JP2871819B2 - Filtration method using hollow fiber membrane - Google Patents

Filtration method using hollow fiber membrane

Info

Publication number
JP2871819B2
JP2871819B2 JP2202584A JP20258490A JP2871819B2 JP 2871819 B2 JP2871819 B2 JP 2871819B2 JP 2202584 A JP2202584 A JP 2202584A JP 20258490 A JP20258490 A JP 20258490A JP 2871819 B2 JP2871819 B2 JP 2871819B2
Authority
JP
Japan
Prior art keywords
hollow fiber
water
iron oxide
filtration
fiber membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2202584A
Other languages
Japanese (ja)
Other versions
JPH0490831A (en
Inventor
悟 津田
好夫 砂岡
慶祐 北里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ORUGANO KK
Original Assignee
ORUGANO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ORUGANO KK filed Critical ORUGANO KK
Priority to JP2202584A priority Critical patent/JP2871819B2/en
Publication of JPH0490831A publication Critical patent/JPH0490831A/en
Application granted granted Critical
Publication of JP2871819B2 publication Critical patent/JP2871819B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Filtration Of Liquid (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は原子力発電所、火力発電所の復水あるいはヒ
ータドレン水あるいはその他用水、廃水等の不溶解性物
質を含む原水を中空糸膜モジュールを配置した濾過塔で
濾過する方法に関し、更に詳しくは原水の濾過に際し、
予め中空糸膜の表面に酸化鉄微粒子の薄い被覆膜を形成
させてから原水の濾過を開始する方法の改良に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to condensate of a nuclear power plant, a thermal power plant or raw water containing an insoluble substance such as heater drain water or other service water or waste water. Regarding the method of filtration in the arranged filtration tower, more specifically, when filtering raw water,
The present invention relates to an improvement in a method for starting filtration of raw water after forming a thin coating film of iron oxide fine particles on the surface of a hollow fiber membrane in advance.

〈従来の技術〉 不溶解性物質を含む原水を濾過塔で処理し、不溶解性
物質を除去した濾過水を得る場合、従来から濾材を充填
した形式の濾過塔、あるいは濾過助材をプレコートする
濾過塔等、各種の濾過塔が用いられているが、近年、特
に原子力発電所等の復水の処理に中空糸膜を用いる濾過
塔が用いられるようになってきている。すなわち、中空
糸膜を用いる濾過塔で先ず復水中の不溶解性物質である
酸化鉄に起因するクラッドを除去し、次いで得られる濾
過水をカチオン交換樹脂とアニオン交換樹脂の混床で処
理して不純物イオンを除去するものである。
<Conventional technology> When raw water containing an insoluble substance is treated with a filtration tower to obtain filtered water from which the insoluble substance has been removed, a filtration tower conventionally filled with a filter medium, or a filter aid is pre-coated. Various filtration towers such as filtration towers have been used. In recent years, filtration towers using hollow fiber membranes have come to be used particularly for condensate treatment in nuclear power plants and the like. That is, in a filtration tower using a hollow fiber membrane, first, the clad caused by iron oxide, which is an insoluble substance in the condensate, is removed, and then the resulting filtered water is treated with a mixed bed of a cation exchange resin and an anion exchange resin. This is to remove impurity ions.

前述した復水等の処理に用いられている濾過塔は、通
常、塔内を上部の処理水室と下部の濾過室とに区画する
仕切板から、中空糸膜を多数本束ねた中空糸モジュール
を前記濾過室内に懸垂した構造のものであり、例えば復
水の濾過に際しては、復水を当該濾過塔の下部から前記
濾過室内に流し、復水を各中空糸膜の外側から内側へ濾
過させることによって酸化鉄に起因するクラッドを各中
空糸膜の表面で濾過し、酸化鉄を除去された濾過水を各
中空糸膜の内側に得てこれを前記処理水室に集水して取
り出すものである。
The filtration tower used for the above-described condensate treatment is usually a hollow fiber module in which a number of hollow fiber membranes are bundled from a partition plate that partitions the inside of the tower into an upper treatment water chamber and a lower filtration chamber. Is suspended in the filtration chamber. For example, when condensate is filtered, the condensate flows from the lower part of the filtration tower into the filtration chamber, and the condensate is filtered from the outside to the inside of each hollow fiber membrane. By filtering the clad caused by iron oxide on the surface of each hollow fiber membrane, obtaining filtered water from which iron oxide has been removed inside each hollow fiber membrane, collecting the filtered water in the treatment water chamber, and taking out the collected water. It is.

また、上述のような濾過操作の続行により濾過塔の差
圧が上昇した際には、当該酸化鉄が付着している中空糸
膜の表面を空気等の気体でバブリングして大部分の酸化
鉄を剥離し、次いで必要に応じて処理水、純水等の清澄
水を中空糸膜の内側から外側に逆流させて膜面に残存す
る酸化鉄を剥離し、酸化鉄を多量に含む洗浄排液を得
る。なお、当該洗浄終了後に再び前記濾過操作を開始
し、以後濾過と洗浄を順次繰り返して処理を行う。
Further, when the pressure difference in the filtration tower rises due to the continuation of the filtration operation as described above, the surface of the hollow fiber membrane to which the iron oxide is adhered is bubbled with a gas such as air to remove most of the iron oxide. Then, if necessary, treated water and purified water such as pure water are flowed back from the inside to the outside of the hollow fiber membrane to remove iron oxide remaining on the membrane surface, and the washing and drainage containing a large amount of iron oxide Get. After the completion of the washing, the filtration operation is started again, and thereafter, the filtration and washing are sequentially repeated to perform the treatment.

以上のごとく、中空糸膜を用いる濾過塔は復水を各中
空糸膜で直接濾過するので、従来から行われている微粉
末状イオン交換樹脂等を濾過助材として用いるプレコー
ト式濾過塔と比較して、洗浄排液中に含まれる固形物量
が極めて少量であり、そのため特に沸騰水型原子力発電
所の復水のごとく、前記固形物が放射性廃棄物の対象と
なる場合に好適である。
As described above, since the filtration tower using the hollow fiber membrane directly filters condensate through each hollow fiber membrane, the filtration tower is compared with the conventional precoat filtration tower using a fine powder ion exchange resin or the like as a filter aid. Then, the amount of solid matter contained in the washing wastewater is extremely small, and therefore, it is suitable especially when the solid matter becomes a target of radioactive waste, such as condensing water of a boiling water nuclear power plant.

しかしながら、このような利点を有する中空糸膜を用
いる濾過方法においても、例えば原水中に微粒子状の有
機物や油分、あるいは比較的粘着性の大きい物質が含ま
れている場合は、中空糸膜の表面に付着したこれらの物
質を、前記洗浄操作によって完全に剥離することができ
ず、そのため洗浄の度に初期差圧の上昇が生じ、遂には
濾過処理そのものに障害を与えるようなことがあった。
However, even in a filtration method using a hollow fiber membrane having such advantages, for example, when raw water contains fine organic matter or oil, or a substance having a relatively high viscosity, the surface of the hollow fiber membrane may be reduced. These substances adhered to the surface cannot be completely removed by the above-mentioned washing operation, so that the initial pressure difference increases each time washing is performed, and finally, the filtration process itself may be impaired.

そこで、本願出願人は先に、たとえ原水中にこのよう
な剥離しにくい物質が含まれていても、洗浄時において
これらの物質を中空糸膜の膜面に残留させないようにし
て、洗浄の度に初期差圧が次第に上昇するという現象を
効果的に防止し、安定して濾過処理を行うことができる
新規な濾過方法を提案した。(特開昭63−252507号公報
参照。) この方法は、原水を中空糸膜で濾過する前に、剥離性
のよい酸化鉄微粒子を含む水を予め中空糸膜に通過させ
て各中空糸膜の表面に当該酸化鉄微粒子の薄い被覆膜を
形成させ、しかる後に当該被覆膜を介して不溶解性物質
を含む原水を濾過する方法である。当該濾過方法によれ
ば、たとえ原水中に剥離性の悪い不溶解性物質が含まれ
ていても、当該不溶解性物質は直接中空糸膜の表面に付
着することなく前記被覆膜で捕捉されることとなり、よ
って洗浄工程において、剥離し易い酸化鉄微粒子の被覆
膜が剥離される際にほとんど全部の不溶解物質が剥離さ
れ、したがって洗浄の度に初期差圧が上昇するという前
述したような不具合を効果的に防止することができる。
Therefore, the applicant of the present application has proposed that even if such raw materials contain such hard-to-peel substances, they are not allowed to remain on the surface of the hollow fiber membrane during washing, and the A new filtration method that can effectively prevent the phenomenon that the initial differential pressure gradually rises and stably perform the filtration treatment was proposed. (See JP-A-63-252507.) In this method, before filtering raw water with a hollow fiber membrane, water containing iron oxide fine particles having good releasability is passed through the hollow fiber membrane in advance and each hollow fiber membrane is filtered. A thin coating film of the iron oxide fine particles is formed on the surface of the substrate, and then raw water containing an insoluble substance is filtered through the coating film. According to the filtration method, even if the raw water contains an insoluble substance having poor releasability, the insoluble substance is captured by the coating film without directly adhering to the surface of the hollow fiber membrane. Thus, in the cleaning step, almost all the insoluble substances are peeled off when the coating film of the iron oxide fine particles that is easily peeled off is peeled off, and thus the initial pressure difference increases with each washing as described above. Troubles can be effectively prevented.

