JP2871021B2 - Rear aperture triplet lens - Google Patents
Rear aperture triplet lensInfo
- Publication number
- JP2871021B2 JP2871021B2 JP19016990A JP19016990A JP2871021B2 JP 2871021 B2 JP2871021 B2 JP 2871021B2 JP 19016990 A JP19016990 A JP 19016990A JP 19016990 A JP19016990 A JP 19016990A JP 2871021 B2 JP2871021 B2 JP 2871021B2
- Authority
- JP
- Japan
- Prior art keywords
- lens
- refractive power
- aberration
- positive
- object side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Lenses (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、小型レンズシャッターカメラ用の撮影レン
ズとして利用可能な正、負、正の3群3枚構成のトリプ
レットレンズに関し、特に、全てのレンズを合成樹脂で
構成して、小型で諸収差が良好に補正された後置絞りの
トリプレットレンズに関する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a triplet lens composed of three groups of three groups, positive, negative, and positive, which can be used as a photographing lens for a small-lens shutter camera. The present invention relates to a triplet lens of a post-aperture, in which a lens is made of a synthetic resin, and is small in size, and various aberrations are satisfactorily corrected.
小型レンズシャッターカメラにおいては、近年の激し
い競争の中で、その小型化とコストダウンが強く要求さ
れている。そこで、撮影レンズの小型化に対しては、望
遠比を小さく抑えることと広角にすることが手段の1つ
として考えられる。また、コストダウンに対しては、レ
ンズの枚数を減らすと共に、材料として、光学ガラスで
はなく、成型が容易で安価な合成樹脂を用いること、さ
らに、絞りをレンズ系の後方に配置することにより、鏡
枠の構成を簡易にしてレンズ組み立てを容易にすると共
に、繰り出し及び露出制御機構を簡易にする方法が考え
られる。In the recent fierce competition, there has been a strong demand for small lens shutter cameras to be reduced in size and cost. Therefore, to reduce the size of the photographing lens, it is conceivable to reduce the telephoto ratio and widen the angle as one of the means. Also, for cost reduction, by reducing the number of lenses, using an inexpensive synthetic resin that is easy to mold instead of optical glass as a material, and by disposing a diaphragm behind the lens system, A method for simplifying the lens assembly by simplifying the configuration of the lens frame and simplifying the extension and exposure control mechanism can be considered.
これらの条件を満たすレンズ系の1つとして、従来よ
り、全てのレンズを合成樹脂で構成したトリプレットが
考えられていて、米国特許第3,194,116号、米国特許第
3,784,287号、特開昭61−272710号等が知られている。As one of the lens systems satisfying these conditions, a triplet in which all lenses are made of a synthetic resin has been conventionally considered. US Pat. No. 3,194,116 and US Pat.
3,784,287 and JP-A-61-272710 are known.
しかしながら、現在のところ、射出成形で容易に生産
ができる光学用合成樹脂は、屈折率、アッベ数に限りが
あり、そのために、単色の収差と色収差とを同時に補正
することは困難であった。上記米国特許第3,194,116号
では、色収差は補正されているが、望遠比が1.1以上で
あり、小型なレンズになっていない。また、米国特許第
3,784,287号では、望遠比は小さいが、画角が狭く、結
果として小型になっていない。また、特開昭61−272710
号では、色収差の補正が不十分であり、非点隔差も大き
い。However, at present, optical synthetic resins that can be easily produced by injection molding have a limited refractive index and Abbe number, and therefore it has been difficult to correct monochromatic aberration and chromatic aberration simultaneously. In the above-mentioned U.S. Pat. No. 3,194,116, chromatic aberration is corrected, but the telephoto ratio is 1.1 or more, and the lens is not a small lens. U.S. Patent No.
In 3,784,287, the telephoto ratio is small, but the angle of view is narrow, and as a result, it is not downsized. Also, JP-A-61-272710.
The correction of chromatic aberration is insufficient in the case of (1), and the astigmatism is large.
本発明は上記のような状況に鑑みてなされたものであ
り、その目的は、上記従来技術の問題点を解決して、全
てのレンズを合成樹脂で構成し、望遠比1程度、半画角
30゜前後、Fナンバー5.6付近で、単色収差と共に色収
差も良く補正された後置絞りのトリプレットレンズを提
供することである。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to solve the above-mentioned problems of the prior art, to make all lenses made of synthetic resin, to have a telephoto ratio of about 1, and a half angle of view.
An object of the present invention is to provide a triplet lens of a post-aperture having a monochromatic aberration and a chromatic aberration well corrected around 30 ° and an F number of about 5.6.
本発明の後置絞りのトリプレットレンズは、物体側か
ら順に、物体側に凸面に向けたメニスカス形状で正の屈
折力を有する第1レンズと、負の屈折力を有する第2レ
ンズと、正の屈折力を有する第3レンズと、明るさ絞り
とから構成され、前記レンズが合成樹脂からなると共
に、前記レンズ面の内少なくとも1つの面に非球面を設
け、さらに、以下の条件(1)を満足することを特徴と
するものである。The triplet lens of the post-aperture of the present invention includes, in order from the object side, a first lens having a positive refractive power in a meniscus shape directed toward a convex surface on the object side, a second lens having a negative refractive power, and a positive lens. A third lens having a refractive power and a brightness stop, wherein the lens is made of a synthetic resin, and at least one of the lens surfaces is provided with an aspheric surface; and the following condition (1) is satisfied. It is characterized by being satisfied.
