JP2871025B2 - Industrial transformer - Google Patents

Industrial transformer

Info

Publication number
JP2871025B2
JP2871025B2 JP19434290A JP19434290A JP2871025B2 JP 2871025 B2 JP2871025 B2 JP 2871025B2 JP 19434290 A JP19434290 A JP 19434290A JP 19434290 A JP19434290 A JP 19434290A JP 2871025 B2 JP2871025 B2 JP 2871025B2
Authority
JP
Japan
Prior art keywords
winding
voltage
tap
low
voltage winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19434290A
Other languages
Japanese (ja)
Other versions
JPH0479306A (en
Inventor
政芳 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP19434290A priority Critical patent/JP2871025B2/en
Publication of JPH0479306A publication Critical patent/JPH0479306A/en
Application granted granted Critical
Publication of JP2871025B2 publication Critical patent/JP2871025B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、整流器用変圧器や電気炉用変圧器などの
二次低圧側の電圧が100Vレベルの低圧でかつ容量が10MV
Aレベルの大容量の工業用変圧器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a transformer for a rectifier, a transformer for an electric furnace, etc., in which the voltage on the secondary low voltage side is a low voltage of the 100V level and the capacity is 10MV.
It relates to an A-level large-capacity industrial transformer.

〔従来の技術〕[Conventional technology]

第3図は従来の工業用変圧器の巻線配置を示す巻線配
置図である。この図において、鉄心1はその外径側表面
位置だけを図示してあるが、図の上方向である軸方向に
対称な棒状をしており、通常の比較的大容量の変圧器で
は三相変圧器であり鉄心も3本の鉄心脚が両端で継鉄で
磁気的に接続された三相三脚鉄心が使用され、3本の鉄
心脚のそれぞれにこの図に示す巻線群が同軸に配置され
る。また、前述のような容量とこの程度の容量の電源を
得る電力系統の電圧である66kV、77kVあるいは154kVの
高圧巻線の変圧器では絶縁油を冷却と絶縁を兼用した媒
体とする油入変圧器とするのが一般である。
FIG. 3 is a winding arrangement diagram showing a winding arrangement of a conventional industrial transformer. In this figure, the iron core 1 is shown only at the surface position on the outer diameter side, but has a rod shape which is symmetrical in the axial direction which is the upper direction of the figure. The transformer is a three-phase three-legged iron core with three iron legs magnetically connected at both ends with yoke. The winding group shown in this figure is coaxially arranged on each of the three iron legs. Is done. In addition, in the transformer of the high voltage winding of 66 kV, 77 kV or 154 kV which is the voltage of the power system that obtains the power of the above-mentioned capacity and this capacity, the oil-immersed transformer using the insulating oil as a medium that combines cooling and insulation Generally, it is a container.

低圧巻線3は多数の円板コイル31が軸方向に所定の間
隙を隔てて積み重ねられており、これら円板コイル31の
2つずつが1組となって1つのコイル群34を構成し、こ
れらコイル群34はそれぞれ内径側で直列に接続され外径
側から口出しリード32が引き出されて引き出しリード33
に接続される。他のコイル群34も同様に接続されて結局
2つの円板コイル31からなる数10個の個群が並列接続さ
れ1つの低圧巻線3が形成されている。このような低圧
巻線3の巻線構成は多並列円板巻線と呼ばれていて低電
圧大電流に適した特殊な巻線構成として工業用変圧器に
多く用いられている。
The low-voltage winding 3 has a number of disk coils 31 stacked in the axial direction with a predetermined gap therebetween, and two of these disk coils 31 constitute one set to form a coil group 34, These coil groups 34 are connected in series on the inner diameter side, respectively, and the lead 32 is pulled out from the outer diameter side to pull out the lead 33.
Connected to. The other coil groups 34 are connected in the same manner, and eventually several tens of groups of two disk coils 31 are connected in parallel to form one low-voltage winding 3. Such a winding configuration of the low-voltage winding 3 is called a multi-parallel disk winding, and is often used in industrial transformers as a special winding configuration suitable for low voltage and large current.

引き出しリード33の配置の関係から低圧巻線は図示の
ように最外径側に設けられるのが普通であり、電力用変
圧器が高圧巻線が最外径側、中圧巻線、低圧巻線はその
内径側に設けられるのが一般的な巻線配置であるのに比
較して、このような低圧巻線を最外径側に配置するのも
工業用変圧器の巻線配置の特徴になっている。
The low-voltage winding is normally provided on the outermost diameter side as shown in the drawing because of the arrangement of the lead 33, and the power transformer is configured such that the high-voltage winding is the outermost diameter side, the medium-voltage winding, and the low-voltage winding. In contrast to the general winding arrangement provided on the inner diameter side, the arrangement of such a low-voltage winding on the outermost diameter side is also a feature of the winding arrangement of industrial transformers. Has become.