上記濾過方法に用いられる剥離性のよい酸化鉄微粒子
とは、中空糸膜の表面に付着しても前述の洗浄工程で容
易に剥離し得る酸化鉄微粒子全般を指すが、例えば粒子
径1〜10μのα−Fe2O3(ヘマタイト)、α−FeOOH(ゲ
ータイト)、あるいはFe3O4(マグネタイト)等が挙げ
られる。また、前記した原子力発電所の復水のごとく、
含有されている不溶解性物質の大部分が酸化鉄である場
合は、被覆膜形成用に前記したような形態の酸化鉄微粒
子を特別に用意しなくとも、原水中に含まれている酸化
鉄を利用することができる。
The iron oxide fine particles having good releasability used in the filtration method refer to all iron oxide fine particles which can be easily separated in the above-mentioned washing step even if they adhere to the surface of the hollow fiber membrane. Α-Fe 2 O 3 (hematite), α-FeOOH (goethite) or Fe 3 O 4 (magnetite). Also, like the condensate of the nuclear power plant mentioned above,
When most of the insoluble substances contained are iron oxides, the oxides contained in the raw water can be prepared without special preparation of the iron oxide fine particles in the form described above for forming the coating film. Iron can be used.

すなわち、酸化鉄を含む原水をそのまま中空糸膜で濾
過し、その後前述の洗浄工程で酸化鉄を中空糸膜から剥
離することによって酸化鉄を多量に含む洗浄排液が得ら
れるが、当該洗浄排液中の酸化鉄は、洗浄工程における
バブリング等によって充分に攪拌されることにより凝集
し、物理的に結合して結果的に剥離性のよい酸化鉄微粒
子となる。したがって、このようにして得られる凝集酸
化鉄を被覆膜形成用の酸化鉄微粒子として用いることが
できる。
That is, the raw water containing iron oxide is directly filtered through the hollow fiber membrane, and then the iron oxide is peeled off from the hollow fiber membrane in the above-mentioned washing step, whereby a washing wastewater containing a large amount of iron oxide is obtained. The iron oxide in the solution is aggregated by being sufficiently stirred by bubbling or the like in the washing step, and physically aggregates, resulting in iron oxide fine particles having good peelability. Therefore, the aggregated iron oxide thus obtained can be used as iron oxide fine particles for forming a coating film.

〈発明が解決しようとする問題点〉 上述のごとく、原水中の不溶解性物質の大部分が酸化
鉄である復水等の処理においては、被覆膜形成用の酸化
鉄微粒子をわざわざ用意せずとも、洗浄工程で得られる
洗浄排水中の酸化鉄微粒子を利用して被覆膜を形成させ
ればよいが、当該方法を前述したような構造の濾過塔を
用いて実施する場合は以下のようにして行う。
<Problems to be Solved by the Invention> As described above, in the treatment of condensate or the like in which most of the insoluble substances in the raw water are iron oxide, iron oxide fine particles for forming the coating film must be prepared. At least, the coating film may be formed by using the iron oxide fine particles in the washing wastewater obtained in the washing step, but when the method is performed using a filtration tower having the above-described structure, the following method is used. Do it like this.

すなわち、差圧の上昇によって原水の濾過を中止し、
濾過塔の処理水室内に濾過水が、また濾過室内に原水が
それぞれ満たされた状態から、上記濾過室内に例えば空
気を流入して当該濾過室内をバブリングし、中空糸膜の
表面に付着している酸化鉄を剥離する。
That is, the filtration of raw water is stopped due to the increase in the differential pressure,
Filtration water in the treatment water chamber of the filtration tower, and from the state where raw water is filled in the filtration chamber, for example, air flows into the filtration chamber to bubble the filtration chamber and adhere to the surface of the hollow fiber membrane. To remove the iron oxide.

当該バブリング操作によって、濾過室内には剥離され
た酸化鉄を多量に含む洗浄排液が得られるので、得られ
た洗浄排液の一部は次の濾過工程において被覆膜形成用
の酸化鉄微粒子水として利用するために濾過室内の下部
に、通常は、当該洗浄排液の水面が仕切板に懸垂された
中空糸モジュールの下端より下方となるように残留さ
せ、洗浄排液の他部は塔外に排出される。
By the bubbling operation, a cleaning wastewater containing a large amount of the separated iron oxide is obtained in the filtration chamber, and a part of the obtained cleaning wastewater is used in the next filtration step to form iron oxide fine particles for forming a coating film. In general, the washing waste liquid is left below the lower end of the hollow fiber module suspended from the partition plate in the lower part of the filtration chamber for use as water. It is discharged outside.

上記洗浄操作終了後、濾過塔下部に連通された原水流
入管を介して、もしくは濾過塔下部に別に設けた水張り
用水供給管を介して、濾過室内に原水あるいは濾過水、
純水等の水張り用水を流入させ、当該濾過室内を一旦満
水とする。次いで、前記原水流入管もしくは前記水張り
用水供給管から濾過室内に原水あるいは濾過水、純水等
の被覆膜形成用水を流入させ、当該被覆膜形成用水を濾
過室から処理水室に向けて、つまり原水の濾過を行う場
合と同じようにして流すことによって濾過室内の水を前
記被覆膜形成用水とともに各中空糸膜に通過させ、それ
によって各中空糸膜の表面に前記酸化鉄微粒子の被覆膜
を形成させる。その後は原水流入管を介して濾過室内に
原水を流入させ、形成された被覆膜を介しての原水の濾
過を行う。
After completion of the washing operation, raw water or filtered water is supplied to the filtration chamber through a raw water inflow pipe connected to the lower portion of the filtration tower or via a water supply pipe for water filling separately provided at the lower portion of the filtration tower.
Water for filling, such as pure water, is allowed to flow in to fill the filtration chamber once. Next, raw water or filtered water, water for coating film formation such as pure water is flown into the filtration chamber from the raw water inflow pipe or the water filling water supply pipe, and the coating film formation water is directed from the filtration chamber to the treatment water chamber. In other words, the water in the filtration chamber is passed through each hollow fiber membrane together with the coating film forming water by flowing the raw water in the same manner as in the case of performing the filtration of the raw water, whereby the surface of each hollow fiber membrane contains the iron oxide fine particles. A coating film is formed. Thereafter, the raw water flows into the filtration chamber through the raw water inflow pipe, and the raw water is filtered through the formed coating film.