−3.2<φ2/φ<−1.5 ……(1) ただし、φは第1レンズから第3レンズまでの合成の
屈折力を表し、φ2は第2レンズの屈折力を表す。 -3.2 <φ 2 /φ<-1.5 ...... (1 ) However, phi represents the composite refractive power of the first lens to the third lens, the phi 2 represents the refractive power of the second lens.
さらに、より良好な収差補正をするためには、上記条
件に加えて、下記の条件を満たすことが望ましい。Furthermore, in order to perform better aberration correction, it is desirable to satisfy the following conditions in addition to the above conditions.
1<φ1/φ<2.5 ……(2) −1.5<φ12/φ<0 ……(3) 0.5<f/r2<5 ……(4) −0.3<f/r3<2.5 ……(5) −7×10-2<(4φ1)/(ν1φ) +(2φ2)/(ν2φ) +φ3/(ν3φ)<3×10-2 ……(6) ただし、f :全系の焦点距離、 φ1 :第1レンズの屈折力、 φ12:第1レンズと第2レンズの合成屈折力、 φ3 :第3レンズの屈折力、 r2 :物体側より2番目の面の曲率半径、 r3 :物体側より3番目の面の曲率半径、 ν1 :第1レンズのアッベ数、 ν2 :第2レンズのアッベ数、 ν3 :第3レンズのアッベ数、 である。1 <φ 1 /φ<2.5 (2) −1.5 <φ 12 / φ <0 (3) 0.5 <f / r 2 <5 (4) −0.3 <f / r 3 <2.5 ... … (5) −7 × 10 −2 <(4φ 1 ) / (ν 1 φ) + (2φ 2 ) / (ν 2 φ) + φ 3 / (ν 3 φ) <3 × 10 −2 ... (6 ) However, f: focal length of the entire system, phi 1: refractive power of the first lens, phi 12: combined refractive power of the first lens and the second lens, phi 3: refractive power of the third lens, r 2: the object Radius of curvature of the second surface from the side, r 3 : radius of curvature of the third surface from the object side, ν 1 : Abbe number of the first lens, ν 2 : Abbe number of the second lens, ν 3 : third lens The Abbe number of.
以下、本発明の作用と各条件について説明する。 Hereinafter, the operation of the present invention and each condition will be described.
本発明のレンズ系のように、小型の後置絞りのトリプ
レットの全てのレンズを光学用合成樹脂で構成すると、
合成樹脂のアッベ数の範囲が限られているため、色収差
の補正は従来より困難であった。そこで、本発明におい
ては、条件(1)の範囲に負の第2レンズの屈折力を決
めることによって、色収差の補正、特に軸上色収差の補
正を実現する。条件(1)の上限を越えると、色収差の
補正不足となり、下限を越えると補正過剰となり、他の
条件を加えても、軸上色収差の補正が困難となる。As in the lens system of the present invention, when all the lenses of the triplet of the small post-aperture are made of optical synthetic resin,
Since the range of the Abbe number of the synthetic resin is limited, correction of chromatic aberration has been more difficult than before. Thus, in the present invention, correction of chromatic aberration, particularly correction of axial chromatic aberration, is realized by determining the refractive power of the negative second lens in the range of the condition (1). When the value exceeds the upper limit of the condition (1), the correction of the chromatic aberration becomes insufficient. When the value exceeds the lower limit, the correction becomes excessive. Even if other conditions are added, it is difficult to correct the axial chromatic aberration.
また、小型にするために望遠比を小さくする手段とし
ては、レンズ系全体の主点位置をできるだけレンズ系に
対して物体側に位置させることであり、そのためには、
正の第1レンズの主点位置をできるだけ第1レンズに対
して物体側に位置させる必要があり、このために、第1
レンズを物体側に凸面を向けた正メニスカス形状にする
ことが必要である。As a means for reducing the telephoto ratio in order to reduce the size, the principal point of the entire lens system is positioned as close to the object side as possible with respect to the lens system.
It is necessary to position the principal point position of the positive first lens on the object side with respect to the first lens as much as possible.
It is necessary that the lens has a positive meniscus shape with the convex surface facing the object side.
さらに、条件(6)は、上記条件(1)内において、
倍率の色収差をより良好に補正するためのものである。
これは、一般に倍率の色収差係数Tが下記(a)に示さ
れることから得られるもので、位置絞りのトリプレット
場合、第1図に示すように、h1=h2=h3、2=1/
2、3=2/2と近似した場合のものである。Further, the condition (6) satisfies the above condition (1).
This is for better correction of chromatic aberration of magnification.
This is generally obtained from the fact that the chromatic aberration coefficient T of magnification is shown in the following (a). In the case of a triplet of a position stop, as shown in FIG. 1 , h 1 = h 2 = h 3 , 2 = 1 /
It is of the case of approximating 2, 3 = 2/2.
