input to a receiver, a so-called fading phenomenon. When the signal level falls below the reference sensitivity due to the weakening of radio waves, the quality of the received signal deteriorates significantly.

【0003】これを防ぐための方法として、送信電力を
大きくとって信号レベルが基準値以下に落ち込む確率を
小さくする方法があるが、この方法では不必要に大きな
電力で送信することになる場合が多く、無駄な電力消費
となったり、他の通信機に妨害を与えたりする。そこ
で、上記のような欠点を改善するものとして、伝送路の
フェージングの状況に合わせて自動的に必要最小限の電
力で送信する自動送信電力制御が知られている。
As a method for preventing this, there is a method of increasing the transmission power to reduce the probability that the signal level falls below the reference value. However, in this method, transmission may be performed with unnecessarily large power. In many cases, wasteful power consumption occurs, and other communication devices are obstructed. To solve the above-mentioned drawbacks, there is known automatic transmission power control that automatically performs transmission with a minimum necessary power in accordance with the fading condition of the transmission path.

【0004】ところで、送受信を同一周波数の搬送波を
用いて交互に行うディジタル無線通信方式においては、
二つの送受信器の間で交互に受信される受信信号が受け
るフェージングの影響は、互いに相関が高いことが知ら
れている。また、基地局から一定の電力で送信されてい
るものとすれば、移動局における受信信号レベルは、伝
送路におけるフェージングによるレベルの変動を表して
いる。
In a digital radio communication system in which transmission and reception are alternately performed using carrier waves of the same frequency,
It is known that the effects of fading on a received signal alternately received between two transceivers have a high correlation with each other. Also, assuming that the signal is transmitted from the base station with a constant power, the received signal level at the mobile station indicates a level change due to fading in the transmission path.

【0005】したがって、上記のようなディジタル無線
通信方式における自動送信電力制御では、受信信号レベ
ルを測定し、その受信信号のレベル低下分を補償するよ
うに送信側の送信信号レベルを制御するいわゆる前向き
制御を行うようにしており、この前向き制御による自動
送信電力制御によって、フェージングの影響を必要最小
限の電力でキャンセルし、信号品質を良好に保持したま
まで電力消費を抑えることができるようになる。なお、
この自動送信電力制御は、上記のような移動局から基地
局の方向へ(上り回線)送信する際に行う前向き制御の
ときに特に有効に機能する。
[0005] Therefore, in the automatic transmission power control in the digital radio communication system as described above, the so-called forward-looking method of measuring the reception signal level and controlling the transmission signal level on the transmission side so as to compensate for the decrease in the level of the reception signal. The automatic transmission power control based on the forward control cancels the effect of fading with a minimum necessary power, thereby suppressing power consumption while maintaining good signal quality. . In addition,
This automatic transmission power control functions particularly effectively in the forward control performed when transmitting from the mobile station to the base station (uplink) as described above.

【0006】一方、伝送路の特質は時間的に絶えず変化
するため、上記の自動送信電力制御では、過去のデータ
に基づいて未来を予測しながら制御を行う予測制御が有
効であるが、この予測を含めた自動送信電力制御におい
ては、受信信号そのものの信号レベル(変調波の振幅
値)を用いて送信側のレベル変動を予測し送信電力を制
御するよりも、受信信号を同相成分と直交成分とに分解
し、各々の成分を用いて送信側のレベル変動を予測し送
信電力を制御する方が、より高品質の信号が得られ優れ
ていることが報告されている。
On the other hand, since the characteristics of the transmission line constantly change over time, in the automatic transmission power control described above, prediction control for performing control while predicting the future based on past data is effective. In the automatic transmission power control including the above, the received signal is in-phase component and quadrature component rather than controlling the transmission power by predicting the level fluctuation on the transmission side using the signal level (amplitude value of the modulated wave) of the received signal itself. It has been reported that it is better to control the transmission power by predicting the level fluctuation on the transmission side using each component to obtain a higher quality signal.