しかしながら、上記従来方法においては、濾過室内を
満水とするに際し、水張り用水を当該濾過室内の下部に
存在せしめた被覆用酸化鉄微粒子水の水面より下方から
上昇流で濾過室内に流入させるようにしているととも
に、この時には濾過室内の水を各中空糸膜に通過させな
いようにして濾過室内を満水とするので、濾過室内に残
留させた洗浄排液である被覆用酸化鉄微粒子水中の酸化
鉄微粒子は、濾過室内である程度分散されはするが、そ
の多くは水張り用水の流入に伴ってそのまま濾過室内を
上昇することとなり、かつこの間中空糸膜の表面で捕捉
されることもない。その結果、当該濾過室内が満水とな
った時点では、濾過室内の上方部の水中に被覆膜形成用
の酸化鉄微粒子が相対的に多く存在し、濾過室内下方の
水中には酸化鉄微粒子があまり存在しない状態となる。
したがって、この状態から前記被覆膜形成用水を濾過室
内に上昇流で流入させ、当該被覆膜形成用水を濾過室か
ら処理水室に向けて流すようにすると、つまり濾過室内
の水を中空糸膜の外側から内側へ通過させるようにする
と、仕切板から前記濾過室内に懸垂された中空糸モジュ
ールの各中空糸膜の長さ方向においてその上部表面に酸
化鉄微粒子が比較的多く捕捉され、その下部に至るほど
酸化鉄微粒子の捕捉量が少なくなり、よって各中空糸膜
の表面には上部が相対的に厚く、下部に至るほど薄くな
る、不均一な被覆膜が形成されるようになる。その結
果、均一な濾過が行われなくなるとともに、中空糸膜の
下方部においては被覆膜の厚みが薄すぎるために所期の
目的が達成されないという不具合が生じ、また中空糸膜
の下方部にも所定厚みの被覆膜を形成させようとすれ
ば、被覆膜形成用の酸化鉄微粒子をそれだけ余分に使用
しなければならない。しかし、被覆膜の形成に際し、必
要量の酸化鉄微粒子を含む被覆用酸化鉄微粒子水を予め
濾過室内の下部に比較的少量存在せしめ、しかる後に満
水操作を経て中空糸膜の表面に酸化鉄微粒子の被覆膜を
形成させる上述のような方法は、処理すべき原水中に酸
化鉄が存在せず、したがって被覆膜形成用の酸化鉄微粒
子を特別に用意しなければならない場合にも適用される
が、このような場合は被覆膜形成に要する酸化鉄微粒子
の量が少ないほど経済的に有利であることは言うまでも
ないことである。
However, in the above-mentioned conventional method, when the filtration chamber is filled with water, the filling water is caused to flow into the filtration chamber as an ascending flow from below the surface of the coating iron oxide fine particle water that was present at the lower portion of the filtration chamber. In addition, at this time, the filtration chamber is filled with water so as not to allow water in the filtration chamber to pass through each hollow fiber membrane. Although they are dispersed to some extent in the filtration chamber, most of them are raised in the filtration chamber with the inflow of water for filling, and are not trapped on the surface of the hollow fiber membrane during this time. As a result, when the filtration chamber becomes full of water, relatively large amounts of iron oxide fine particles for forming a coating film are present in the water in the upper part of the filtration chamber, and iron oxide fine particles are present in the water below the filtration chamber. There is not much.
Therefore, from this state, the coating film forming water is caused to flow into the filtration chamber in ascending flow, and the coating film forming water is caused to flow from the filtration chamber to the treatment water chamber. When the membrane is allowed to pass from the outside to the inside, a relatively large amount of iron oxide fine particles is captured on the upper surface of each hollow fiber membrane of the hollow fiber module suspended in the filtration chamber from the partition plate in the longitudinal direction. The lower the lower part, the smaller the trapped amount of iron oxide fine particles. Therefore, the surface of each hollow fiber membrane becomes relatively thick at the upper part and becomes thinner toward the lower part, resulting in an uneven coating film. . As a result, uniform filtration is not performed, and a problem occurs in that the intended purpose is not achieved because the thickness of the coating film is too thin below the hollow fiber membrane. In order to form a coating film having a predetermined thickness, it is necessary to use extra iron oxide fine particles for forming the coating film. However, when forming the coating film, a relatively small amount of coating iron oxide fine water containing a required amount of iron oxide fine particles is present in the lower portion of the filtration chamber in advance, and then the iron oxide is formed on the surface of the hollow fiber membrane through a water filling operation. The above-described method of forming a coating film of fine particles can be applied even when iron oxide is not present in the raw water to be treated, and therefore, special preparation of iron oxide fine particles for forming the coating film is required. However, in such a case, it goes without saying that the smaller the amount of iron oxide fine particles required for forming the coating film, the more economically advantageous.

本発明は、原水の濾過に先立ち、中空糸膜の表面に剥
離性のよい酸化鉄微粒子の被覆膜を形成させ、しかる後
に当該被覆膜を介して原水の濾過を行う方法における上
述のような欠点を解決し、必要最小限の酸化鉄微粒子を
用いて、必要な厚みの被覆膜を中空糸膜の表面に均一に
形成されることができ、よって剥離性のよい酸化鉄微粒
子の被覆膜を介しての良好な濾過処理を行うことのでき
る濾過方法を提供することを目的とするものである。
The present invention provides, as described above, a method of forming a coating film of iron oxide fine particles having good releasability on the surface of a hollow fiber membrane prior to filtration of raw water, and then filtering raw water through the coating film. And a coating film having a required thickness can be uniformly formed on the surface of the hollow fiber membrane by using a minimum necessary amount of the iron oxide fine particles. It is an object of the present invention to provide a filtration method capable of performing a good filtration treatment through a covering film.

〈問題点を解決するための手段〉 上述の目的を達成するためになされた本発明は、塔内
を上部の処理水室と下部の濾過室とに区画する仕切板か
ら、中空糸膜を多数本束た中空糸モジュールを前記濾過
室内に懸垂してなる濾過塔を用い、不溶解物質を含む原
水を前記濾過室から流して各中空糸膜の外側から内側へ
原水を通過させることにより、前記処理水室から濾過水
を得る濾過操作の前に、剥離性のよい酸化鉄微粒子を含
む水を中空糸膜に通過させて各中空糸膜の表面に当該酸
化鉄微粒子の薄い被覆膜を形成させる濾過方法におい
て、各中空糸膜の表面に酸化鉄微粒子の被覆膜を形成さ
せるに際し、前記濾過室内の下部に、被覆膜の形成に必
要な量の酸化鉄微粒子を含有する被覆用酸化鉄微粒子水
を予め存在せしめ、次いで当該被覆用酸化鉄微粒子水の
水面より上方の位置から濾過室内に水張り用水を、前記
酸化鉄微粒子の大部分が濾過室内の下部に維持されるご
とく流入させることによって当該濾過室内を満水とし、
しかる後被覆膜形成用水を当該濾過室内にその下部より
流入させるとともに濾過室内の水を各中空糸膜に通過さ
せることによって各中空糸膜の表面に酸化鉄微粒子の被
覆膜を形成させ、その後当該被覆膜を介して原水の濾過
を行うことを特徴とする中空糸膜を用いる濾過方法であ
る。
<Means for Solving the Problems> The present invention made to achieve the above-mentioned object provides a large number of hollow fiber membranes from a partition plate that partitions the inside of a tower into an upper treated water chamber and a lower filtration chamber. Using a filtration tower formed by suspending the bundled hollow fiber modules in the filtration chamber, by flowing raw water containing insoluble substances from the filtration chamber and passing the raw water from the outside to the inside of each hollow fiber membrane, Before the filtration operation of obtaining filtered water from the treated water chamber, water containing iron oxide fine particles having good releasability is passed through the hollow fiber membrane to form a thin coating film of the iron oxide fine particles on the surface of each hollow fiber membrane. In the filtration method, when forming a coating film of iron oxide fine particles on the surface of each hollow fiber membrane, an oxidizing solution for coating containing an amount of iron oxide fine particles necessary for forming the coating film in the lower part of the filtration chamber. Pre-existing iron fine particle water, then iron oxide for coating Filling the filtration chamber with water for flooding into the filtration chamber from a position above the surface of the fine particle water by allowing the majority of the iron oxide fine particles to flow into the lower portion of the filtration chamber,
Thereafter, the coating film forming water is allowed to flow into the filtration chamber from the lower portion thereof and the water in the filtration chamber is passed through each hollow fiber membrane to form a coating film of iron oxide fine particles on the surface of each hollow fiber membrane, Thereafter, a filtration method using a hollow fiber membrane is characterized in that raw water is filtered through the coating membrane.

〈作用〉 以下に本発明を、実施態様の一例を示す図面を用いて
詳細に説明する。
<Operation> Hereinafter, the present invention will be described in detail with reference to the drawings showing an embodiment.

第1図は本発明に用いる中空糸モジュールの一例を示
す断面図であり、第2図は本発明に用いる濾過塔の一例
を示すフロー説明図である。
FIG. 1 is a sectional view showing an example of a hollow fiber module used in the present invention, and FIG. 2 is a flow explanatory diagram showing an example of a filtration tower used in the present invention.

第1図に示した中空糸モジュール1は、例えば0.01μ
〜1.0μの微細孔を有する外径0.3〜4mm、内径0.2〜3mm
の中空糸膜2を100〜50,000本前後、外筒3内に収納す
るとともに、当該中空糸膜2の上端をその中空部を閉塞
することなく上部接合部4で接着し、各中空糸膜2の下
端を閉塞して下部接合部5で接着してなる。いわゆる片
端集水型のものであり、また外筒3の上方部、下方部に
それぞれ流通口6Aおよび6Bを設けるとともに、下部接合
部5に開口部7を設け、さらに外筒3の下方にてスカー
ト部8を設けたものである。
The hollow fiber module 1 shown in FIG.
Outer diameter 0.3-4mm, inner diameter 0.2-3mm with ~ 1.0μ micropore
About 100 to 50,000 hollow fiber membranes 2 are housed in the outer cylinder 3, and the upper end of the hollow fiber membranes 2 is adhered to the upper joint portion 4 without closing the hollow portion. Is closed at the lower joint portion 5 with the lower end closed. It is a so-called one-end water collecting type. In addition to providing flow ports 6A and 6B at the upper part and the lower part of the outer cylinder 3, respectively, providing the opening 7 at the lower joint part 5, A skirt 8 is provided.