この図では高圧巻線2が鉄心1に最も接近した最内径
側に設けられタップ巻線23が高圧巻線2と低圧巻線3と
の間に設けられている。タップ巻線23はタップ数から決
まる本数の電線を軸方向に並べて同時に巻回する多並列
円筒巻線からなっており、この図では2本の電線を示し
ているに過ぎないが、実際には10本前後の電線が同時に
巻回されるものである。この多並列円筒巻線では、図示
しない負荷時タップ切換器によるタップの切換えによっ
て電流の流れない電線が生じてもこれによるアンペアタ
ーンの軸方向の分布の非一様性が小さいことから、後述
の外部短絡のために巻線に流れる短絡電流によって巻線
間に発生する軸方向電磁機械力を低減する構成になって
いるという特長がある。
In this figure, the high-voltage winding 2 is provided on the innermost diameter side closest to the iron core 1, and the tap winding 23 is provided between the high-voltage winding 2 and the low-voltage winding 3. The tap winding 23 is composed of a multi-parallel cylindrical winding in which a number of wires determined by the number of taps are arranged in the axial direction and wound simultaneously, and in this figure, only two wires are shown, but in actuality, About 10 wires are wound simultaneously. In this multi-parallel cylindrical winding, even if an electric wire through which no current flows due to tap switching by a load tap changer (not shown), the nonuniformity of the axial distribution of ampere turns due to this is small. There is a feature that the axial electromagnetic mechanical force generated between the windings is reduced by a short-circuit current flowing through the windings due to an external short circuit.

高圧巻線2は本来円板巻線でも円筒巻線でもよいが、
タップ巻線23と一緒に前締めする構成にするためには円
筒巻線の方がよいという技術的な理由のために円筒巻線
が採用される場合があり、この図のタップ巻線の配置は
このような高圧巻線2が円筒巻線であることを想定して
図示したものである。高圧巻線2に円板巻線を採用した
場合には、タップ巻線23は高圧巻線2と鉄心の間に設け
る巻線配置が採用されることが多い。
The high-voltage winding 2 may be originally a disk winding or a cylindrical winding,
Cylindrical windings may be adopted for technical reasons that cylindrical windings are better for pre-tightening together with tap windings 23. Is illustrated assuming that such a high-voltage winding 2 is a cylindrical winding. When a disk winding is adopted as the high-voltage winding 2, a winding arrangement provided between the high-voltage winding 2 and the iron core is often adopted as the tap winding 23.

これら3つの巻線は図示のように同軸に配置されると
ともにそれぞれの軸方向寸法である巻線高さを合わせし
かもその両端の面も合わせるように配置されている。こ
の構成は工業用変圧器に限らず内鉄形鉄心を採用する変
圧器の基本的巻線配置である。このような巻線配置を採
用するのは定格電流の10倍以上の短絡電流がそれぞれの
巻線に流れた場合に発生する強大な軸方向電磁機械力を
なるべく低減することと、発生した軸方向電磁機械力に
充分耐える構成とするためである。それぞれの巻線の巻
線高さが異なると、その差に比例して巻線に対して軸方
向に電磁機械力が働く。また、巻線高さが一致していて
も、位置が軸方向にずれているとそのずれ寸法に比例し
た軸方向電磁機械力が働く。そのため、軸方向電磁機械
力を低減するために前述のように、巻線高さとその位置
が合った巻線配置が採用されるのである。実際には、製
作上の誤差もあってある程度の軸方向電磁機械力の発生
は避けられないので、これを考慮してそれぞれの巻線を
支持する構成やあらかじめ軸方向に締付け力を巻線に与
える前締めなどの対策が採られている。
These three windings are arranged coaxially as shown in the figure, and are also arranged so that the winding heights, which are the respective axial dimensions, are matched and the surfaces at both ends are also matched. This configuration is a basic winding arrangement of a transformer employing not only an industrial transformer but also an inner iron core. Adopting such a winding arrangement is to reduce the strong axial electromagnetic mechanical force generated when a short circuit current of 10 times or more of the rated current flows through each winding as much as possible, This is because the configuration is designed to sufficiently withstand the electromagnetic mechanical force. If the winding height of each winding is different, an electromagnetic mechanical force acts on the winding in the axial direction in proportion to the difference. Further, even if the winding heights match, if the position is displaced in the axial direction, an axial electromagnetic mechanical force proportional to the displacement dimension acts. Therefore, in order to reduce the axial electromagnetic mechanical force, as described above, a winding arrangement in which the winding height matches the winding height is employed. Actually, there is an unavoidable generation of a certain amount of electromagnetic electromagnetic force in the axial direction due to manufacturing errors.Therefore, in consideration of this, the structure to support each winding and the tightening force in the axial direction must be applied to the winding in advance. Measures such as tightening before giving are taken.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