【0007】[0007]

【発明が解決しようとする課題】しかし、上記のような
自動送信電力制御は、一つの考え方としては報告されて
いるが、それを実際に回路としてどのように実現するか
は明らかにされていないのが現状であり、フェージング
の影響を必要最小限の電力でキャンセルできる有効な手
段としてその実現が待望されている。この発明は上記に
鑑み提案されたもので、信号品質を良好に保持したまま
で電力消費を抑制でき、また他の通信機にも妨害を与え
たりしない無線通信装置を提供することを目的とする。
However, although the automatic transmission power control as described above has been reported as one concept, it is not clear how to actually implement it as a circuit. At present, the realization is expected as an effective means for canceling the effect of fading with the minimum necessary power. The present invention has been proposed in view of the above, and an object of the present invention is to provide a wireless communication device that can suppress power consumption while maintaining good signal quality and that does not interfere with other communication devices. .

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、この発明の無線通信装置は、ディジタル無線通信で
の送信および受信を同一周波数の搬送波を用いて交互に
行う無線通信装置において、受信信号のレベル変動をそ
のレベル変動に応じた制御電圧で抑制し受信信号の利得
を一定に制御する利得制御手段と、上記利得制御手段か
らの出力信号を、その出力信号から取り出した再生搬送
波信号を用いて同期復調する復調手段と、上記再生搬送
波信号を同一周波数を持つ検波信号を用いて直交検波し
同相および直交ベースバンド信号を出力する直交検波手
段と、上記直交検波手段からの同相および直交ベースバ
ンド信号並びに上記利得制御手段での制御電圧に基づい
て送信信号の送信電力最適制御を行う送信電力制御手段
と、を備えるようにした。
In order to achieve the above object, a wireless communication apparatus according to the present invention provides a wireless communication apparatus which performs transmission and reception in digital wireless communication alternately using a carrier wave of the same frequency. Gain control means for suppressing the level fluctuation of the signal with a control voltage corresponding to the level fluctuation and controlling the gain of the received signal to be constant; and an output signal from the gain control means, a reproduced carrier signal extracted from the output signal. Demodulation means for performing synchronous demodulation using the same, quadrature detection means for performing quadrature detection on the reproduced carrier signal using a detection signal having the same frequency, and outputting in-phase and quadrature baseband signals, and in-phase and quadrature base signals from the quadrature detection means. Transmission power control means for performing transmission power optimum control of the transmission signal based on the band signal and the control voltage of the gain control means. It was.

【0009】[0009]

【作用】上述したように、この発明によれば、再生搬送
波を直交検波して得た同相および直交ベースバンド信
号、並びに変調信号の利得を一定に制御する際の制御電
圧に基づいて、送信電力の制御を行う。制御電圧等に
は、伝送路でのフェージングによって受ける影響に関す
る情報が含まれており、その制御電圧等に基づいて送信
電力の制御を行うことによって、送信信号が相手方に到
達したとき表れるであろうフェージングによる影響をキ
ャンセルできる。
As described above, according to the present invention, the transmission power is controlled based on the in-phase and quadrature baseband signals obtained by quadrature detection of the reproduced carrier and the control voltage for controlling the gain of the modulation signal to be constant. Control. The control voltage and the like include information on the effect of fading in the transmission path, and by controlling the transmission power based on the control voltage and the like, the transmission signal will appear when it reaches the other party. The effect of fading can be canceled.

【0010】[0010]

【実施例】以下にこの発明の実施例を図面に基づいて詳
細に説明する。図2はこの発明の無線通信装置が適用さ
れるディジタル無線通信方式の説明図である。図2
(a)において、移動局82には詳細は後述する本発明
の無線通信装置100が組み込まれており、この移動局
82は相手方から発信されたディジタル無線信号を基地
局81を経由して自局の無線通信装置100で受信し、
またその無線通信装置100から相手方に向けてディジ
タル無線信号を発信し送信する。このディジタル無線通
信におけるディジタル信号の送受信は、同一周波数f0
の搬送波を用いて行われ、また図2(b)に示すよう
に、その送信信号TXと受信信号RXの伝送は時分割方
向制御によって、周期Tfで交互に行われる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 2 is an explanatory diagram of a digital wireless communication system to which the wireless communication device of the present invention is applied. FIG.
In (a), a mobile station 82 incorporates a wireless communication device 100 of the present invention, which will be described in detail later. The mobile station 82 transmits a digital wireless signal transmitted from a partner via a base station 81 to its own station. Received by the wireless communication device 100,
The wireless communication device 100 transmits and transmits a digital wireless signal to the other party. Transmission and reception of digital signals in this digital wireless communication are performed at the same frequency f0.
2B, the transmission of the transmission signal TX and the transmission of the reception signal RX are alternately performed at a period Tf by time-division directional control.