当該中空糸モジュール1を濾過塔に配置するにあたっ
ては、第2図に示したごとく、濾過塔9の上方部に仕切
板10を設けて当該塔内を仕切板10上方の処理水室11と下
方の濾過室12とに区画するとともに当該仕切板10から濾
過室12内に多数本の中空糸モジュール1(図では3本)
を懸垂する。
When disposing the hollow fiber module 1 in the filtration tower, as shown in FIG. 2, a partition plate 10 is provided above the filtration tower 9 and the inside of the tower is separated from the treated water chamber 11 above the partition plate 10 by a lower part. And a large number of hollow fiber modules 1 (three in the figure) from the partition plate 10 into the filtration chamber 12.
Hanging up.

また濾過塔9内の下方に気泡分配機構13を配置する。
当該気泡分配機構13は、気泡分配板14と当該気泡分配板
14を貫通する気泡分配管15とからなるもので、各中空糸
モジュール1のスカート部8の直下に当該気泡分配管15
を配設した構成としてある。
Further, a bubble distribution mechanism 13 is disposed below the inside of the filtration tower 9.
The bubble distribution mechanism 13 includes a bubble distribution plate 14 and the bubble distribution plate.
And a bubble distribution pipe 15 that penetrates the hollow fiber module 1 directly below the skirt 8 of each hollow fiber module 1.
Is arranged.

なお濾過塔9の上部に処理水流出管16の一端と圧縮空
気流入管17Aの一端を連通し、また濾過塔9の下部に原
水流入管18の一端と圧縮空気流入管17Bの一端およびド
レン管19の一端をそれぞれ連通し、更に前記仕切板10の
直下の側胴部に空気抜き管20の一端を貫通する。また、
当該空気抜き管20とは別に、仕切板10の直下の側胴部に
水張り用水流入管21の一端を連通する。なお22ないし28
はそれぞれ弁を示し、29はバッフルプレートである。
In addition, one end of the treated water outflow pipe 16 and one end of the compressed air inflow pipe 17A communicate with the upper part of the filtration tower 9, and one end of the raw water inflow pipe 18, one end of the compressed air inflow pipe 17B, and the drain pipe below the filtration tower 9. One ends of the pipes 19 are communicated with each other, and further, one end of the air vent pipe 20 penetrates through a side trunk directly below the partition plate 10. Also,
Apart from the air vent pipe 20, one end of a water filling water inflow pipe 21 is communicated with a side body directly below the partition plate 10. 22 to 28
Denotes a valve, and 29 denotes a baffle plate.

当該濾過塔9を用いて本発明の濾過方法を原水として
酸化鉄等の不溶解性物質を含む復水を例にして以下に説
明する。
The filtration method of the present invention using the filtration tower 9 will be described below by taking as an example a condensate containing raw material water and an insoluble substance such as iron oxide.

本発明においては復水の濾過に先立って以下の操作を
行う。すなわち、外部から新たに供給するか、もしくは
復水濾過終了後の洗浄によって濾過室12内に得られる酸
化鉄微粒子を多量に含む洗浄排液の一部を残留させるか
して、被覆膜の形成に必要な量の酸化鉄微粒子を含む被
覆用酸化鉄微粒子水を予め濾過室12内の下部に、その水
面Lが例えば第2図に点線で示したごとく濾過室12内に
懸垂させた中空糸モジュール1の下端より下方となるよ
うに存在せしめ、この状態で弁28、25を開弁して前記被
覆用酸化鉄微粒子水の水面より上方の側胴部に設けた前
記水張り用水流入管21から濾過室12内に例えば復水等の
水張り用水を、前記酸化鉄微粒子の大部分が中空糸モジ
ュール1の下端より下方に維持されるごとく、例えばな
るべく緩やかに流入する。なお、本実施態様のごとく濾
過塔9内の下方に気泡分配機構13を有する濾過塔にあっ
ては、当該気泡分配機構13が邪魔板の役目をなすので、
水張り用水をかなり急激に流入しても被覆用酸化鉄微粒
子水の層は乱されることがなく、酸化鉄微粒子の大部分
を中空糸モジュール1の下端より下方に維持せしめるこ
とができる。当該水張り用水は、濾過室12内に流入して
当該室内を上昇し、その後仕切板10付近まで達したら側
胴部の空気抜き管20を経て濾過塔9外へ流出する。この
時点で濾過室12内が満水となるので、弁28および25を閉
弁し水張りを停止する。
In the present invention, the following operation is performed prior to the filtration of the condensate. That is, the coating film is newly supplied from the outside, or a part of the washing wastewater containing a large amount of iron oxide fine particles obtained in the filtration chamber 12 by washing after the completion of the condensate filtration is left. An iron oxide fine particle water for coating containing an amount of iron oxide fine particles required for formation is previously hollowed in the lower part of the filtration chamber 12 and the water surface L is suspended in the filtration chamber 12 as shown by a dotted line in FIG. In this state, the valves 28 and 25 are opened and the water filling pipe 21 for water filling provided on the side body above the water surface of the coating iron oxide fine particle water is provided. For example, water for filling, such as condensate, flows into the filtration chamber 12 as slowly as possible, for example, so that most of the iron oxide fine particles are maintained below the lower end of the hollow fiber module 1. In the case of a filtration tower having a bubble distribution mechanism 13 below the inside of the filtration tower 9 as in the present embodiment, since the bubble distribution mechanism 13 serves as a baffle plate,
Even if the water for water filling flows in abruptly, the layer of the iron oxide fine particle water for coating is not disturbed, and most of the iron oxide fine particles can be kept below the lower end of the hollow fiber module 1. The flooding water flows into the filtration chamber 12 and rises in the interior of the filtration chamber 12, and then reaches the vicinity of the partition plate 10 and flows out of the filtration tower 9 through the air vent pipe 20 in the side trunk. At this time, since the inside of the filtration chamber 12 is full, the valves 28 and 25 are closed to stop filling.

以上の満水操作においては従来のように水張り用水を
原水流入管18を介して濾過塔1の下部から、すなわち被
覆用酸化鉄微粒子水の水面Lより下方から流入させるの
ではなく、水張り用水を被覆用酸化鉄微粒子水の水面L
の上方から、かつ酸化鉄微粒子の大部分が中空糸モジュ
ール1の下方に維持されるごとく緩やかに供給するた
め、濾過室12内が満水となった時点において当該被覆用
酸化鉄微粒子水中の酸化鉄微粒子の大部分を中空糸モジ
ュール1の下端より下方に存在せしめることができ、従
来のように酸化鉄微粒子の大部分が、濾過室12内の上部
に上昇してしまうということはなくなる。
In the above-mentioned filling operation, instead of flowing water from the lower part of the filtration tower 1 through the raw water inflow pipe 18 from the lower part of the filtration tower 1, that is, from below the water surface L of the iron oxide fine particle water for coating, water filling is performed as in the prior art. Surface L of iron oxide fine particle water
From above, and the majority of the iron oxide fine particles are supplied gently so as to be maintained below the hollow fiber module 1. Therefore, when the filtration chamber 12 becomes full of water, the iron oxide Most of the fine particles can be present below the lower end of the hollow fiber module 1, so that most of the iron oxide fine particles do not rise to the upper part in the filtration chamber 12 unlike the conventional case.