T=Σhk kφk/νk ……(a) ただし、hkは、第1図に示すように、薄肉第kレンズを
切るマージナル光線の高さ、kは第1図に示すよう
に、薄膜第kレンズを切り主光線の高さである。条件
(6)の上限を越えると、g線がプラス側に過剰とな
り、下限を越えるとマイナス側に過剰となり、補正が困
難となる。T = Σh k k φ k / v k (a) where h k is the height of a marginal ray that cuts through the thin k-th lens, as shown in FIG. 1, and k is as shown in FIG. And the height of the principal ray when the thin film k-th lens is cut. If the upper limit of the condition (6) is exceeded, the g-line becomes excessive on the plus side, and if the lower limit is exceeded, the g-line becomes excessive on the minus side, making correction difficult.
さらに、上記状態で収差をより良好に補正するために
は、条件(2)、(3)、(4)、(5)を満たすこと
が望ましい。Furthermore, in order to better correct aberrations in the above state, it is desirable to satisfy the conditions (2), (3), (4), and (5).
条件(2)は、その下限を越えると、第1正レンズの
屈折力が弱くなり、レンズ系を十分に小型にすることが
できない。上限を越えると、屈折力が強過ぎ、諸収差の
補正が困難なものとなる。If the lower limit of the condition (2) is exceeded, the refractive power of the first positive lens becomes weak, and the lens system cannot be made sufficiently small. When the value exceeds the upper limit, the refractive power is too strong, and it becomes difficult to correct various aberrations.
条件(3)、下限を越えると、バックフォーカスが長
くなり過ぎ、レンズ系を小型化できず、上限を越える
と、軸上色収差の補正が困難となる。When the value exceeds the lower limit of the condition (3), the back focus becomes too long and the lens system cannot be miniaturized. When the value exceeds the upper limit, it becomes difficult to correct axial chromatic aberration.
条件(4)は、下限を越えると、第1正レンズの主点
が十分に物体側に出ないため、レンズ系を小型化でき
ず、上限を越えると、第2番目の面の曲率が強くなり過
ぎ、レンズコバ厚が十分に取れなくなる。In condition (4), when the value goes below the lower limit, the principal point of the first positive lens does not sufficiently come out on the object side, so that the lens system cannot be miniaturized. When the value goes beyond the upper limit, the curvature of the second surface becomes strong. It becomes too thick, and the lens edge thickness cannot be sufficiently obtained.
条件(5)は、小型にするために広角化したことによ
る非点隔差をより小さくするための条件であり、下限を
越えると、非点隔差が大きくなり過ぎ、上限を越える
と、第2レンズ像側の面の曲率がきつくなり過ぎ、コマ
収差に悪影響をもたらす。The condition (5) is a condition for further reducing the astigmatic difference due to widening the angle for downsizing. If the lower limit is exceeded, the astigmatic difference becomes too large. The curvature of the image-side surface becomes too tight, which has an adverse effect on coma.
また、上記小型化のために、望遠比を小さくし、広角
にすると、単色の収差が悪化するが、これを非球面を用
いることにより改善する。非球面を第1正レンズ、第2
負レンズに用いた場合には、軸外の収差であるコマ収
差、非点隔差の補正に効果があり、第3正レンズに用い
た場合には、球面収差の補正に効果がある。In addition, if the telephoto ratio is reduced and the angle of view is widened to reduce the size, the monochromatic aberration is deteriorated, but this is improved by using an aspheric surface. The aspheric surface is the first positive lens, the second
When used for a negative lens, it is effective for correcting coma aberration and astigmatism, which are off-axis aberrations, and when used for a third positive lens, it is effective for correcting spherical aberration.
以下、この発明の実施例を示す。記号は、上記の外、
FNO.はFメンバー、Wは半画角、r1、r2…は各レンズ面
の曲率半径、d1、d2…は各レンズ面間の間隔、nd1、nd2
…は各レンズのd線の屈折率、νd1、νd2…は各レンズ
のアッベ数であり、また、非球面形状は、光軸方向を
x、光軸に直交する方向をyとした時、次の式で表され
る。Hereinafter, examples of the present invention will be described. The symbols are
F NO. Is F members, W is the half angle of view, r 1, r 2 ... curvature radius of each lens surface, d 1, d 2 ... the spacing between the lens surfaces, n d1, n d2
... is the d-line refractive index of each lens, ν d1 , ν d2 … is the Abbe number of each lens, and the aspherical shape is when the optical axis direction is x and the direction orthogonal to the optical axis is y. Is represented by the following equation.
x=(y2/r)/{1+(1−P(y2/r2)1/2} +Ey4+Fy6+Gy8+Hy10 +Iy12+Jy14 ただし、rは近軸曲率半径、Pは円錐係数、E、F、
G、H、I、Jは非球面係数である。 x = (y 2 / r) / {1+ (1-P (y 2 / r 2) 1/2} + Ey 4 + Fy 6 + Gy 8 + Hy 10 + Iy 12 + Jy14 where, r is the paraxial radius of curvature, P is a conical coefficient , E, F,
G, H, I, and J are aspheric coefficients.