【0011】図1はこの発明の無線通信装置の特徴とな
る部分の構成を示すブロック図である。この発明の無線
通信装置は、上述したように、送信および受信を同一周
波数f0の搬送波を用いて交互に行うディジタル無線通
信方式のものであり、受信信号のレベル変動をそのレベ
ル変動に応じた制御電圧A(t)で抑制し受信信号の利
得を一定に制御する利得制御手段1と、利得制御手段1
からの出力信号を、その出力信号から取り出した再生搬
送波信号Scを用いて同期復調する復調手段2と、再生
搬送波信号Scを同一周波数を持つ検波信号を用いて直
交検波し同相ベースバンド信号Cx(t)および直交ベ
ースバンド信号Cy(t)を出力する直交検波手段4
と、直交検波手段4からの同相および直交ベースバンド
信号Cx(t),Cy(t)、並びに利得制御手段での
制御電圧A(t)に基づいて送信信号の送信電力最適制
御を行う送信電力制御手段5と、を備えている。
FIG. 1 is a block diagram showing a configuration of a characteristic portion of a wireless communication apparatus according to the present invention. As described above, the wireless communication apparatus according to the present invention is of a digital wireless communication system in which transmission and reception are performed alternately using a carrier having the same frequency f0, and the level fluctuation of the received signal is controlled according to the level fluctuation. Gain control means 1 for controlling with a voltage A (t) and controlling the gain of a received signal to be constant; gain control means 1
And a demodulation means 2 for synchronously demodulating the output signal from the output carrier signal using the reproduced carrier signal Sc extracted from the output signal, and performing quadrature detection on the reproduced carrier signal Sc using a detection signal having the same frequency to obtain an in-phase baseband signal Cx ( t) and quadrature detection means 4 for outputting quadrature baseband signal Cy (t)
And transmission power for performing transmission power optimum control of the transmission signal based on the in-phase and quadrature baseband signals Cx (t) and Cy (t) from the quadrature detection means 4 and the control voltage A (t) in the gain control means. And control means 5.

【0012】次に、図3、図4および図5を用いて上記
無線通信装置の構成をより具体的に説明する。図3は上
記無線通信装置のより具体的な構成例を示す図である。
図において、アンテナ70によって受信された相手方か
らの変調波信号は、無線通信装置100のアンテナ共用
器60を通って受信増幅器11で増幅された後、自動利
得制御回路10に入る。自動利得制御回路10は、受信
信号の利得(振幅)を検波してその利得変動に応じた制
御電圧A(t)を生成し、その制御電圧A(t)で受信
信号の利得を一定に制御し、被制御受信信号S1として
復調および判定回路20に出力する。
Next, the configuration of the wireless communication device will be described more specifically with reference to FIGS. 3, 4 and 5. FIG. 3 is a diagram illustrating a more specific configuration example of the wireless communication device.
In the figure, the modulated wave signal from the other party received by the antenna 70 passes through the antenna duplexer 60 of the wireless communication device 100, is amplified by the receiving amplifier 11, and then enters the automatic gain control circuit 10. The automatic gain control circuit 10 detects the gain (amplitude) of the received signal, generates a control voltage A (t) corresponding to the gain fluctuation, and controls the gain of the received signal to be constant with the control voltage A (t). Then, the signal is output to the demodulation and determination circuit 20 as the controlled reception signal S1.