このような満水操作終了後に、弁26および22を開弁し
て原水流入管18より復水を、被覆膜形成用水として濾過
室12内へ上昇流で流入するとともに、濾過室12内の水を
各中空糸膜2に通過させるようにする。なお、当該被覆
膜形成用水としては、復水の代わりに予め貯留しておい
た濾過塔9の濾過水や純水等の水を使用してもよい。こ
の時、濾過室12内の下方に存在する被覆用の酸化鉄微粒
子は復水の上向きの流れによって濾過室12内を上昇し、
初めは各中空糸モジュール1の開口部7を介して、ある
いは各中空糸モジュール1の下方に位置する流通口6Aを
介して各中空糸モジュール1内に流入する。この際、各
中空糸モジュール1の上方に位置する流通口6Bからは、
被覆用の酸化鉄微粒子があまり含まれていない濾過室12
内の水が各中空糸モジュール1内に流入する。そして、
前記開口部7あるいは前記流通口6Aを介して中空糸モジ
ュール1内に流入した、被覆用酸化鉄微粒子を多量に含
む水は、当該中空糸モジュール1内を上昇しながら各中
空糸膜2の長さ方向のほぼ下半分の膜面で濾過され、そ
れに応じて各中空糸膜2のほぼ下半分の膜面に酸化鉄微
粒子の被覆膜が徐々に形成される。一方、前記流通口6B
を介して中空糸モジュール1内に流入した、酸化鉄微粒
子があまり含まれていない水は、当該中空糸モジュール
1内を下降しながら各中空糸膜2の長さ方向のほぼ上半
分の膜面で濾過される。なお、上述の操作において各中
空糸膜2の内側に得られる濾過水はいずれも各中空糸膜
2の内側を上昇して仕切板10の上部の処理水室11に集合
され、処理水流出管16から流出する。
After completion of such a water filling operation, the valves 26 and 22 are opened to return the condensed water from the raw water inflow pipe 18 into the filtration chamber 12 as a coating film forming water by ascending flow, and the water in the filtration chamber 12 Is passed through each hollow fiber membrane 2. As the water for forming the coating film, water such as filtered water from the filtration tower 9 or pure water stored in advance may be used instead of condensed water. At this time, the iron oxide fine particles for coating existing below in the filtration chamber 12 rise in the filtration chamber 12 by the upward flow of the condensate,
At first, it flows into each hollow fiber module 1 through the opening 7 of each hollow fiber module 1 or through the circulation port 6A located below each hollow fiber module 1. At this time, from the distribution port 6B located above each hollow fiber module 1,
Filtration chamber 12 that does not contain much iron oxide particles for coating
Water flows into each hollow fiber module 1. And
The water containing a large amount of iron oxide fine particles for coating, which has flowed into the hollow fiber module 1 through the opening 7 or the flow port 6A, rises in the hollow fiber module 1 and moves along the length of each hollow fiber membrane 2 while rising inside the hollow fiber module 1. The filtration is performed on the substantially lower half membrane surface in the vertical direction, and accordingly, a coating film of iron oxide fine particles is gradually formed on the substantially lower half membrane surface of each hollow fiber membrane 2. On the other hand, the distribution port 6B
Flowing into the hollow fiber module 1 through the water, the water not containing much iron oxide fine particles flows down the inside of the hollow fiber module 1 and the upper half of the membrane surface in the longitudinal direction of each hollow fiber membrane 2 And filtered. In addition, the filtered water obtained inside each hollow fiber membrane 2 in the above-described operation rises inside each hollow fiber membrane 2 and is collected in the treated water chamber 11 above the partition plate 10, and the treated water outflow pipe Outflow from 16.

上述のような操作を続行するうちに、原水流入管18か
らの上昇流での復水の流入に伴って濾過室12内の被覆用
酸化鉄微粒子も当該濾過室12内を次第に上昇し、遂には
中空糸モジュール1の上方に位置する流通口6B付近に達
するようになる。被覆用酸化鉄微粒子が流通口6Bに達す
ると、今度は当該酸化鉄微粒子が流通口6Bを介して中空
糸モジュール1内に流入するようになる。一方、この時
点では中空糸モジュール1の下方に位置する前記開口部
7あるいは流通口6A付近に被覆用酸化鉄微粒子がほとん
ど存在しない状態となり、当該開口部7あるいは当該流
通口6Aからは被覆用酸化鉄微粒子がほとんど含まれない
復水が流入するようになる。
While continuing the operation as described above, the iron oxide fine particles for coating in the filtration chamber 12 also gradually rise in the filtration chamber 12 with the inflow of condensate in the ascending flow from the raw water inflow pipe 18, and finally. Reaches the vicinity of the circulation port 6B located above the hollow fiber module 1. When the iron oxide fine particles for covering reach the distribution port 6B, the iron oxide fine particles flow into the hollow fiber module 1 through the distribution port 6B. On the other hand, at this time, almost no iron oxide particles for coating are present in the vicinity of the opening 7 or the circulation port 6A located below the hollow fiber module 1, and the coating oxide is not supplied from the opening 7 or the circulation port 6A. Condensate containing almost no iron particles will flow in.

そして、前記流通口6Bを介して中空糸モジュール1内
に流入した被覆用酸化鉄微粒子を含む水は、当該中空糸
モジュール1内を下降しながら各中空糸膜2の長さ方向
のほぼ上半分の膜面で濾過され、それに応じて各中空糸
膜2のほぼ上半分の膜面に酸化鉄微粒子の被覆膜が徐々
に形成されて行き、最終的には前記下半分への被覆膜の
形成と併せて各中空糸膜2の表面に、その長さ方向に対
して従来より均一に被覆膜を形成することができる。
Then, the water containing the iron oxide particles for coating flowing into the hollow fiber module 1 through the circulation port 6B is substantially upper half in the longitudinal direction of each hollow fiber membrane 2 while descending in the hollow fiber module 1. And the coating film of the iron oxide fine particles is gradually formed on the film surface of almost the upper half of each hollow fiber membrane 2, and finally, the coating film on the lower half Along with the formation, a coating film can be formed on the surface of each hollow fiber membrane 2 more uniformly in the longitudinal direction than in the related art.

すなわち、従来は水張り用水を濾過室内の下部に予め
存在せしめた被覆用中鉄微粒子水の水面より下方から上
昇流で流入させて濾過室内を満水としていたので、被覆
用酸化鉄微粒子の多くが濾過室内の上方に移動し、濾過
室内の下方には被覆用酸化鉄微粒子がほとんど存在しな
い状態となっていた。したがって、その後濾過室内に被
覆膜形成用水を上昇流で流入させると、中空糸モジュー
ルの下方に位置する、第1図における開口部7あるいは
流通口6Aからは被覆用酸化鉄微粒子がほとんど流入せ
ず、被覆用酸化鉄微粒子の多くは第1図における流通口
6Bから中空糸モジュール内に流入することとなる。その
ため、各中空糸膜の長さ方向のほぼ下半分の膜面には被
覆用酸化鉄微粒子がほとんど付着せず、逆に長さ方向の
ほぼ上半分の膜面には被覆用酸化鉄微粒子が必要以上に
多く付着してしまうという結果になっていた。これに対
して、本発明方法によれば前述のごとく最初は中空糸モ
ジュール1の下方に位置する開口部7あるいは流通口6A
から被覆用酸化鉄微粒子が流入して各中空糸膜2の長さ
方向のほぼ下半分の膜面に付着し、その後中空糸モジュ
ール1の上方に位置する流通口6Bから被覆用酸化鉄微粒
子が流入するようになって各中空糸膜2の長さ方向のほ
ぼ上半分の膜面に付着し、その結果各中空糸膜2の表面
に、その長さ方向に対して従来より均一に被覆膜を形成
させることができるのである。
In other words, conventionally, the filling water was filled in the ascending flow from below the surface of the coating medium iron fine particle water, which was previously provided in the lower portion of the filtration chamber, so that the filtration chamber was filled with water. It moved upward in the chamber, and there was almost no iron oxide fine particles for coating in the lower part in the filtration chamber. Therefore, when the water for forming the coating film flows into the filtration chamber in an ascending flow thereafter, the iron oxide fine particles for coating almost flow from the opening 7 or the flow port 6A in FIG. 1 located below the hollow fiber module. Most of the iron oxide fine particles for coating
6B flows into the hollow fiber module. Therefore, the coating iron oxide fine particles hardly adhere to the substantially lower half membrane surface in the length direction of each hollow fiber membrane, and conversely, the coating iron oxide fine particles are coated on the substantially upper half membrane surface in the length direction. The result was that it adhered more than necessary. On the other hand, according to the method of the present invention, as described above, initially, the opening 7 or the flow opening 6A located below the hollow fiber module 1 is provided.
The coating iron oxide fine particles flow into the hollow fiber membrane 2 and adhere to the substantially lower half membrane surface in the longitudinal direction of the hollow fiber membranes 2. Thereafter, the coating iron oxide fine particles flow from the distribution port 6 </ b> B located above the hollow fiber module 1. As it flows in, it adheres to the substantially upper half of the surface of each hollow fiber membrane 2 in the longitudinal direction, and as a result, the surface of each hollow fiber membrane 2 is uniformly covered in the longitudinal direction. A film can be formed.

なお、上述の実施態様では、外筒の下方と上方にのみ
流通口を有する中空糸モジュールの場合を例にして説明
したが、外筒の周囲上下方向にほぼ万遍なく多数の流通
口を設けた中空糸モジュールの場合は、被覆用酸化鉄微
粒子が被覆膜形成用水の上向きの流れによって濾過室内
を徐々に上昇しながら各流通口に次々に流入して各中空
糸膜の膜面に順次付着するようになる。したがって、こ
の場合も概ね中空糸膜の下から上に向かうようにして、
ほぼ均一な厚みの被覆膜を形成させることができる。
Note that, in the above-described embodiment, the case of the hollow fiber module having the flow ports only below and above the outer cylinder has been described as an example, but a number of flow ports are provided almost uniformly in the vertical direction around the outer cylinder. In the case of the hollow fiber module, the iron oxide fine particles for coating gradually flow in the filtration chamber while gradually ascending in the filtration chamber by the upward flow of water for forming the coating film, and sequentially flow into the respective membrane surfaces of the hollow fiber membranes. Become attached. Therefore, also in this case, the hollow fiber membrane is generally directed upward from below.
A coating film having a substantially uniform thickness can be formed.