第3図には前述のように高圧巻線2に円筒巻線を採用
したものとして図示したものであり、その理由はタップ
巻線23をこの高圧巻線2と一緒に前締めするためであ
る。円板巻線においては、隣合う円板コイル31間は絶縁
物が挿入されて必要とする間隙が確保されているのに対
して、円筒巻線では、軸方向に電線が接して巻回されて
いるので、円板巻線の方が軸方向に占める絶縁物の割合
がはるかに大きいという違いがある。巻線を軸方向に締
付ける前締めにおいて収縮するのは殆どが絶縁物であ
り、電線導体は金属だから絶縁物に比べれば殆ど寸法変
化はないとしてよい。したがって、円板巻線と円筒巻線
とを同時に並列に前締めすると、円筒巻線に偏って前締
め力がかかり、円板巻線には必要な前締め力がかからな
いという問題が生ずる。前締め時には巻線の乾燥処理を
行われ、乾燥によって絶縁物は収縮するので前締め力の
偏りはなおのこと拡大されることになる。そのため、前
述のように多並列円筒巻線からなるタップ巻線23を高圧
巻線2と一緒に前締め処理を行うためには、高圧巻線2
に円筒巻線を採用することが必要になる。
FIG. 3 shows that the cylindrical winding is adopted as the high voltage winding 2 as described above, because the tap winding 23 is pre-tightened together with the high voltage winding 2. . In a disc winding, an insulator is inserted between adjacent disc coils 31 to ensure a necessary gap, whereas in a cylindrical winding, an electric wire is wound in contact with an axial direction. Therefore, there is a difference that the ratio of the insulator occupied by the disk winding in the axial direction is much larger. Most of the contraction in the pre-tightening of the winding in the axial direction is caused by the insulator, and since the electric wire conductor is made of metal, there may be almost no dimensional change compared to the insulator. Therefore, when the disk winding and the cylindrical winding are simultaneously pre-tightened in parallel, a pre-tightening force is applied to the cylindrical winding in a biased manner, and a problem arises in that the necessary pre-tightening force is not applied to the disk winding. During the pre-tightening, the winding is dried, and the insulator shrinks due to the drying, so that the bias of the pre-tightening force is further increased. Therefore, in order to pre-tighten the tap winding 23 composed of the multi-parallel cylindrical winding together with the high-voltage winding 2 as described above, the high-voltage winding 2
It is necessary to adopt a cylindrical winding.

円板巻線は円筒巻線にくらべて高圧巻線2の電圧程度
では円板巻線の方が小さな寸法になるという長所がある
ために高圧巻線2に円板巻線が採用される場合もある
が、この場合には、前述の理由からタップ巻線23を単独
で前締めする構成とする必要がある。タップ巻線23の容
量は小さくしたがって、巻線の半径方向寸法である巻線
幅も小さいために、これを確実に前締めするためには特
別な構成が必要になるので、構造が複雑になり価格上昇
の原因にもなるという問題がある。
When the disk winding is adopted as the high voltage winding 2 because the disk winding has the advantage that the size of the disk winding is smaller than the cylindrical winding at about the voltage of the high voltage winding 2 In this case, however, in this case, it is necessary to adopt a configuration in which the tap winding 23 is independently pre-tightened for the above-described reason. Since the capacity of the tap winding 23 is small and the winding width, which is the radial dimension of the winding, is also small, a special configuration is required to securely tighten the winding, which complicates the structure. There is a problem that it may cause price rise.

この発明の目的は、低圧巻線が多並列円板巻線からな
っている特殊性を利用して、タップ巻線を高圧巻線又は
低圧巻線の軸方向端部の空間に配置することによって、
高圧巻線に円板巻線を採用することが可能になり、しか
も軸方向電磁機械力が過大にならない巻線配置を採用し
た工業用変圧器を提供することにある。
An object of the present invention is to arrange a tap winding in a space at an axial end of a high-voltage winding or a low-voltage winding by utilizing the special property that a low-voltage winding is formed of a multi-parallel disk winding. ,
An object of the present invention is to provide an industrial transformer in which a disk winding can be adopted as a high-voltage winding and a winding arrangement in which an axial electromagnetic force does not become excessive is adopted.