【0013】復調および判定回路20は、被制御受信信
号S1を再生搬送波信号を用いて同期復調するための回
路であり、図4に示すように、位相検波器21、低域フ
ィルタ22および判定回路23から成る直列回路20a
と、位相検波器24、低域フィルタ25および判定回路
26から成る直列回路20bとが並列に設けてある。
The demodulation and determination circuit 20 is a circuit for synchronously demodulating the controlled reception signal S1 using the reproduced carrier signal. As shown in FIG. 4, a phase detector 21, a low-pass filter 22, and a determination circuit 23 comprising a series circuit 20a
And a series circuit 20b including a phase detector 24, a low-pass filter 25, and a determination circuit 26 are provided in parallel.

【0014】また、この復調および判定回路20には搬
送波再生回路30が備えてあり、詳細は後述するよう
に、直列回路20a、20bからの各出力信号と、自動
利得制御回路10からの被制御受信信号S1とを受けて
搬送波を取り出し、再生搬送波信号Scとして出力す
る。
The demodulation and judgment circuit 20 is provided with a carrier recovery circuit 30. As will be described in detail later, each output signal from the serial circuits 20a and 20b and a controlled signal from the automatic gain control circuit 10 are controlled. In response to the received signal S1, a carrier is extracted and output as a reproduced carrier signal Sc.

【0015】上記の直列回路20aは、位相検波器21
において、被制御受信信号S1と移相器27で位相が9
0°だけ移相した再生搬送波信号Scとを受けて同期検
波し、判定回路23で判定して復調した受信ディジタル
信号の同相成分IRをシンボル周期毎に出力する。ま
た、直列回路20bは、位相検波器24において被制御
受信信号S1と再生搬送波信号Scとを受けて同期検波
し、判定回路26で判定して復調した受信ディジタル信
号の直交成分QRをシンボル周期毎に出力する。
The above-described series circuit 20a includes a phase detector 21
, The phase of the controlled reception signal S1 and the phase shifter 27 is 9
Upon receiving the reproduced carrier signal Sc shifted in phase by 0 °, it performs synchronous detection, and outputs the in-phase component IR of the received digital signal determined and demodulated by the determination circuit 23 every symbol period. Further, the serial circuit 20b receives the controlled reception signal S1 and the reproduced carrier signal Sc in the phase detector 24, performs synchronous detection, and determines the orthogonal component QR of the received digital signal determined and demodulated by the determination circuit 26 for each symbol period. Output to

【0016】図5は上記の搬送波再生回路30の構成を
示すブロック図である。この搬送波再生回路30に入力
された被制御受信信号S1は、遅延回路31により復調
および判定回路20における時間遅延分だけ遅延された
後、直交変調回路30aに入力される。直交変調回路3
0aは、図に示すように、変調器32,34、反転回路
33、移相器35等から成り、上記受信ディジタル信号
の同相成分IRおよび直交成分QRを受けて、被制御受
信信号S1を逆変調し、相手方での送信時に受けた直交
変調による位相変化を元に戻して搬送波信号を再生して
いる。この再生された信号は、共振回路36に入力され
て雑音分が除去された後、再生搬送波信号Scとなる。
FIG. 5 is a block diagram showing the configuration of the carrier recovery circuit 30 described above. The controlled reception signal S1 input to the carrier recovery circuit 30 is input to the quadrature modulation circuit 30a after being delayed by a time delay in the demodulation and determination circuit 20 by the delay circuit 31. Quadrature modulation circuit 3
0a, as shown in the figure, comprises modulators 32 and 34, an inverting circuit 33, a phase shifter 35, etc., receives the in-phase component IR and the quadrature component QR of the received digital signal, and reverses the controlled reception signal S1. The carrier signal is reproduced by modulating and recovering the phase change due to the quadrature modulation received at the time of transmission by the other party. The reproduced signal is input to the resonance circuit 36 to remove a noise component, and then becomes a reproduced carrier signal Sc.