当該被覆膜を形成させた後に以下の濾過操作を引き続
き行う。
After forming the coating film, the following filtration operation is continuously performed.

すなわち弁の開口をそのままの状態で原水流入管18か
ら不溶解性物質を含む復水を流入する。当該複水は前述
の被覆膜を形成させる工程と同様に、各中空糸モジュー
ル1の開口部7および流通口6A、6Bを介して各中空糸モ
ジュール1の内部に流入し、前記被覆膜を介して各中空
糸膜2の外側から内側へ通過する。その結果復水に含ま
れている不溶解性物質は前記被覆膜によって捕捉され、
前記被覆膜の上部に不溶解性物質が付着することとな
る。
That is, the condensate containing the insoluble substance flows from the raw water inflow pipe 18 with the opening of the valve kept as it is. The double water flows into the inside of each hollow fiber module 1 through the opening 7 and the flow ports 6A and 6B of each hollow fiber module 1 in the same manner as in the step of forming the coating film. Through each hollow fiber membrane 2 from outside to inside. As a result, insoluble substances contained in the condensate are captured by the coating film,
An insoluble substance will adhere to the upper part of the coating film.

なお各中空糸膜2内の濾過水は内側を上昇し、処理水
室11内に集合され、処理水流出管16から流出する。
The filtered water in each hollow fiber membrane 2 rises inside, is collected in the treated water chamber 11, and flows out from the treated water outflow pipe 16.

このような濾過操作を続行することにより濾過塔9の
差圧が規定の値に達した際に濾過を中止して、以下の洗
浄を行う。
By continuing such a filtration operation, when the differential pressure of the filtration tower 9 reaches a specified value, the filtration is stopped and the following washing is performed.

すなわち弁22および弁26を閉じ、仕切板10の下方の濾
過室12内に流入した復水を、また仕切板10の上方の処理
水室11内に濾過水を満たしたまま、弁24および弁25を開
口し、圧縮空気流入管17Bから圧縮空気を流入する。当
該圧縮空気は気泡となって濾過塔9内を上昇し、気泡受
け14の上方で一端受けられ、気泡受け14の上部壁と気泡
分配管15の下部先端間で空気層を形成し、当該空気層お
よび気泡分配管15の下部先端を介して気泡は中空糸モジ
ュール1のスカート部8内を上昇し、次いで開口部7を
介して各中空糸モジュール1内に流入する。当該気泡の
上昇により各中空糸膜2は振動するとともに中空糸モジ
ュール1内の水が攪拌され、各中空糸膜2の表面に付着
した被覆膜が剥離するとともに、不溶解性物質も剥離さ
れる。なお気泡は中空糸モジュール1の流通口6Bから当
該モジュール1外に流出し、次いで空気抜き管20から濾
過塔9外に排出する。
That is, while the valve 22 and the valve 26 are closed, the condensate flowing into the filtration chamber 12 below the partition plate 10 and the filtered water into the treated water chamber 11 above the partition plate 10 are filled with the filtered water 24 and the valve 24. 25 is opened, and compressed air flows in from the compressed air inflow pipe 17B. The compressed air rises in the filtration tower 9 as bubbles and is once received above the bubble receiver 14, and forms an air layer between the upper wall of the bubble receiver 14 and the lower end of the bubble distribution pipe 15. The bubbles rise in the skirt portion 8 of the hollow fiber module 1 through the lower end of the layer and the bubble distribution pipe 15, and then flow into each hollow fiber module 1 through the opening 7. Each hollow fiber membrane 2 vibrates due to the rise of the air bubbles, and the water in the hollow fiber module 1 is stirred, and the coating film attached to the surface of each hollow fiber membrane 2 is peeled off, and the insoluble substance is also peeled off. You. Note that the bubbles flow out of the hollow fiber module 1 through the flow port 6B of the hollow fiber module 1 and then out of the filtration tower 9 through the air vent pipe 20.

このような気泡による攪拌を充分に行った後、弁25を
開口したまま弁24を閉じ、弁23を開口して、中空糸膜2
から剥離した主に酸化鉄を含む洗浄排液をドレン管19か
ら流出させるが、この際当該洗浄排液の一部を濾過室12
内に残留させ、この残留させた洗浄排液を剥離性のよい
酸化鉄微粒子を含む水として、次回の中空糸膜2表面へ
の被覆膜形成に使用する。
After sufficient stirring by such bubbles, the valve 24 is closed while the valve 25 is open, the valve 23 is opened, and the hollow fiber membrane 2 is opened.
The cleaning waste liquid mainly containing iron oxide peeled off from the drain pipe 19 flows out, and at this time, a part of the cleaning waste liquid is removed from the filtration chamber 12.
The remaining washing wastewater is used as water containing iron oxide fine particles having good releasability in the next formation of a coating film on the surface of the hollow fiber membrane 2.

以上の圧縮空気による攪拌、洗浄排液の一部ブローが
終了した後、濾過室12内に残留させた洗浄排液中の酸化
鉄微粒子を利用した前述のような被覆膜の形成と、濾過
を行う。
After the above-described stirring with the compressed air and the partial discharge of the cleaning waste liquid are completed, the formation of the above-described coating film using the iron oxide fine particles in the cleaning waste liquid remaining in the filtration chamber 12 and the filtration are performed. I do.

なお、上記洗浄排液のブローが終了した後、必要に応
じて弁25および弁27を開口し、その他の弁を閉じて圧縮
空気流入管17Aから圧縮空気を流入し、処理水室11内に
存在する処理水を当該空気圧で各中空糸膜2内を逆流さ
せ、各中空糸膜2の外表面に僅かに残留している酸化鉄
微粒子を洗い落とす操作を行ってもよい。
After the cleaning drainage blow is completed, the valve 25 and the valve 27 are opened as necessary, the other valves are closed, and compressed air flows in from the compressed air inflow pipe 17A to enter the treated water chamber 11. An operation may be performed in which the existing treated water is caused to flow back through each hollow fiber membrane 2 by the air pressure, and iron oxide fine particles slightly remaining on the outer surface of each hollow fiber membrane 2 are washed off.

本発明に用いる剥離性のよい酸化鉄微粒子は、先に従
来技術として述べたのと同じものを用いることができる
が、これを更に詳しく説明すると、中空糸膜2の表面に
付着しても前述の洗浄工程で容易に剥離し得る酸化鉄微
粒子全般を指し、例えば粒径1〜10μのα−Fe2O3(ヘ
マタイト)、α−FeOOH(ゲータイト)およびFe3O4(マ
グネタイト)の微粒子を挙げることができる。
As the fine iron oxide particles having good releasability used in the present invention, the same fine particles as those described above as the prior art can be used. Iron oxide fine particles that can be easily peeled off in the washing step, for example, α-Fe 2 O 3 (hematite), α-FeOOH (goethite) and Fe 3 O 4 (magnetite) particles having a particle size of 1 to 10 μm. Can be mentioned.

当該酸化鉄微粒子は非粘着性であり、中空糸膜表面に
薄い被覆層を形成しても、前記洗浄工程で極めて容易に
剥離することができる。なおこのような酸化鉄微粒子で
も1μ以下の微細な微粒子は剥離性が低下するので好ま
しくなく、また10μ以上の粒径の大きい酸化鉄微粒子で
は、当該微粒子で被覆膜を形成しても、比較的粒子径の
小さい原水中の酸化鉄が当該被覆膜を通過してしまうと
いう問題がある。
The iron oxide fine particles are non-adhesive, and can be peeled off very easily in the washing step even if a thin coating layer is formed on the surface of the hollow fiber membrane. It should be noted that even with such iron oxide fine particles, fine particles having a particle size of 1 μ or less are not preferable because the releasability is deteriorated, and even if a coating film is formed with the fine particles having a particle size of 10 μ or more, There is a problem that iron oxide in raw water having a small target particle size passes through the coating film.

なお、上述した復水処理の場合のごとく、原水に含ま
れている不溶解性物質の大部分が酸化鉄である場合は、
本発明における剥離性のよい酸化鉄微粒子として当該原
水中に含まれている酸化鉄を利用することができること
は既に述べた通りである。
In addition, as in the case of the above-described condensate treatment, when most of the insoluble substances contained in the raw water are iron oxide,
As already described, iron oxide contained in the raw water can be used as the iron oxide fine particles having good releasability in the present invention.