実施例1 f=100、W=31.1゜、FNO.=5.75 r1=20.0879(非球面) d1=12.5618 nd1=1.50050 νd1=56.68 r2=46.5368 d2=2.2346 r3=119.8008 d3=3.0726 nd2=1.58362 νd2=30.37 r4=18.1999(非球面) d4=4.8436 r5=3214.9490 d5=6.9023 nd3=1.50050 νd3=56.68 r6=−29.1219(非球面) d6=2.2346 r7=∞(絞り) 非球面1面 P=1、E=0.11547×10-5、 F=0.78897×10-8、G=−0.37244×10-10、 H=0.15005×10-12 非球面4面 P=1、E=0.48393×10-4、 F=0.27730×10-6、G=0.99241×10-10、 H=0.38893×10-10 非球面6面 P=1、E=−0.33358×10-4、 F=0.72692×10-8、G=0.13169×10-9、 H=−0.28884×10-10 (望遠比)=1.039 φ1/φ=1.64 φ2/φ=−2.69 φ12/φ=−0.287 r2/f=0.465 r3/f=1.20 (4φ1)/(ν1φ) +(2φ2)/(ν2φ)+φ3/(ν3φ) =−3.1×10-2 本実施例は第2図に示すレンズ構成で、第1レンズは
物体側に凸面を向けた正のメニスカスレンズ、第2レン
ズは物体側に凸面を向けた負のメニスカスレンズ、第3
レンズは両凸形状の正レンズである。このレンズ構成に
よる収差図を第5図に示す。望遠比1.039、半画角31.1
゜、Fメンバー5.75にもかかわらず、球面収差、軸上、
軸外の色収差が小さく、非点隔差も小さい。像面湾曲が
やや大きいが、これは、フィルム面を適切な曲率で短辺
方向に湾曲させることで改善できる。Example 1 f = 100, W = 31.1 °, F NO. = 5.75 r 1 = 20.0879 (aspheric surface) d 1 = 12.5618 n d1 = 1.50050 ν d1 = 56.68 r 2 = 46.5368 d 2 = 2.2346 r 3 = 119.8008 d 3 = 3.0726 n d2 = 1.58362 v d2 = 30.37 r 4 = 18.1999 (aspheric surface) d 4 = 4.8436 r 5 = 3214.9490 d 5 = 6.9023 n d3 = 1.50050 v d3 = 56.68 r 6 = -29.1219 (aspheric surface) d 6 = 2.2346 r 7 = ∞ (aperture) 1 aspherical surface P = 1, E = 0.15447 × 10 −5 , F = 0.78897 × 10 −8 , G = −0.37244 × 10 −10 , H = 0.15005 × 10 −12 Four spherical surfaces P = 1, E = 0.48393 × 10 −4 , F = 0.27730 × 10 −6 , G = 0.99241 × 10 −10 , H = 0.38893 × 10 −10 Aspherical six surfaces P = 1, E = −0.33358 × 10 -4 , F = 0.72692 × 10 -8 , G = 0.13169 × 10 -9 , H = −0.28884 × 10 -10 (telephoto ratio) = 1.039 φ 1 /φ=1.64 φ 2 /φ=−2.69 φ 12 /φ=−0.287 r 2 /f=0.465 r 3 /f=1.20 (4φ 1 ) / (ν 1 φ) + (2φ 2 ) / (ν 2 φ) + φ 3 / (ν 3 φ) = − 3.1 × Ten -2 This embodiment has the lens configuration shown in FIG. 2, in which the first lens is a positive meniscus lens having a convex surface facing the object side, the second lens is a negative meniscus lens having a convex surface facing the object side,
The lens is a biconvex positive lens. FIG. 5 shows an aberration diagram due to this lens configuration. Telephoto ratio 1.039, half angle of view 31.1
球面, Despite 5.75 F member, spherical aberration, on-axis,
Off-axis chromatic aberration is small, and astigmatism is also small. The curvature of field is rather large, but this can be improved by bending the film surface with an appropriate curvature in the short side direction.