【0017】上記の搬送波再生回路30からの再生搬送
波信号Scは、さらに直交検波回路40にも出力され
る。この直交検波回路40は、再生搬送波信号Scを搬
送波と同一の周波数f0を持つ検波信号を用いて直交検
波し同相ベースバンド信号Cx(t)および直交ベース
バンド信号Cy(t)を出力するための回路である。す
なわち、図4に示すように、位相検波器41は、局部発
信器46からの搬送波と同一の周波数f0を持ち移相器
41で位相が90°だけ移相した検波信号と、再生搬送
波信号Scとを受けて同期検波する。その同期検波され
た信号は、低域フィルタ42を経て同相ベースバンド信
号Cx(t)として送信電力制御回路50に出力され
る。また、位相検波器43は、同様に局部発信器46か
らの検波信号と再生搬送波信号Scとを受けて同期検波
し、その同期検波された信号は、低域フィルタ44を経
て直交ベースバンド信号Cy(t)として送信電力制御
回路50に出力される。
The reproduced carrier signal Sc from the carrier recovery circuit 30 is further output to the quadrature detection circuit 40. The quadrature detection circuit 40 performs quadrature detection on the reproduced carrier signal Sc using a detection signal having the same frequency f0 as the carrier, and outputs an in-phase baseband signal Cx (t) and a quadrature baseband signal Cy (t). Circuit. That is, as shown in FIG. 4, the phase detector 41 has the same frequency f0 as the carrier from the local oscillator 46 and has a phase shifted by 90 ° in the phase shifter 41 and a reproduced carrier signal Sc. And synchronous detection. The synchronously detected signal is output to the transmission power control circuit 50 as the in-phase baseband signal Cx (t) via the low-pass filter 42. Similarly, the phase detector 43 receives the detection signal from the local oscillator 46 and the reproduced carrier signal Sc and performs synchronous detection. The synchronously detected signal passes through the low-pass filter 44 and is subjected to the quadrature baseband signal Cy. (T) is output to the transmission power control circuit 50.

【0018】図3に戻って送信電力制御回路50につい
て説明する。送信電力制御回路50は、直交検波回路4
0からの同相および直交ベースバンド信号Cx(t),
Cy(t)並びに自動利得制御回路10での制御電圧A
(t)を受信し、それらの信号に基づいて送信信号の送
信電力を最適に制御するために設けた回路であり、例え
ばDSP(digital signal processor)を中心にして構
成される。
Returning to FIG. 3, the transmission power control circuit 50 will be described. The transmission power control circuit 50 includes the quadrature detection circuit 4
0, the in-phase and quadrature baseband signals Cx (t),
Cy (t) and the control voltage A in the automatic gain control circuit 10
This is a circuit provided for receiving (t) and optimally controlling the transmission power of the transmission signal based on those signals, and is configured mainly with, for example, a DSP (digital signal processor).

【0019】ところで、再生搬送波信号Scは、伝送路
における位相変動に追随している。よって、直交検波回
路40の出力信号である同相および直交ベースバンド信
号Cx(t),Cy(t)は、伝送路変動の相対的な同
相、直交成分を表している。ただし、自動利得制御回路
10によりその振幅は一定に保たれているので、伝送路
のレベル情報は失われている。これに対し、伝送路のレ
ベル情報は自動利得制御回路10の制御電圧A(t)に
表れている。そこで、送信電力制御回路50は、この伝
送路のレベル情報が表れている制御電圧A(t)を用い
て、送信ディジタル信号がこれから受けるであろう信号
利得変動を、下記のように予測する。
Incidentally, the reproduced carrier signal Sc follows the phase fluctuation in the transmission path. Therefore, the in-phase and quadrature baseband signals Cx (t) and Cy (t), which are the output signals of the quadrature detection circuit 40, represent the relative in-phase and quadrature components of the transmission line fluctuation. However, since the amplitude is kept constant by the automatic gain control circuit 10, the level information of the transmission line is lost. On the other hand, the level information of the transmission line appears in the control voltage A (t) of the automatic gain control circuit 10. Therefore, the transmission power control circuit 50 uses the control voltage A (t) indicating the level information of the transmission line to predict a signal gain variation that the transmission digital signal will receive in the following manner.