次に当該酸化鉄微粒子の被覆膜の厚さについて説明す
ると、本発明は従来から行われている濾過支持体に濾過
助剤をプレコートする、いわゆるプレコート式濾過とは
全く技術思想を異にするものであり、プレコート式濾過
の場合と比較してその被覆膜の厚さを極めて薄くする。
Next, the thickness of the coating film of the iron oxide fine particles will be described. The present invention has a completely different technical idea from the so-called precoat filtration in which a filter aid is pre-coated on a conventional filter support. In this case, the thickness of the coating film is extremely reduced as compared with the case of the precoat type filtration.

すなわち従来のプレコート式濾過は、濾過支持体にプ
レコート層を形成して、当該プレコート層で不溶解性物
質を体積濾過で除去するものであり、したがって当該プ
レコート層は体積濾過が可能となるように例えば10mm前
後の比較的厚い層が必要とされているが、本発明は中空
糸膜面に剥離しにくい不溶解性物質が直接付着するのを
単に防止するものであるから、酸化鉄微粒子の厚みは極
めて薄くてよく、通常100μ以下で充分にその目的を達
し得る。当該被覆膜の厚みは中空糸膜の表面積1m2あた
り0.5〜10gの前記酸化鉄微粒子を付着させることにより
なし得ることができる。
That is, in the conventional precoat type filtration, a precoat layer is formed on a filtration support, and insoluble substances are removed by volume filtration in the precoat layer, so that the precoat layer can be subjected to volume filtration. For example, a relatively thick layer of about 10 mm is required, but the present invention simply prevents the insoluble substance that is difficult to peel off from directly adhering to the surface of the hollow fiber membrane. May be extremely thin, and usually 100 μm or less can sufficiently achieve its purpose. The thickness of the coating film can be obtained by adhering 0.5 to 10 g of the iron oxide fine particles per 1 m 2 of the surface area of the hollow fiber membrane.

〈効果〉 以上説明したごとく、本発明方法によれば各中空糸膜
の表面に、その長さ方向に対して従来より均一な厚みで
酸化鉄微粒子の被覆膜を形成させることができるので、
各中空糸膜の全表面で当該被覆膜を介しての均一な濾過
を行うことができ、従来のごとく中空糸膜の長さ方向の
ほぼ下半分において被覆膜の厚みが薄くなり過ぎて、こ
の部分では被覆膜を形成させる所期の目的を達成できな
いといったような問題は解消される。
<Effects> As described above, according to the method of the present invention, a coating film of iron oxide fine particles can be formed on the surface of each hollow fiber membrane with a more uniform thickness in the length direction than in the related art.
Uniform filtration through the coating membrane can be performed on the entire surface of each hollow fiber membrane, and the thickness of the coating membrane becomes too thin in almost the lower half of the length direction of the hollow fiber membrane as in the related art. In this part, the problem that the intended purpose of forming the coating film cannot be achieved is solved.

なお、本発明方法は第1図に示したような構造の中空
糸モジュールに限らずいかなる構造の中空糸モジュール
にも適用することができ、例えば前述したごとく外筒の
周囲上下方向にほぼ万遍なく流通口を設けた中空糸モジ
ュールの場合も、あるいは各中空糸膜の両端を開口させ
て各中空糸膜の内側に得られる濾過水を各中空糸膜の両
端から取り出すようにした構造の、いわゆる両端集水型
の中空糸モジュールの場合にも適用することができる。
The method of the present invention can be applied not only to the hollow fiber module having the structure shown in FIG. 1 but also to a hollow fiber module having any structure. Even in the case of a hollow fiber module provided with a circulation port, or a structure in which both ends of each hollow fiber membrane are opened, and filtered water obtained inside each hollow fiber membrane is taken out from both ends of each hollow fiber membrane, The present invention can be applied to a so-called double-end collecting hollow fiber module.

〈実施例〉 以下に本発明の効果をより明確にするために実施例お
よび比較例を示す。
<Examples> Examples and comparative examples will be described below to further clarify the effects of the present invention.

実施例 0.2μ前後の微細孔を有する外径1.2mm、内径0.7mm、
長さ2.0mmの中空糸膜を直径25mmの外筒内に170本束ねて
第1図に示したような中空糸モジュールを形成し、当該
中空糸モジュールを濾過塔に1本配置して、第2図に示
したフローに準じて小型実験濾過塔を構成し、以下の実
験を行った。
Example 1.2 mm outer diameter with a micropore of about 0.2μ, inner diameter 0.7mm,
170 hollow fiber membranes having a length of 2.0 mm are bundled in an outer cylinder having a diameter of 25 mm to form a hollow fiber module as shown in FIG. 1, and one such hollow fiber module is disposed in a filtration tower. A small experimental filtration tower was constructed according to the flow shown in FIG. 2, and the following experiment was performed.

すなわち、中空糸膜1m2あたり2gの粒径1〜3μのFe
3O4を分散した水(被覆用酸化鉄微粒子水)を、その水
面が前中空糸モジュールの下端より下方となるように予
め前濾過塔の濾過室内下部に張り込んだ後、当該被覆用
酸化鉄微粒子水の水面より上方の位置から純水を供給し
て濾過室内を満水としたところ、当該酸化鉄微粒子の大
部分は濾過室の下部にそのまま存在した。その後、当該
酸化鉄の被覆膜を各中空糸膜の表面に形成させるべく、
濾過塔下部に連通させた原水流入管を介して濾過室内
に、被覆膜形成用水として純水を流入させ、当該純水を
濾過室から処理水室に向けて流すようにして被覆膜の形
成操作を行ったところ、中空糸膜の表面に第3図に示し
たようなほぼ均一な酸化鉄微粒子の被覆膜が形成され
た。なお、第3図において符号2は中空糸膜を、30は形
成された被覆膜を示している。
That is, 2 g per 1 m 2 of hollow fiber membrane,
Water (iron oxide fine particle water for coating) in which 3 O 4 is dispersed is preliminarily inserted into the lower part of the filtration chamber of the pre-filtration tower such that the water level is lower than the lower end of the front hollow fiber module, and then the oxidation for coating is performed. When pure water was supplied from a position above the water surface of the iron fine particle water to fill the filtration chamber, most of the iron oxide fine particles were still present in the lower part of the filtration chamber. Then, in order to form a coating film of the iron oxide on the surface of each hollow fiber membrane,
Pure water is flowed into the filtration chamber through the raw water inflow pipe connected to the lower portion of the filtration tower as water for forming a coating film, and the pure water flows from the filtration chamber toward the treatment water chamber to form a coating film. As a result of the forming operation, a substantially uniform coating film of iron oxide fine particles was formed on the surface of the hollow fiber membrane as shown in FIG. In FIG. 3, reference numeral 2 denotes a hollow fiber membrane, and reference numeral 30 denotes a formed coating film.

比較例 実施例と同じ小型実験濾過塔を用い、その濾過室内下
部に、実施例と同じ条件で被覆用酸化鉄微粒子水を予め
張り込んだ後、原水流入管を介して当該被覆用酸化鉄微
粒子水の水面より下方から上昇流で純水を供給して濾過
室内を満水としたところ、酸化鉄微粒子は濾過室内を上
昇してその大部分が当該濾過室内の上方部に移動した。
次いで実施例と同様にして被覆膜の形成操作を行ったと
ころ、中空糸膜2の表面には明らかにその長さ方向にお
いて上部に酸化鉄微粒子が比較的厚く被覆され、下部に
は酸化鉄微粒子がほとんど被覆されず、その結果第4図
に示すような不均一な被覆膜30が形成された。
Comparative Example Using the same small experimental filtration tower as in the example, after the iron oxide fine particle water for coating was previously inserted into the lower part of the filtration chamber under the same conditions as in the example, the iron oxide fine particles for coating via the raw water inflow pipe was used. When pure water was supplied from below the surface of the water by an ascending flow to fill the filtration chamber, the iron oxide fine particles ascended in the filtration chamber and most of them moved to the upper part in the filtration chamber.
Next, when a coating film forming operation was performed in the same manner as in the example, the surface of the hollow fiber membrane 2 was clearly coated with a relatively thick upper portion of iron oxide fine particles in the longitudinal direction, and a lower portion thereof was coated with iron oxide. The particles were hardly coated, and as a result, an uneven coating film 30 as shown in FIG. 4 was formed.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に用いる中空糸モジュールの一例を示す
断面図、第2図は本発明に用いる濾過塔の一例を示すフ
ロー説明図であり、第3図は実施例における中空糸膜表
面への酸化鉄微粒子の被覆膜の形成状態を示す模式断面
図、第4図は比較例における被覆膜の形成状態を示す模
式断面図である。 1…中空糸モジュール、2…中空糸膜 3…外筒、4…上部接合部 5…下部接合部、6…流通口 7…開口部、8…スカート部 9…濾過塔、10…仕切板 11…処理水室、12…濾過室 13…気泡分配機構、14…気泡分配板 15…気泡分配管、16…処理水流出管 17…圧縮空気流入管、18…原水流入管 19…ドレン管、20…空気抜き管 21…水張り用水流入管、22〜28…弁 29…バッフルプレート、30…被覆膜
FIG. 1 is a cross-sectional view showing an example of a hollow fiber module used in the present invention, FIG. 2 is a flow explanatory diagram showing an example of a filtration tower used in the present invention, and FIG. FIG. 4 is a schematic cross-sectional view showing a state of formation of a coating film of iron oxide fine particles of FIG. 4, and FIG. 4 is a schematic cross-sectional view showing a formation state of a coating film in a comparative example. DESCRIPTION OF SYMBOLS 1 ... Hollow fiber module, 2 ... Hollow fiber membrane 3 ... Outer cylinder, 4 ... Upper joint part 5 ... Lower joint part, 6 ... Distribution port 7 ... Opening part, 8 ... Skirt part 9 ... Filtration tower, 10 ... Partition plate 11 ... treated water chamber, 12 ... filtration chamber 13 ... bubble distribution mechanism, 14 ... bubble distribution plate 15 ... bubble distribution pipe, 16 ... treated water outflow pipe 17 ... compressed air inflow pipe, 18 ... raw water inflow pipe 19 ... drain pipe, 20 … Air vent pipe 21… Water filling water inlet pipe, 22-28… Valve 29… Baffle plate, 30… Coating film

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) B01D 65/08 B01D 63/04 C02F 1/44 B01D 37/02 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) B01D 65/08 B01D 63/04 C02F 1/44 B01D 37/02

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】塔内を上部の処理水室と下部の濾過室とに
区画する仕切板から、中空糸膜を多数本束ねた中空糸モ
ジュールを前記濾過室内に懸垂してなる濾過塔を用い、
不溶解性物質を含む原水を前記濾過室から流して各中空
糸膜の外側から内側へ原水を通過させることにより、前
記処理水室から濾過水を得る濾過操作の前に、剥離性の
よい酸化鉄微粒子を含む水を中空糸膜に通過させて各中
空糸膜の表面に当該酸化鉄微粒子の薄い被覆膜を形成さ
せる濾過方法において、各中空糸膜の表面に酸化鉄微粒
子の被覆膜を形成させるに際し、前記濾過室内の下部
に、被覆膜の形成に必要な量の酸化鉄微粒子を含有する
被覆用酸化鉄微粒子水を予め存在せしめ、次いで当該被
覆用酸化鉄微粒子水の水面より上方の位置から濾過室内
に水張り用水を、前記酸化鉄微粒子の大部分が濾過室内
の下部に維持されるごとく流入させることによって当該
濾過室内を満水とし、しかる後、被覆膜形成用水を当該
濾過室内にその下部より流入させるとともに濾過室内の
水を各中空糸膜に通過させることによって各中空糸膜の
表面に前記酸化鉄微粒子の被覆膜を形成させ、その後形
成された被覆膜を介して原水の濾過を行うことを特徴と
する中空糸膜を用いる濾過方法。
1. A filter tower comprising a hollow fiber module, in which a number of hollow fiber membranes are bundled, suspended from a partition plate dividing the inside of the tower into an upper treated water chamber and a lower filter chamber. ,
Raw water containing an insoluble substance flows from the filtration chamber and the raw water passes from the outside to the inside of each hollow fiber membrane. In a filtration method in which water containing iron fine particles is passed through the hollow fiber membrane to form a thin coating film of the iron oxide fine particles on the surface of each hollow fiber membrane, the surface of each hollow fiber membrane is coated with iron oxide fine particles. When forming, in the lower part of the filtration chamber, pre-existing iron oxide fine particle water for coating containing an amount of iron oxide fine particles necessary for the formation of the coating film, then from the surface of the water of the iron oxide fine particle water for coating Filling the filtration chamber with water for filling water into the filtration chamber from the upper position so that most of the iron oxide fine particles are maintained in the lower part of the filtration chamber, and then filtering the coating film forming water. The lower part in the room And the water in the filtration chamber is allowed to pass through each hollow fiber membrane to form a coating film of the iron oxide fine particles on the surface of each hollow fiber membrane. Thereafter, filtration of the raw water is performed through the formed coating film. A filtration method using a hollow fiber membrane.
【請求項2】原水に含まれる不溶解性物質の大部分が酸
化鉄である場合、当該酸化鉄を各中空糸膜の表面で濾過
した後、これを洗浄することによって得られる酸化鉄を
多量に含む洗浄排液を、濾過室内に予め存在せしめる被
覆用酸化鉄微粒子水として用いる請求項1に記載の中空
糸膜を用いる濾過方法。
2. When most of the insoluble substances contained in raw water are iron oxides, the iron oxides obtained by filtering the iron oxides on the surface of each hollow fiber membrane and washing them are reduced in a large amount. The filtration method using a hollow fiber membrane according to claim 1, wherein the washing wastewater contained in (1) is used as iron oxide fine particle water for coating which is previously present in a filtration chamber.
【請求項3】被覆用酸化鉄微粒子水を、その水面が濾過
室内に懸垂した中空糸モジュールの下端より下方となる
ように濾過室内に存在せしめる請求項1または2に記載
の中空糸膜を用いる濾過方法。
3. The hollow fiber membrane according to claim 1, wherein the iron oxide fine particle water for coating is present in the filtration chamber such that the water level is lower than the lower end of the hollow fiber module suspended in the filtration chamber. Filtration method.
JP2202584A 1990-08-01 1990-08-01 Filtration method using hollow fiber membrane Expired - Lifetime JP2871819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2202584A JP2871819B2 (en) 1990-08-01 1990-08-01 Filtration method using hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2202584A JP2871819B2 (en) 1990-08-01 1990-08-01 Filtration method using hollow fiber membrane

Publications (2)

Publication Number Publication Date
JPH0490831A JPH0490831A (en) 1992-03-24
JP2871819B2 true JP2871819B2 (en) 1999-03-17

Family

ID=16459905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2202584A Expired - Lifetime JP2871819B2 (en) 1990-08-01 1990-08-01 Filtration method using hollow fiber membrane

Country Status (1)

Country Link
JP (1) JP2871819B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000218110A (en) * 1999-01-28 2000-08-08 Japan Organo Co Ltd Operation of condensed water filter apparatus in power plant
CN111878921B (en) * 2020-07-28 2021-12-24 郭米娟 Water-saving wet-type air purification equipment

Also Published As

Publication number Publication date
JPH0490831A (en) 1992-03-24

Similar Documents

Publication Publication Date Title
JP2858913B2 (en) Filtration method using hollow fiber membrane
JP2904564B2 (en) Method of scrubbing filtration tower using hollow fiber membrane
JPS62163708A (en) Method for backwashing hollow yarn filter
JPH07204420A (en) Method of cleaning filter assembly and filter assembly
JPH10328538A (en) Method for cleaning hollow yarn membrane filtration tower
JPH0231200A (en) Backwash method of hollow-string film filter
CN206604241U (en) A kind of novel pressure formula mechanical filter
JP2871819B2 (en) Filtration method using hollow fiber membrane
JPH0624612B2 (en) Filtration method using hollow fiber membrane
JPH04126528A (en) Method for cleaning hollow-fiber membrane filter device the same
JP3464889B2 (en) Cleaning method for hollow fiber membrane filtration tower
JP3509846B2 (en) Power plant heater drain water treatment method
JP3122024B2 (en) Cleaning apparatus and method for downflow type multilayer filter
JPH0283020A (en) Condensate filtration using hollow fiber membrane
JPS59199005A (en) Washing method of permeable membrane tube
JPH0328887Y2 (en)
JPS59228902A (en) Filtration method by tubular permeable membrane
JP2795287B2 (en) Filtration method using hollow fiber membrane
CN208878001U (en) Filtering appts. for running water
JPS62197106A (en) Filter tower using hollow yarn module
JPS5823390Y2 (en) Ion exchange treatment tower
JPS582430Y2 (en) Ion exchange resin regeneration equipment
JPS59309A (en) Method and apparatus for washing filter apparatus
JPH0521603B2 (en)
JPH1119691A (en) Water treating device and its operating method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12