実施例2 f=100、W=31.4゜、FNO.=5.75 r1=19.6476(非球面) d1=12.6316 nd1=1.50050 νd1=56.68 r2=55.3318 d2=1.3559 r3=84.9619 d3=2.9830 nd2=1.58362 νd2=30.37 r4=16.7438(非球面) d4=6.5330 r5=−217.8325 d5=4.8813 nd3=1.50050 νd3=56.68 r6=−28.2188(非球面) d6=2.1694 r7=∞(絞り) 非球面1面 P=1、E=0.20249×10-5、 F=−0.29506×10-8、G=−0.15436×10-10、 H=0.52192×10-13 非球面4面 P=1、E=0.45844×10-4、 F=0.37455×10-6、G=−0.11132×10-8、 H=0.54702×10-10 非球面6面 P=1、E=−0.27338×10-4、 F=−0.15070×10-6、G=0.11032×10-8、 H=−0.28408×10-10 (望遠比)=1.019 φ1/φ=1.84 φ2/φ=−2.75 φ12/φ=−0.137 r2/f=0.553 r3/f=0.850 (4φ1)/(ν1φ) +(2φ2)/(ν2φ)+φ3/(ν3φ) =−2.4×10-2 本実施例は第3図に示すレンズ構成で、第1レンズは
物体側に凸面を向けた正のメニスカスレンズ、第2レン
ズは物体側に凸面を向けた負のメニスカスレンズ、第3
レンズは像側に凸面を向けた正のメニスカスレンズであ
る。このレンズ構成による収差図を第6図に示す。望遠
比1.019、半画角30.4゜、Fメンバー5.75にもかかわら
ず、球面収差、軸上、軸外の色収差、及び、非点隔差も
小さい。像面湾曲がやや大きいが、これは、フィルム面
を適切な曲率で短辺方向に湾曲させることで改善でき
る。Example 2 f = 100, W = 31.4 °, F NO. = 5.75 r 1 = 19.6476 (aspherical surface) d 1 = 12.6316 n d1 = 1.50050 ν d1 = 56.68 r 2 = 55.3318 d 2 = 1.3559 r 3 = 84.9619 d 3 = 2.9830 n d2 = 1.58362 ν d2 = 30.37 r 4 = 16.7438 (aspheric surface) d 4 = 6.5330 r 5 = −217.8325 d 5 = 4.8813 n d3 = 1.50050 ν d3 = 56.68 r 6 = −28.2188 d (aspheric surface) d 6 = 2.1694 r 7 = ∞ (aperture) 1 aspherical surface P = 1, E = 0.20249 × 10 −5 , F = −0.29506 × 10 −8 , G = −0.15436 × 10 −10 , H = 0.52192 × 10 − 13 aspherical 4 surfaces P = 1, E = 0.58484 × 10 −4 , F = 0.37455 × 10 −6 , G = −0.11132 × 10 −8 , H = 0.54702 × 10 −10 6 aspherical surfaces P = 1, E = −0.27338 × 10 −4 , F = −0.15070 × 10 −6 , G = 0.1032 × 10 −8 , H = −0.28408 × 10 −10 (telephoto ratio) = 1.019 φ 1 /φ=1.84 φ 2 / φ = −2.75 φ 12 /φ=−0.137 r 2 /f=0.553 r 3 /f=0.850 (4φ 1 ) / (ν 1 φ) + (2φ 2 ) / (ν 2 φ) + φ 3 / (ν 3 φ) = 2.4 × 10 -2 present embodiment is a lens configuration shown in FIG. 3, the first lens is a positive meniscus lens having a convex surface directed toward the object side, a negative meniscus lens the second lens having a convex surface directed toward the object side, Third
The lens is a positive meniscus lens with the convex surface facing the image side. FIG. 6 shows an aberration diagram due to this lens configuration. Despite the telephoto ratio of 1.019, half angle of view of 30.4 °, and F member of 5.75, the spherical aberration, on-axis and off-axis chromatic aberration, and astigmatism are also small. The curvature of field is rather large, but this can be improved by curving the film surface with an appropriate curvature in the short side direction.
実施例3 f=100、W=30.4゜、FNO.=5.75 r1=21.1307(非球面) d1=12.3664 nd1=1.50050 νd1=56.68 r2=35.3023 d2=1.3587 r3=54.1023 d3=2.9892 nd2=1.58362 νd2=30.37 r4=19.5329(非球面) d4=6.3697 r5=−108.3488 d5=4.6039 nd3=1.50050 νd3=56.68 r6=−25.6708(非球面) d6=2.1740 r7=∞(絞り) 非球面1面 P=1、E=0.17914×10-5、 F=0.45664×10-8、G=−0.40448×10-11、 H=0.84507×10-13 非球面4面 P=1、E=0.44599×10-4、 F=0.34346×10-6、G=−0.11164×10-8、 H=0.49698×10-10 非球面6面 P=1、E=−0.26599×10-4、 F=−0.32155×10-6、G=0.92139×10-8、 H=−0.11722×10-9 (望遠比)=1.052 φ1/φ=1.23 φ2/φ=−1.85 φ12/φ=−0.160 r2/f=0.353 r3/f=0.541 (4φ1)/(ν1φ) +(2φ2)/(ν2φ)+φ3/(ν3φ) =−8.2×10-3 本実施例は第2実施例同様第3図に示すレンズ構成
で、第1レンズは物体側に凸面を向けた正のメニスカス
レンズ、第2レンズは物体側に凸面を向けた負のメニス
カスレンズ、第3レンズは像側に凸面を向けた正のメニ
スカスレンズである。このレンズ構成による収差図を第
7図に示す。望遠比1.052、半画角30.4゜、Fメンバー
5.75にもかかわらず、球面収差、軸上、軸外の色収差、
及び、非点隔差も小さい。像面湾曲がやや大きいが、こ
れは、フィルム面を適切な曲率で短辺方向に湾曲させる