【0020】先ず、伝送路における変動の振幅情報を含
んだ相対的な同相成分p(t)および直交成分q(t)
は、それぞれ次式(1),(2)で与えられる。 p(t)≡A(t)・x(t) ・・・・・(1) q(t)≡A(t)・y(t) ・・・・・(2)
First, amplitude information on fluctuations in the transmission path is included.
Relative in- phase component p (t) and quadrature component q (t)
Is given by the following equations (1) and (2), respectively. p (t) ≡A (t) · C x (t) ····· (1) q (t) ≡A (t) · C y (t) ····· (2)

【0021】したがって、送信電力制御回路50は、こ
れらを用いて、未来の伝送路の変動を予測する。例え
ば、受信時刻t1,t2(t2≧t1)の値から未来時
刻t3における同相成分p(t)および直交成分q
(t)の値を、次式(3),(4)を用いて予測する。 p(t3)=p(t2)+{p(t2)−p(t1)}/(t2−t1) ・(t3−t2) ・・・・・(3) q(t3)=q(t2)+{q(t2)−q(t1)}/(t2−t1) ・(t3−t2) ・・・・・(4)
Therefore, the transmission power control circuit 50 uses them to predict future fluctuations in the transmission path. For example, the in-phase component p (t) and the quadrature component q at the future time t3 are calculated from the values of the reception times t1, t2 (t2 ≧ t1).
The value of (t) is predicted using the following equations (3) and (4). p (t3) = p (t2) + {p (t2) -p (t1)} / (t2-t1) (t3-t2) (3) q (t3) = q (t2) + {Q (t2) -q (t1)} / (t2-t1) (t3-t2) (4)

【0022】また、未来時刻t3における振幅B(t
3)を、次式(5)を用いて予測する。 B(t3)={2(t3)+q2(t3)}1/2 ・・・(5)
The amplitude B (t at future time t3
3) is predicted using the following equation (5). B (t3) = {p 2 (t3) + q 2 (t3)} 1/2 ··· (5)

【0023】送信電力制御回路50は、以上の予測計算
を行った後、振幅B(t3)の逆数を乗算するのと同等
の制御を行うべく、可変利得増幅器52の利得を制御す
る。送信ディジタル信号IT、QTは、図3に示すよう
に、変調回路51において直交変調を受けた後、可変利
得増幅器52において、通常の利得制御および上記の送
信電力制御回路50による利得制御を受け、その後アン
テナ共用器60を介してアンテナ70より送信される。
After performing the above-described prediction calculation, the transmission power control circuit 50 controls the gain of the variable gain amplifier 52 so as to perform control equivalent to multiplication by the reciprocal of the amplitude B (t3). As shown in FIG. 3, the transmission digital signals IT and QT undergo quadrature modulation in a modulation circuit 51, and then undergo normal gain control and gain control by the transmission power control circuit 50 in a variable gain amplifier 52, as shown in FIG. Thereafter, the signal is transmitted from the antenna 70 via the antenna duplexer 60.

【0024】このように、この実施例では、伝送路での
フェージングの影響に関する情報を含む、再生搬送波S
cを直交検波して得た同相および直交ベースバンド信号
Cx(t),Cy(t)並びに制御電圧A(t)に基づ
いて、送信電力の制御を行うので、送信信号が相手方に
到達したときに表れるであろうフェージングによる影響
を必要最小限の電力でもってキャンセルすることがで
き、信号品質を良好に保持したままで電力消費を抑制す
ることができる。また、必要最小限の電力で送信するの
で、他の通信機にも妨害を与えたりしない。
As described above, in this embodiment, the reproduced carrier S including the information on the effect of fading on the transmission path is used.
Since the transmission power is controlled based on the in-phase and quadrature baseband signals Cx (t) and Cy (t) and the control voltage A (t) obtained by quadrature detection of c, when the transmission signal reaches the other party Can be canceled with the minimum necessary power, and power consumption can be suppressed while maintaining good signal quality. In addition, since transmission is performed with the minimum necessary power, there is no interference with other communication devices.

【0025】さらに、従来考え方のみで具体的な回路構
成としては提供されていなかった前向き制御での送信電
力制御回路を、自動利得制御回路10での制御電圧A
(t)等を用いて具体的に提供したので、信号品質が良
好な無線通信装置を実現でき、その無線通信装置を用い
て通信品質の良いディジタル無線通信システムの構築が
実現可能となった。
Further, the transmission power control circuit in the forward control, which has not been provided as a specific circuit configuration based on only the conventional concept, is replaced with a control voltage A in the automatic gain control circuit 10.
Since it is provided specifically using (t) and the like, a wireless communication device with good signal quality can be realized, and a digital wireless communication system with good communication quality can be constructed using the wireless communication device.

【0026】[0026]

【発明の効果】以上説明したようにこの発明の無線通信
装置によれば、伝送路でのフェージングの影響に関する
情報を含む、再生搬送波を直交検波して得た同相および
直交ベースバンド信号並びに制御電圧に基づいて、送信
電力の制御を行うので、送信信号が相手方に到達したと
きに表れるであろうフェージングによる影響を必要最小
限の電力でもってキャンセルすることができ、信号品質
を良好に保持したままで電力消費を抑制することができ
る。また、必要最小限の電力で送信するので、他の通信
機にも妨害を与えたりしない。さらに、従来考え方のみ
で具体的な回路構成としては提供されていなかった前向
き制御での送信電力制御回路を、制御電圧等を用いて具
体的に提供したので、信号品質が良好な無線通信装置を
実現でき、その無線通信装置を用いて通信品質の良いデ
ィジタル無線通信システムの構築が実現可能となった。
As described above, according to the radio communication apparatus of the present invention, the in-phase and quadrature baseband signals and the control voltage obtained by performing quadrature detection on the reproduced carrier, including the information on the effect of fading on the transmission line. , The transmission power is controlled, so that the effect of fading, which would appear when the transmission signal reaches the other party, can be canceled with the minimum necessary power, and the signal quality is kept good. Thus, power consumption can be suppressed. In addition, since transmission is performed with the minimum necessary power, there is no interference with other communication devices. Furthermore, a transmission power control circuit in forward control, which was not provided as a specific circuit configuration based on the conventional concept alone, is specifically provided using a control voltage or the like, so that a wireless communication device with good signal quality is provided. This has enabled the construction of a digital wireless communication system with good communication quality using the wireless communication device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の無線通信装置の特徴となる部分の構
成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of a characteristic portion of a wireless communication device according to the present invention.

【図2】この発明の無線通信装置が適用されるディジタ
ル無線通信方式の説明図である。
FIG. 2 is an explanatory diagram of a digital wireless communication system to which the wireless communication device of the present invention is applied.

【図3】無線通信装置のより具体的な構成例を示す図で
ある。
FIG. 3 is a diagram illustrating a more specific configuration example of a wireless communication device.

【図4】復調および判定回路と直交検波回路との構成を
示すブロック図である。
FIG. 4 is a block diagram illustrating a configuration of a demodulation and determination circuit and a quadrature detection circuit.

【図5】搬送波再生回路の構成を示すブロック図であ
る。
FIG. 5 is a block diagram illustrating a configuration of a carrier recovery circuit.

【符号の説明】[Explanation of symbols]

1 利得制御手段 2 復調手段 4 直交検波手段 5 送信電力制御手段 10 自動利得制御回路 20 復調および判定回路 30 搬送波再生回路 40 直交検波回路 50 送信電力制御回路 100 無線通信装置 REFERENCE SIGNS LIST 1 gain control means 2 demodulation means 4 quadrature detection means 5 transmission power control means 10 automatic gain control circuit 20 demodulation and judgment circuit 30 carrier recovery circuit 40 quadrature detection circuit 50 transmission power control circuit 100 wireless communication device

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭64−16149(JP,A) 特開 平5−344021(JP,A) 電子情報通信学会技術研究報告,Vo l.93,No.255,RCS93−55,p. 29−34(1993−9−30) (58)調査した分野(Int.Cl.6,DB名) H04L 27/00 - 27/38 H03G 3/20 H04B 1/54 H04B 7/26 102 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-64-16149 (JP, A) JP-A-5-344021 (JP, A) IEICE Technical Report, Vol. 93, no. 255, RCS 93-55, p. 29-34 (1993-9-30) (58) Fields investigated (Int. Cl. 6 , DB name) H04L 27/00-27/38 H03G 3/20 H04B 1/54 H04B 7/26 102