〔課題を解決するための手段〕[Means for solving the problem]

上記課題を解決するためにこの発明によれば、鉄心に
挿入された円筒状の低圧巻線が複数のコイル群を並列接
続した多並列円板巻線であり、高圧巻線、タップ巻線を
含む他の巻線がこの低圧巻線に同軸に配置されてなる工
業用変圧器において、前記タップ巻線と前記高圧巻線と
を円板巻線で構成し、このタップ巻線を前記高圧巻線又
は低圧巻線の軸方向端部に配置されてなるものとする。
According to the present invention, in order to solve the above problems, a cylindrical low-voltage winding inserted into an iron core is a multi-parallel disk winding in which a plurality of coil groups are connected in parallel, and a high-voltage winding and a tap winding are used. In an industrial transformer in which other windings including the same windings are arranged coaxially with the low-voltage winding, the tap winding and the high-voltage winding are formed by disc windings, and the tap winding is formed by the high-voltage winding. It shall be located at the axial end of the wire or low voltage winding.

〔作用〕[Action]

この発明の構成において、低圧巻線が並列接続された
複数のコイル群からなる多並列円板巻線で構成されてい
ることから、他の巻線の配置が軸方向に対称でないこと
によって生ずるアンペアターンの分布の非対称性が、低
圧巻線の各コイル群に流れる電流の分担が不均一になる
ことによって補正されるという性質がある。したがっ
て、タップ巻線に円板巻線を採用して高圧巻線の軸方向
の両端の一方の空間に配置すると、このタップ巻線に流
れる電流によってアンペアターンは軸方向に非対称にな
るが、前述のように低圧巻線内の電流分布がこの非対称
アンペアターン分布を補正することから外部短絡による
短絡電流によって発生する軸方向電磁機械力が抑制され
ることになる。タップ巻線を低圧巻線の軸方向の端部の
一方に設けても同じ作用が生じる。これによって高圧巻
線に円筒巻線を採用する理由がなくなるので、円筒巻線
に比べて巻線寸法が小さくなる円板巻線が何の支障もな
く採用することが可能になる。
In the configuration of the present invention, since the low-voltage winding is constituted by a multi-parallel disk winding composed of a plurality of coil groups connected in parallel, the ampere caused by the arrangement of the other windings being not symmetrical in the axial direction. There is a characteristic that the asymmetry of the distribution of turns is corrected by uneven distribution of the current flowing through each coil group of the low-voltage winding. Therefore, if a disc winding is adopted as the tap winding and it is arranged in one space at both ends in the axial direction of the high-voltage winding, the ampere turn becomes asymmetric in the axial direction due to the current flowing through this tap winding. As described above, since the current distribution in the low-voltage winding corrects this asymmetrical ampere-turn distribution, the axial electromagnetic mechanical force generated by the short-circuit current due to the external short-circuit is suppressed. The same effect occurs if a tap winding is provided at one of the axial ends of the low voltage winding. As a result, there is no reason to adopt a cylindrical winding for the high-voltage winding, so that a disk winding having a smaller winding size than the cylindrical winding can be adopted without any trouble.

〔実施例〕〔Example〕

以下この発明を実施例に基づいて説明する。第1図は
この発明の実施例を示す巻線配置図であり、第3図と共
通の構成要素に対しては同一の参照符号を付すことによ
り詳細な説明を省略する。この図において、タップ巻線
21は4つの円板コイルからなる円板巻線で構成されてい
て、円板巻線で構成された高圧巻線2Aの上端部の空間に
配置されている。高圧巻線2Aの上端部の位置は低圧巻線
3の上端部の位置より少し下にあり、タップ巻線21の上
端部は低圧巻線3の上端部よりも少し上になるように配
置されており、タップ巻線21の中央高さ位置が低圧巻線
3の上端部に一致するようにしてある。高圧巻線2Aと低
圧巻線3のそれぞれの下端部位置は一致させてある。
Hereinafter, the present invention will be described based on examples. FIG. 1 is a winding arrangement diagram showing an embodiment of the present invention. The same reference numerals are given to the same components as those in FIG. 3, and the detailed description will be omitted. In this figure, the tap winding
Reference numeral 21 denotes a disk winding composed of four disk coils, and is arranged in the space at the upper end of the high-voltage winding 2A formed by the disk winding. The position of the upper end of the high-voltage winding 2A is located slightly below the position of the upper end of the low-voltage winding 3, and the upper end of the tap winding 21 is disposed slightly above the upper end of the low-voltage winding 3. The center height position of the tap winding 21 matches the upper end of the low-voltage winding 3. The positions of the lower ends of the high-voltage winding 2A and the low-voltage winding 3 are matched.