ことで改善できる。Example 3 f = 100, W = 30.4 °, F NO. = 5.75 r 1 = 21.1307 (aspherical surface) d 1 = 12.3664 n d1 = 1.50050 ν d1 = 56.68 r 2 = 35.3023 d 2 = 1.3587 r 3 = 54.1023 d 3 = 2.9892 n d2 = 1.58362 ν d2 = 30.37 r 4 = 19.5329 (aspheric surface) d 4 = 6.3697 r 5 = −108.3488 d 5 = 4.6039 n d3 = 1.50050 ν d3 = 56.68 r 6 = −25.6708 d (aspheric surface) d 6 = 2.1740 r 7 = ∞ (aperture) 1 aspherical surface P = 1, E = 0.17914 × 10 −5 , F = 0.56664 × 10 −8 , G = −0.40448 × 10 −11 , H = 0.84507 × 10 −13 Four aspherical surfaces P = 1, E = 0.44599 × 10 −4 , F = 0.34346 × 10 −6 , G = −0.11164 × 10 −8 , H = 0.49698 × 10 −10 Aspherical six surfaces P = 1, E = −0.26599 × 10 −4 , F = −0.32155 × 10 −6 , G = 0.92139 × 10 −8 , H = −0.11722 × 10 −9 (telephoto ratio) = 1.052 φ 1 /φ=1.23 φ 2 / φ = − 1.85 φ 12 /φ=−0.160 r 2 /f=0.353 r 3 /f=0.541 (4φ 1 ) / (ν 1 φ) + (2φ 2 ) / (ν 2 φ) + φ 3 / (ν 3 φ) = −8. 2 × 10 −3 This embodiment has the lens configuration shown in FIG. 3 similarly to the second embodiment. The first lens has a positive meniscus lens with the convex surface facing the object side, and the second lens has the convex surface with the object side. The negative meniscus lens and the third lens are positive meniscus lenses having a convex surface facing the image side. FIG. 7 shows an aberration diagram due to this lens configuration. Telephoto ratio 1.052, half angle of view 30.4 ゜, F member
Despite 5.75, spherical aberration, on-axis, off-axis chromatic aberration,
Also, the astigmatic difference is small. The curvature of field is rather large, but this can be improved by bending the film surface with an appropriate curvature in the short side direction.
実施例4 f=100、W=30.0゜、FNO.=5.75 r1=20.1922(非球面) d1=12.5222 nd1=1.50050 νd1=56.68 r2=50.6270 d2=2.6721 r3=−891.2617 d3=2.9393 nd2=1.58362 νd2=30.37 r4=20.1510(非球面) d4=4.8098 r5=32.0528 d5=7.0252 nd3=1.50050 νd3=56.68 r6=−126.1766 d6=2.1377 r7=∞(絞り) 非球面1面 P=1.0148、E=0.28276×10-6、 F=−0.97736×10-8、G=−0.66746×10-10、 H=−0.10418×10-12、I=−0.55548×10-15、 J=0.20911×10-17 非球面4面 P=0.426、E=0.17048×10-4、 F=0.25036×10-6、G=−0.47221×10-8、 H=0.61553×10-10、I=−0.32211×10-12、 J=0.43624×10-15 (望遠比)=1.004 φ1/φ=1.69 φ2/φ=−2.97 φ12/φ=−0.432 r2/f=0.506 r3/f=−8.91 (4φ1)/(ν1φ) +(2φ2)/(ν2φ)+φ3/(ν3φ) =−4.2×10-2 本実施例は第4図に示すレンズ構成で、第1レンズは
物体側に凸面を向けた正のメニスカスレンズ、第2レン
ズは両凸形状の負レンズ、第3レンズは両凸形状の正レ
ンズである。このレンズ構成による収差図を第8図に示
す。望遠比1.004、半画角30.0゜、Fメンバー5.75にも
かかわらず、球面収差、軸上、軸外の色収差、及び、非
点隔差が小さい。像面湾曲がやや大きいが、これは、フ
ィルム面を適切な曲率で短辺方向に湾曲させることで改
善できる。Example 4 f = 100, W = 30.0 °, F NO. = 5.75 r 1 = 20.1922 (aspherical surface) d 1 = 12.5222 n d1 = 1.50050 ν d1 = 56.68 r 2 = 50.6270 d 2 = 2.6721 r 3 = −891.2617 d 3 = 2.9393 n d2 = 1.58362 ν d2 = 30.37 r 4 = 20.1510 (aspheric surface) d 4 = 4.8098 r 5 = 32.0528 d 5 = 7.0252 n d3 = 1.50050 ν d3 = 56.68 r 6 = −126.1766 d 6 = 2.1377 r 7 = ∞ (aperture) 1 aspherical surface P = 1.0148, E = 0.28276 × 10 −6 , F = −0.97736 × 10 −8 , G = −0.66746 × 10 −10 , H = −0.10418 × 10 −12 , I = −0.55548 × 10 −15 , J = 0.20911 × 10 −17 4 aspherical surfaces P = 0.426, E = 0.17048 × 10 −4 , F = 0.25036 × 10 −6 , G = −0.47221 × 10 −8 , H = 0.61553 × 10 −10 , I = −0.32211 × 10 −12 , J = 0.34624 × 10 −15 (telephoto ratio) = 1.004 φ 1 /φ=1.69 φ 2 /φ=−2.97 φ 12 /φ=−0.432 r 2 /f=0.506 r 3 /f=−8.91 (4φ 1 ) / (ν 1 φ) + (2φ 2 ) / (ν 2 φ) + φ 3 / (ν 3 φ) = − 4.2 × 10 −2 Is 4 lens configuration shown in FIG., A positive meniscus lens first lens having a convex surface facing the object side, the second lens is a negative lens of biconvex shape, the third lens is a positive lens of biconvex shape. FIG. 8 shows an aberration diagram due to this lens configuration. Despite the telephoto ratio of 1.004, half angle of view of 30.0 °, and F member of 5.75, the spherical aberration, on-axis and off-axis chromatic aberrations, and astigmatism are small. The curvature of field is rather large, but this can be improved by bending the film surface with an appropriate curvature in the short side direction.