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ディジタル無線通信での送信および受信
を同一周波数の搬送波を用いて交互に行う無線通信装置
において、 受信信号のレベル変動をそのレベル変動に応じた制御電
圧で抑制し受信信号の利得を一定に制御する利得制御手
段と、 上記利得制御手段からの出力信号を、その出力信号から
取り出した再生搬送波信号を用いて同期復調する復調手
段と、 上記再生搬送波信号を同一周波数を持つ検波信号を用い
て直交検波し同相および直交ベースバンド信号を出力す
る直交検波手段と、 上記直交検波手段からの同相および直交ベースバンド信
号並びに上記利得制御手段での制御電圧に基づいて送信
信号の送信電力最適制御を行う送信電力制御手段と、 を有することを特徴とする無線通信装置。
1. A radio communication apparatus for performing transmission and reception in digital radio communication alternately using a carrier wave of the same frequency, wherein the level fluctuation of a received signal is suppressed by a control voltage corresponding to the level fluctuation, and the gain of the received signal is reduced. Gain control means for controlling the output signal from the gain control means, and demodulation means for synchronously demodulating an output signal from the gain control means using a reproduced carrier signal extracted from the output signal; and a detection signal having the same frequency as the reproduced carrier signal. And quadrature detection means for outputting quadrature detection and in-phase and quadrature baseband signals using the quadrature detection means, and transmission power optimization of the transmission signal based on the in-phase and quadrature baseband signals from the quadrature detection means and the control voltage in the gain control means. And a transmission power control means for performing control.
JP7097550A 1995-03-31 1995-03-31 Wireless communication device Expired - Lifetime JP2873996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7097550A JP2873996B2 (en) 1995-03-31 1995-03-31 Wireless communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7097550A JP2873996B2 (en) 1995-03-31 1995-03-31 Wireless communication device

Publications (2)

Publication Number Publication Date
JPH08274681A JPH08274681A (en) 1996-10-18
JP2873996B2 true JP2873996B2 (en) 1999-03-24

Family

ID=14195359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7097550A Expired - Lifetime JP2873996B2 (en) 1995-03-31 1995-03-31 Wireless communication device

Country Status (1)

Country Link
JP (1) JP2873996B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005286806A (en) * 2004-03-30 2005-10-13 Nec Corp Automatic gain control device and automatic gain control method
US20090161655A1 (en) * 2007-12-20 2009-06-25 Qualcomm, Incorporated Umb cell site modem architecture and methods

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
電子情報通信学会技術研究報告,Vol.93,No.255,RCS93−55,p.29−34(1993−9−30)

Also Published As

Publication number Publication date
JPH08274681A (en) 1996-10-18

Similar Documents

Publication Publication Date Title
JP3338747B2 (en) Interference wave canceller
JP3681230B2 (en) Spread spectrum communication equipment
US6269092B1 (en) Spread-spectrum channel sounding
US7167716B2 (en) Synchronous demodulation apparatus of base transceiver station in interim standard-2000 system
KR100311236B1 (en) Transmitter and Receiver
JP2980053B2 (en) Interference wave canceller
EP1460777B1 (en) CDMA reception apparatus and received signal power measuring apparatus in CDMA mobile communication system
JP3632535B2 (en) Diversity transmission / reception method and apparatus
US6912259B1 (en) Interpolation synchronous detection method and radio communication system
JP2873996B2 (en) Wireless communication device
JPH09200282A (en) Adaptive modulation type transmitter/receiver for tdd
JP2010062997A (en) Radio communication device
EP0684703B1 (en) Circuit for removing random fm noise
JP2001257660A (en) Transmitter and receiver and transmission/reception method
JP2600612B2 (en) Transceiver
JP3337274B2 (en) Mobile communication system
JPH03179820A (en) Transmission equipment in single frequency communication system
JP2800774B2 (en) Cross polarization interference compensation method
JPS6266729A (en) Same frequency repeating system
KR100561082B1 (en) Method of, and apparatus for, broadcasting a path difference limit to receivers
JPH08195712A (en) Transmitter of mobile station conducting transmission power control
JP3412605B2 (en) Diversity receiving apparatus and method
JP2002076956A (en) Receiver and receiving method
JPH10256969A (en) Radio base station equipment
JPH0918399A (en) Post-detection diversity reception circuit