タップ巻線21は図示しない負荷時タップ切換器が選択
するタップ位置によって電流の流れるターンが変わり、
この図ではタップ巻線21の全てのターンに電流が流れる
場合と全てのターンに電流が流れない場合との間をタッ
プ位置に応じてアンペアターンが変化する場合のタップ
巻線21の配置を示すもので、タップ巻線21のアンペアタ
ーンが最大の場合には、高圧巻線2Aとタップ巻線21を含
めた内径側の巻線のアンペアターンの軸方向分布に対応
する磁気的な等価軸方向寸法は低圧巻線3よりも長くな
り、逆にタップ巻線21のアンペアターンが0の場合に
は、内径側の巻線の軸方向寸法は高圧巻線2Aそのものの
寸法であるから低圧巻線3よりも短くなる。このように
低圧巻線3に対向する巻線のアンペアターン分布が低圧
巻線3のコイル寸法に一致しないで非対称になっている
ときには、低圧巻線3を構成するそれぞれのコイル群34
に流れる電流の分担は不均一になる。その傾向は、高圧
巻線2A側が長いときには低圧巻線3の上部のコイル群34
に寸法の長い分だけの電流が集中し、短い場合には上部
のコイル群34の電流分担が減少し、高圧巻線2A側のアン
ペアターンの非対称分を低圧巻線3の電流分担の不均一
で打ち消し合うことになる。低圧巻線3のより厳密な電
流分担を求めるには、第1図のそれぞれの巻線のインピ
ーダンスマトリクスを求めてそれぞれのコイル群34の電
流値を未知数にした多元複素連立方程式を解くことによ
って求められる。定性的には交流電磁界において、反対
方向の電流は互いに接近しようとして分布し、同方向の
電流は互いに離れようとして分布するという性質からも
説明することができる普遍的な現象である。
In the tap winding 21, the current flowing turn changes depending on the tap position selected by a not-shown load tap changer,
This figure shows the arrangement of the tap winding 21 when the ampere turn changes according to the tap position between the case where the current flows through all the turns of the tap winding 21 and the case where no current flows through all the turns. When the ampere-turn of the tap winding 21 is the maximum, the magnetic equivalent axial direction corresponding to the axial distribution of the ampere-turn of the inner winding including the high-voltage winding 2A and the tap winding 21 The dimension is longer than that of the low-voltage winding 3. On the contrary, when the ampere-turn of the tap winding 21 is 0, the axial dimension of the winding on the inner diameter side is the dimension of the high-voltage winding 2A itself. It is shorter than 3. As described above, when the ampere-turn distribution of the winding facing the low-voltage winding 3 does not match the coil size of the low-voltage winding 3 and is asymmetric, the respective coil groups 34 constituting the low-voltage winding 3
The distribution of the current flowing through is uneven. The tendency is that when the high voltage winding 2A side is long, the coil group 34 above the low voltage winding 3
In the case of short current, the current sharing of the upper coil group 34 decreases, and in the case of short current, the asymmetric portion of the ampere turn on the high voltage winding 2A makes the current sharing of the low voltage winding 3 non-uniform. Will cancel each other out. In order to obtain the stricter current sharing of the low-voltage winding 3, the impedance matrix of each winding in FIG. 1 is obtained, and the current value of each coil group 34 is solved by solving a multi-element complex simultaneous equation. Can be Qualitatively, it is a universal phenomenon that can be explained from the property that, in an AC electromagnetic field, currents in opposite directions distribute toward each other and currents in the same direction distribute away from each other.

前述のように、高圧巻線2Aとタップ巻線21とを含めた
高圧巻線2A側のアンペアターンが低圧巻線3の巻線配置
に対して非対称となる分布をすると、この非対称性を打
ち消すように低圧巻線3を構成する並列接続されたコイ
ル群34の電流分担が決まり、その結果、外部短絡時の軸
方向電磁機械力の発生も抑制されることになる。したが
って、第1図に示すようにアンペアターンが非対称とな
るようなタップ巻線21の配置を採用してもこれまでの一
般的な常識ほどには軸方向電磁機械力は大きくならない
結果になる。
As described above, if the ampere turns on the high-voltage winding 2A including the high-voltage winding 2A and the tap winding 21 have a distribution that is asymmetric with respect to the winding arrangement of the low-voltage winding 3, this asymmetry is canceled. As described above, the current sharing of the coil group 34 connected in parallel constituting the low-voltage winding 3 is determined, and as a result, the generation of the axial electromagnetic mechanical force at the time of external short circuit is suppressed. Therefore, even if the arrangement of the tap windings 21 having an asymmetrical ampere turn as shown in FIG. 1 is employed, the axial electromagnetic mechanical force does not increase as much as the conventional common sense.

前締めにおいては、高圧巻線2Aとタップ巻線21とは同
時に前締力がかけられる。前締め力は高圧巻線2Aとタッ
プ巻線21とで同じ力がかかるので巻線種類にかかわらず
共通に前締めすることに支障はない。
In the pre-tightening, a front tightening force is applied to the high-voltage winding 2A and the tap winding 21 at the same time. Since the same force is applied to the high-voltage winding 2A and the tap winding 21 as the pre-tightening force, there is no problem in performing common pre-tightening regardless of the winding type.

第2図はこの発明の別の実施例を示す巻線配置図であ
る。この図の第1図との違いは、この図はタップ巻線22
が低圧巻線3の上に配置されている点である。タップ巻
線22が高圧巻線2Bの一部であり、高圧巻線2Bとタップ巻
線22とが電気的に接続される構成の場合には絶縁上の観
点から第1図の構成が妥当である。工業用変圧器の中に
は低圧側電圧を広い範囲で調整するために低圧側回路に
直列に挿入される直列変圧器を設けこの直列変圧器の一
次電圧をこの発明の対象である主変圧器の三次巻線で供
給し、この三次巻線をタップ巻線として直列変圧器の誘
起電圧をこのタップ巻線のタップを変化させることによ
って変化させ、結果的に低圧側電圧を広い範囲で変化さ
せようとするものである。このような構成を採ったとき
のタップ巻線22は高圧巻線2Bとは別回路になりその電圧
は一般に高圧巻線2Bよりも低い値になるので、タップ巻
線22はむしろこの図のように低圧巻線3の上端部の空間
に配置するのが妥当になる。この図の構成では高圧巻線
2Bの上部端子の引き出しが第1図に比べて容易になると
いう特長があり、更にはタップ巻線22が外径側にあるこ
とによってタップ巻線22のタップリードの引き出しも容
易になるという特長がある。
FIG. 2 is a winding arrangement diagram showing another embodiment of the present invention. The difference between FIG. 1 and FIG.
Are arranged on the low-voltage winding 3. In the case where the tap winding 22 is a part of the high-voltage winding 2B and the high-voltage winding 2B and the tap winding 22 are electrically connected, the configuration of FIG. 1 is appropriate from the viewpoint of insulation. is there. Among the industrial transformers, a series transformer is inserted in series with the low-voltage side circuit in order to adjust the low-voltage side in a wide range, and the primary voltage of the series transformer is controlled by the main transformer. And the tertiary winding is used as a tap winding, and the induced voltage of the series transformer is changed by changing the tap of this tap winding, thereby changing the low voltage side voltage in a wide range. It is to try. When such a configuration is employed, the tap winding 22 is a separate circuit from the high-voltage winding 2B, and its voltage is generally lower than that of the high-voltage winding 2B. It is appropriate to dispose it in the space at the upper end of the low-voltage winding 3. In this configuration, the high-voltage winding
The feature that the upper terminal of the 2B can be easily pulled out as compared with FIG. 1 and that the tap lead of the tap winding 22 can be easily drawn because the tap winding 22 is on the outer diameter side. There is.

この図においてタップ巻線22の電流が低圧巻線3のそ
れと同方向の場合には、前述の交流電磁場の定性的な電
流分布の性質から明らかなように、低圧巻線3のタップ
巻線22に近い側のコイル群34の電流分担が減少し、反対
方向の場合には、増加することになり、この点は第1図
の場合と定性的に同じである。タップ巻線22の位置が異
なるので、これに伴う軸方向電磁機械力の少しは異なる
が本質的な違いは生じない。前締めは低圧巻線3とタッ
プ巻線22とが一緒に行われる。
In this figure, when the current of the tap winding 22 is in the same direction as that of the low-voltage winding 3, the tap winding 22 of the low-voltage winding 3 is evident from the aforementioned qualitative current distribution property of the AC electromagnetic field. The current sharing of the coil group 34 on the side closer to the above decreases and increases in the opposite direction, which is qualitatively the same as that in FIG. Since the positions of the tap windings 22 are different, the axial electromechanical force associated therewith is slightly different, but does not cause any substantial difference. The pre-tightening is performed by the low-voltage winding 3 and the tap winding 22 together.

前述の2つの実施例におけるタップ巻線21,22をいず
れも4つの円板コイルからなるものとし、そのコイル群
の数も2としたものを図示したが、実際の工業用変圧器
のタップ数は前述のようにもっと多く、また、タップ巻
線21,22の接続方式にも種々あるので、この発明を実施
する上でのタップ巻線21,22の構成、配置位置は、この
発明の目的に適合する範囲内においてそれぞれの条件が
総合的に判断された上で決定されるべきものである。
The tap windings 21 and 22 in the above two embodiments are each composed of four disk coils, and the number of the coil groups is also shown as 2. However, the number of taps of an actual industrial transformer is shown. As described above, there are various types of connection between the tap windings 21 and 22, and the configuration and arrangement of the tap windings 21 and 22 in implementing the present invention are different from those of the present invention. The conditions should be determined after comprehensively judging each condition within a range that conforms to.

〔発明の効果〕〔The invention's effect〕

この発明は前述のように、低圧巻線が多並列円板巻線
で構成されていることから、他の巻線の配置が軸方向に
対称でないことよって生ずるアンペアターンの分布の非
対称性は、低圧巻線の並列接続された各コイル群に流れ
る電流が不均一になることによって補正される。したが
って、タップ巻線に円板巻線を採用して高圧巻線の軸方
向の両端の一方の空間に配置するとこのタップ巻線に流
れる電流によってアンペアターンは軸方向に非対称の分
布になるが、前述のように低圧巻線内の電流分布がこの
非対称のアンペアターン分布を補正することから、外部
短絡による短絡電流によって発生する軸方向電磁機械力
が抑制されることになる。タップ巻線を低圧巻線の軸方
向の端部の一方に設けても同じ作用が生じる。これによ
って高圧巻線に円筒巻線を採用する理由もなくなるの
で、円筒巻線に比べて巻線寸法が小さくなる円板巻線を
何の支障もなく採用することが可能になる。
According to the present invention, as described above, since the low-voltage winding is constituted by a multi-parallel disk winding, the asymmetry of the ampere-turn distribution caused by the arrangement of the other windings being not symmetrical in the axial direction is as follows. This is corrected by the non-uniform current flowing through each coil group connected in parallel with the low-voltage winding. Therefore, if a disk winding is adopted as the tap winding and it is arranged in one space at both ends in the axial direction of the high-voltage winding, the ampere turns have an asymmetric distribution in the axial direction due to the current flowing through this tap winding. As described above, since the current distribution in the low-voltage winding corrects this asymmetrical ampere-turn distribution, the axial electromagnetic mechanical force generated by the short-circuit current due to the external short-circuit is suppressed. The same effect occurs if a tap winding is provided at one of the axial ends of the low voltage winding. As a result, there is no reason to use a cylindrical winding for the high-voltage winding, so that a disk winding having a smaller winding size than the cylindrical winding can be used without any trouble.

タップ巻線を配置する高圧巻線や低圧巻線の軸方向端
部の空間は絶縁的に不要な寸法部を利用することができ
るので、低圧巻線を始めタップ巻線よりも外径側に配置
される巻線の半径寸法が、タップ巻線が占めていた半径
方向寸法分だけ縮小されるという効果が得られる。更
に、従来技術では高圧巻線に円筒巻線を採用していたよ
うな場合にも占積率のよい円板巻線を採用してなんら支
障が生じなくなることから、更に半径方向寸法の縮小と
いう効果が加えられる。このように半径方向の寸法縮小
によって、巻線に使用される電線重量が低減されること
によって工業用変圧器の価格低減の効果が得られるとと
もに、巻線に発生する負荷損失も低減されることから効
率の向上とこれに伴う運転コストの低減という効果も得
られる。
The space at the axial end of the high-voltage winding and low-voltage winding where the tap winding is arranged can use an unnecessary dimension for insulation. The effect is obtained that the radial dimension of the arranged winding is reduced by the radial dimension occupied by the tap winding. Furthermore, in the prior art, even in the case where a cylindrical winding is used for the high-voltage winding, a disk winding having a good space factor is adopted, and no problem occurs. The effect is added. In this way, by reducing the radial dimension, the weight of the electric wire used for the winding is reduced, whereby the effect of reducing the cost of the industrial transformer is obtained, and the load loss generated in the winding is also reduced. Therefore, it is possible to obtain an effect of improving the efficiency and reducing the operation cost accordingly.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の実施例を示す巻線配置図、第2図は
この発明の別の実施例を示す巻線配置図、第3図は従来
の工業用変圧器の巻線配置を示す巻線配置図である。 1…鉄心、2,2A,2B…高圧巻線、21,22,23…タップ巻
線、3…低圧巻線、31…円板コイル、32…口出しリー
ド、33…引き出しリード、34…コイル群。
1 is a winding arrangement diagram showing an embodiment of the present invention, FIG. 2 is a winding arrangement diagram showing another embodiment of the present invention, and FIG. 3 is a winding arrangement diagram of a conventional industrial transformer. FIG. 1: Iron core, 2, 2A, 2B: High-voltage winding, 21, 22, 23: Tap winding, 3: Low-voltage winding, 31: Disc coil, 32: Lead, 33: Lead, 34: Coil group .

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】鉄心に挿入された円筒状の低圧巻線が複数
のコイル群を並列接続した多並列円板巻線であり、高圧
巻線、タップ巻線を含む他の巻線がこの低圧巻線に同軸
に配置されてなる工業用変圧器において、 前記タップ巻線と前記高圧巻線とを円板巻線で構成し、
このタップ巻線を前記高圧巻線又は低圧巻線の軸方向端
部に配置されてなることを特徴とする工業用変圧器。
A cylindrical low-voltage winding inserted in an iron core is a multi-parallel disk winding in which a plurality of coil groups are connected in parallel, and other windings including a high-voltage winding and a tap winding are connected to the low-voltage winding. In an industrial transformer arranged coaxially with a pressure winding, the tap winding and the high-voltage winding are each configured by a disk winding,
An industrial transformer, wherein the tap winding is arranged at an axial end of the high-voltage winding or the low-voltage winding.
JP19434290A 1990-07-23 1990-07-23 Industrial transformer Expired - Lifetime JP2871025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19434290A JP2871025B2 (en) 1990-07-23 1990-07-23 Industrial transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19434290A JP2871025B2 (en) 1990-07-23 1990-07-23 Industrial transformer

Publications (2)

Publication Number Publication Date
JPH0479306A JPH0479306A (en) 1992-03-12
JP2871025B2 true JP2871025B2 (en) 1999-03-17

Family

ID=16322995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19434290A Expired - Lifetime JP2871025B2 (en) 1990-07-23 1990-07-23 Industrial transformer

Country Status (1)

Country Link
JP (1) JP2871025B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105206401A (en) * 2015-09-17 2015-12-30 王奉瑾 Multiphase multi-pulse wave rectifier transformer

Also Published As

Publication number Publication date
JPH0479306A (en) 1992-03-12

Similar Documents

Publication Publication Date Title
US4338657A (en) High-voltage transformer-rectifier device
JP2871025B2 (en) Industrial transformer
US3210648A (en) Regulating and current limiting transformer system
US3725833A (en) Transformer tap selector
US4047139A (en) Transformers of large capacity for ultra-high voltages
US2840790A (en) Tapped winding arrangement for variable ratio transformer
US3621428A (en) Electrical windings and method of constructing same
US4270111A (en) Electrical inductive apparatus
US3624577A (en) Tapped multilayer winding for electrical inductive apparatus
JPS6236370B2 (en)
CN109427465B (en) Multipurpose dry transformer
CN217562387U (en) Dry-type transformer
US3443119A (en) Shunt reactor for transmission line
JP3522290B2 (en) Disk winding
EP4386788A1 (en) Power transformer for on-load tap changer application
US3644859A (en) Electrical winding of sheet conductor
JP2755680B2 (en) Transformer coil
JPS6228736Y2 (en)
JPH05159948A (en) On-load tap changing single-phase autotransformer
US3315197A (en) Transformer coil having improved short circuit strength
CN113707429A (en) Reactor for three-phase transformer and three-phase transformer
US3832660A (en) Transformer having an electrically symmetrical tapped winding
JP3556817B2 (en) Tap-switching autotransformer under load
JPH06244039A (en) Winding of transformer
US4214199A (en) Current transformer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080108

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090108

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110108

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110108