実施例5 f=100、W=29.6゜、FNO.=5.75 r1=17.9871(非球面) d1=11.1986 nd1=1.50050 νd1=56.68 r2=61.9155 d2=1.1012 r3=101.5577 d3=2.8968 nd2=1.58362 νd2=30.37 r4=16.0263(非球面) d4=5.7587 r5=484.0766 d5=6.6224 nd3=1.58362 νd3=30.37 r6=−44.0753(非球面) d6=2.1068 r7=∞(絞り) 非球面1面 P=1、E=0.18174×10-5、 F=−0.46721×10-8、G=0.46006×10-11、 H=0.11624×10-12 非球面4面 P=1、E=0.45194×10-4、 F=0.45729×10-7、G=0.40498×10-8、 H=0.21792×10-11 非球面6面 P=1、E=−0.25135×10-4、 F=0.23358×10-6、G=−0.6838×10-8、 H=0.48691×10-10 (望遠比)=0.998 φ1/φ=2.14 φ2/φ=−3.03 φ12/φ=−0.044 r2/f=0.619 r3/f=1.02 (4φ1)/(ν1φ) +(2φ2)/(ν2φ)+φ3/(ν3φ) =−1.1×10-3 本実施例は第1実施例同様第2図に示すレンズ構成
で、第1レンズは物体側に凸面を向けた正のメニスカス
レンズ、第2レンズは物体側に凸面を向けた負のメニス
カスレンズ、第3レンズは両凸形状の正レンズである。
このレンズ構成による収差図を第9図に示す。望遠比0.
998、半画角29.6゜、Fメンバー5.75にもかかわらず、
球面収差、軸上、軸外の色収差、非点隔差、及び、像面
湾曲が小さい。Example 5 f = 100, W = 29.6 °, F NO. = 5.75 r 1 = 17.9871 (aspherical surface) d 1 = 111.1986 n d1 = 1.50050 ν d1 = 56.68 r 2 = 61.9155 d 2 = 1.1012 r 3 = 101.5577 d 3 = 2.8968 n d2 = 1.58362 ν d2 = 30.37 r 4 = 16.0263 (aspheric surface) d 4 = 5.7587 r 5 = 484.0766 d 5 = 6.6224 n d3 = 1.58362 v d3 = 30.37 r 6 = -44.0753 (aspheric surface) d 6 = 2.1068 r 7 = ∞ (aperture) 1 aspherical surface P = 1, E = 0.18174 × 10 -5 , F = −0.46721 × 10 -8 , G = 0.46006 × 10 -11 , H = 0.11624 × 10 -12 Four spherical surfaces P = 1, E = 0.45194 × 10 −4 , F = 0.45729 × 10 −7 , G = 0.40498 × 10 −8 , H = 0.17992 × 10 −11 Aspherical six surfaces P = 1, E = −0.25135 × 10 -4 , F = 0.23358 × 10 -6 , G = −0.6838 × 10 -8 , H = 0.46961 × 10 -10 (telephoto ratio) = 0.998 φ 1 /φ=2.14 φ 2 /φ=−3.03 φ 12 /φ=−0.044 r 2 /f=0.618 r 3 /f=1.02 (4φ 1 ) / (ν 1 φ) + (2φ 2 ) / (ν 2 φ) + φ 3 / (ν 3 φ) = − 1.1 × 10 -3 The embodiment has a lens configuration shown in FIG. 2 like the first embodiment. The first lens is a positive meniscus lens having a convex surface facing the object side, the second lens is a negative meniscus lens having a convex surface facing the object side, The three lenses are biconvex positive lenses.
FIG. 9 shows an aberration diagram due to this lens configuration. Telephoto ratio 0.
998, half angle of view 29.6 ゜, F member 5.75,
Spherical aberration, on-axis and off-axis chromatic aberration, astigmatism, and field curvature are small.
この発明による後置絞りのトリプレットレンズにおい
ては、安価に製造することができるにもかかわらず、望
遠比を1程度と小さく抑え、半画角30゜前後と広角にし
て、レンズ系を小型にできると共に、Fメンバー5.6付
近と比較的明るくて、各収差、とりわけ、球面収差、非
点隔差、色収差を良好に補正できる。In the post-aperture triplet lens according to the present invention, the telephoto ratio can be suppressed to as small as about 1 and the half angle of view can be as wide as about 30 °, and the lens system can be reduced in size, although it can be manufactured at low cost. At the same time, the lens is relatively bright at around the F-member 5.6, and can satisfactorily correct each aberration, particularly, spherical aberration, astigmatism, and chromatic aberration.
第1図は本発明の後置絞りのトリプレットレンズを3枚
の薄肉レンズで表した時のマージナル光線と主光線の光
路と高さを示す図、第2図は実施例1、5のレンズ断面
図、第3図は実施例2、3のレンズ断面図、第4図は実
施例4のレンズ断面図、第5図から第9図は実施例1か
ら5の収差図である。 1……第1正レンズ、2……第2負レンズ、3……第3
正レンズ、4……絞りFIG. 1 is a diagram showing optical paths and heights of a marginal ray and a principal ray when a triplet lens of a post-aperture of the present invention is represented by three thin lenses, and FIG. 2 is a lens cross section of Examples 1 and 5. FIG. 3 is a lens cross-sectional view of Examples 2 and 3, FIG. 4 is a lens cross-sectional view of Example 4, and FIGS. 5 to 9 are aberration diagrams of Examples 1 to 5. 1... First positive lens, 2... 2nd negative lens, 3.
Positive lens, 4 ... Aperture
Claims (1)
ニスカス形状で正の屈折力を有する第1レンズと、負の
屈折力を有する第2レンズと、正の屈折力を有する第3
レンズと、明るさ絞りとから構成され、前記レンズが合
成樹脂からなると共に、前記レンズ面の内少なくとも1
つの面に非球面を設け、さらに、以下の条件を満足する
ことを特徴とする後置絞りのトリプレットレンズ: −3.1<φ2/φ<−1.5 ただし、φは第1レンズから第3レンズまでの合成の屈
折力を表し、φ2は第2レンズ屈折力を表す。1. A first lens having a positive refractive power in a meniscus shape directed toward a convex surface on the object side, a second lens having a negative refractive power, and a third lens having a positive refractive power.
A lens and a brightness stop, wherein the lens is made of synthetic resin, and at least one of the lens surfaces
A triplet lens of a post-aperture, characterized by providing an aspheric surface on one surface and satisfying the following condition: −3.1 <φ 2 /φ<−1.5 where φ is the first lens to the third lens represents a refractive power of the synthesis, phi 2 represents a second lens optical power.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19016990A JP2871021B2 (en) | 1990-07-18 | 1990-07-18 | Rear aperture triplet lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19016990A JP2871021B2 (en) | 1990-07-18 | 1990-07-18 | Rear aperture triplet lens |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0476510A JPH0476510A (en) | 1992-03-11 |
JP2871021B2 true JP2871021B2 (en) | 1999-03-17 |
Family
ID=16253585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19016990A Expired - Fee Related JP2871021B2 (en) | 1990-07-18 | 1990-07-18 | Rear aperture triplet lens |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2871021B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07104183A (en) * | 1993-10-08 | 1995-04-21 | Olympus Optical Co Ltd | Bright triplet lens |
JP4727056B2 (en) * | 2001-03-27 | 2011-07-20 | 富士フイルム株式会社 | Image reading lens |
JP4506083B2 (en) * | 2002-03-25 | 2010-07-21 | コニカミノルタホールディングス株式会社 | Imaging lens, imaging device including the same, imaging unit, and portable terminal including imaging unit |
US7042656B2 (en) * | 2003-05-01 | 2006-05-09 | Raytheon Company | Compact wide-field-of-view imaging optical system |
CN105988195B (en) * | 2015-02-04 | 2018-08-31 | 大立光电股份有限公司 | Optical lens group and image-taking device |
CN112835179A (en) * | 2020-12-16 | 2021-05-25 | 浙江舜宇光学有限公司 | Optical imaging lens |
-
1990
- 1990-07-18 JP JP19016990A patent/JP2871021B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0476510A (en) | 1992-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7656591B2 (en) | Retrofocus lens system and image-taking device | |
JP2991524B2 (en) | Wide-angle lens | |
JPH0743606A (en) | Wide angle lens | |
JP3254239B2 (en) | Large aperture medium telephoto lens | |
JPH0642017B2 (en) | Compact zoom lens | |
US4373786A (en) | Photographic objective of reduced size | |
JP2599311B2 (en) | Super wide angle lens | |
JPH1130743A (en) | Retrofocus type lens | |
JP2871021B2 (en) | Rear aperture triplet lens | |
JP3234618B2 (en) | Large aperture medium telephoto lens | |
JPH0443245B2 (en) | ||
JPH0634886A (en) | Variable power lens | |
JPH07168095A (en) | Triplet lens | |
JP3203566B2 (en) | Wide-angle lens | |
JP3082997B2 (en) | Wide-angle lens | |
JP2782720B2 (en) | Zoom lens | |
JPH04250408A (en) | Small-sized super wide-angle lens | |
JPH07333494A (en) | Photographing lens | |
JP3744042B2 (en) | Zoom lens | |
JP3055790B2 (en) | Photographic lens | |
JPH0820593B2 (en) | Wide-angle lens with long back focus | |
JP3415950B2 (en) | Photographic lens | |
JPH0581008B2 (en) | ||
US5414560A (en) | Single lens | |
JPH023968B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |