JP2868968B2 - Method for producing chloroform - Google Patents

Method for producing chloroform

Info

Publication number
JP2868968B2
JP2868968B2 JP5084689A JP8468993A JP2868968B2 JP 2868968 B2 JP2868968 B2 JP 2868968B2 JP 5084689 A JP5084689 A JP 5084689A JP 8468993 A JP8468993 A JP 8468993A JP 2868968 B2 JP2868968 B2 JP 2868968B2
Authority
JP
Japan
Prior art keywords
catalyst
hydrogen
carbon
activated carbon
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5084689A
Other languages
Japanese (ja)
Other versions
JPH06298680A (en
Inventor
幸二郎 宮崎
正美 江野口
信一 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP5084689A priority Critical patent/JP2868968B2/en
Publication of JPH06298680A publication Critical patent/JPH06298680A/en
Application granted granted Critical
Publication of JP2868968B2 publication Critical patent/JP2868968B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、四塩化炭素を水素で還
元して塩化原子を水素原子で置換しクロロホルムを製造
する方法に関する。
The present invention relates to a method for producing chloroform by reducing carbon tetrachloride with hydrogen and replacing chlorine atoms with hydrogen atoms.

【0002】[0002]

【従来の技術】有機ハロゲン化物を水素で還元してハロ
ゲン原子を水素原子で置換した含水素有機化合物の製造
は、例えば、白金等を主成分とする還元触媒の存在下、
有機ハロゲン化物を水素と反応させることにより行うこ
とができる。例えば、特表平4−504728号公報に
は、8000KPa以下の圧力及び250℃以下の温度
において、活性炭担持触媒を四塩化炭素よりなる液相中
に懸濁させ、水素ガスと反応させてクロロホルムを製造
する方法が開示されている。
2. Description of the Related Art Production of a hydrogen-containing organic compound in which an organic halide is reduced with hydrogen and a halogen atom is replaced with a hydrogen atom is performed, for example, in the presence of a reduction catalyst mainly composed of platinum or the like.
The reaction can be performed by reacting an organic halide with hydrogen. For example, Japanese Unexamined Patent Publication No. 4-504728 discloses that an activated carbon-supported catalyst is suspended in a liquid phase composed of carbon tetrachloride at a pressure of 8000 KPa or less and a temperature of 250 ° C. or less, and reacted with hydrogen gas to form chloroform. A method of making is disclosed.

【0003】[0003]

【発明が解決しようとする課題】この方法によると、反
応時間が長くなるにしたがって、単位時間・単位触媒金
属量あたりのクロロホルムの生成量で表した触媒活性が
低下するという問題があった。即ち、反応時間2時間と
4時間とを比較すると触媒活性は最大34%低下してい
る。反応時間の経過に伴う触媒の失活の原因を追求する
ために、本発明者らは上記方法の追試を行い、失活した
触媒の分析を行ったところ、失活した触媒上には多くの
重合物が生成していることがわかり、さらに、この重合
物は還元反応で副生するヘキサクロロエタンに起因する
ものであることがわかった。また、一度失活した触媒は
溶媒抽出や酸化処理、還元処理では再生できないことが
わかった。
According to this method, there is a problem that as the reaction time becomes longer, the catalytic activity expressed by the amount of chloroform formed per unit time per unit amount of catalytic metal decreases. That is, when the reaction time is compared between 2 hours and 4 hours, the catalyst activity is reduced by up to 34%. In order to pursue the cause of the deactivation of the catalyst with the lapse of reaction time, the present inventors carried out additional tests of the above method and analyzed the deactivated catalyst. It was found that a polymer was formed, and further, this polymer was found to be derived from hexachloroethane by-produced in the reduction reaction. It was also found that the catalyst once deactivated cannot be regenerated by solvent extraction, oxidation treatment, or reduction treatment.

【0004】[0004]

【課題を解決するための手段】本発明者らは、長期にわ
たって触媒の性能が低下しない方法について鋭意検討し
た結果、炭素よりなる触媒担体に金属を担持させる前に
予め還元剤、酸化剤、有機ハロゲン化物と接触させてお
くことにより、上記目的を達成することができることを
見いだし、本発明を提案するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies on a method in which the performance of the catalyst does not decrease over a long period of time, and as a result, before loading a metal on a catalyst support made of carbon, a reducing agent, an oxidizing agent, an organic It has been found that the above object can be achieved by keeping the halide in contact with the halide, and the present invention has been proposed.

【0005】即ち、本発明は、触媒の存在下に四塩化炭
素と水素とを反応させて塩素原子を水素原子で置換した
クロロホルムを製造する方法において、触媒として、炭
素よりなる担体を還元剤、酸化剤または有機ハロゲン化
物と接触させた後に周期律表第8族金属を担持させた触
媒を用いることを特徴とするクロロホルムの製造方法で
ある。
That is, the present invention provides a method for producing chloroform in which a chlorine atom is replaced by a hydrogen atom by reacting carbon tetrachloride with hydrogen in the presence of a catalyst, wherein a catalyst comprising carbon is used as a catalyst, A method for producing chloroform, which comprises using a catalyst that supports a Group 8 metal of the periodic table after contacting with an oxidizing agent or an organic halide.

【0006】本発明における炭素よりなる担体は公知の
ものを何等制限なく用い得る。具体的には、例えば、活
性炭およびカーボンブラック等を挙げることができる。
[0006] As the carrier made of carbon in the present invention, known carriers can be used without any limitation. Specifically, for example, activated carbon and carbon black can be mentioned.

【0007】本発明において、炭素よりなる担体は、後
述する周期律表第8族金属を担持させる前に、予め還元
剤、酸化剤または有機ハロゲン化物と接触させておく必
要がある。こうすることにより、四塩化炭素の還元反応
における触媒活性を長時間持続させることが可能とな
る。炭素よりなる担体に周期律表第8族金属を担持させ
た後に、これら還元剤、酸化剤または有機ハロゲン化物
と接触させたのでは、本発明の効果を得ることができず
好ましくない。換言すれば、上述の如く、触媒を失活さ
せる物質であるヘキサクロロエタン等の有機ハロゲン化
物であらかじめ担体となる炭素を処理することにより、
触媒寿命を延ばすことができるのであり、本発明におい
て、担体を処理する時期は重要な意味を持つのである。
In the present invention, the carrier made of carbon must be brought into contact with a reducing agent, an oxidizing agent or an organic halide in advance before supporting a metal belonging to Group 8 of the periodic table described later. This makes it possible to maintain the catalytic activity in the reduction reaction of carbon tetrachloride for a long time. If the metal of Group 8 of the periodic table is supported on a carbon support and then brought into contact with these reducing agents, oxidizing agents or organic halides, the effects of the present invention cannot be obtained, which is not preferable. In other words, as described above, by previously treating carbon as a carrier with an organic halide such as hexachloroethane, which is a substance for deactivating the catalyst,
The catalyst life can be prolonged, and in the present invention, the timing of treating the support is important.

【0008】還元剤と接触させる方法において、還元剤
は特に制限されず公知のものを何等制限なく用いること
ができるが、具体的には水素、ヒドラジン、炭素数1〜
5の低級炭化水素類、炭素数1〜5の低級アルコール類
等を挙げることができ、特に、水素およびヒドラジンが
好適である。供給する還元剤はガス状、液状のいずれで
もよい。
[0008] In the method of contacting with a reducing agent, the reducing agent is not particularly limited, and any known reducing agent can be used without any particular limitation.
Examples thereof include lower hydrocarbons having 5 and lower alcohols having 1 to 5 carbon atoms, and hydrogen and hydrazine are particularly preferable. The supplied reducing agent may be either gaseous or liquid.

【0009】接触方法は、公知の固−気接触方法、また
は固−液接触方法を何等制限なく採用することができ
る。例えば、還元剤がガス状のときは、炭素よりなる担
体を例えば両端に入口と出口とを有する容器中に充填し
た後、入口より窒素およびヘリウム等の不活性ガスを用
いて接触温度で掃気後、還元剤を供給する方法を好適に
採用することができる。還元剤の供給量は担体1gあた
り0.001〜10モル/時間、接触時間は30分〜2
0時間が適当である。接触温度は特に制限されないが、
触媒活性の持続性を勘案すると550〜1500℃の範
囲が好ましく、さらには600〜1100℃の範囲が好
ましい。還元剤の供給終了後は、前述した不活性ガスを
流しながら室温まで冷却すればよい。
As a contact method, a known solid-gas contact method or a solid-liquid contact method can be employed without any limitation. For example, when the reducing agent is in a gaseous state, after filling a carrier made of carbon into, for example, a container having an inlet and an outlet at both ends, after scavenging at the contact temperature using an inert gas such as nitrogen and helium from the inlet. The method of supplying the reducing agent can be suitably adopted. The supply amount of the reducing agent is 0.001 to 10 mol / hour per 1 g of the carrier, and the contact time is 30 minutes to 2 minutes.
0 hours is appropriate. The contact temperature is not particularly limited,
In consideration of the continuity of the catalytic activity, a range of 550 to 1500 ° C is preferable, and a range of 600 to 1100 ° C is more preferable. After the end of the supply of the reducing agent, it may be cooled to room temperature while flowing the above-mentioned inert gas.

【0010】また、還元剤が液状の場合は、炭素よりな
る担体を還元剤中に浸漬させて接触させてもよい。この
ときの接触方法は、冷却管付き容器に還元剤と炭素より
なる担体を添加し、所定の温度で接触させる方法が好適
に採用される。還元剤の使用量は担体1gあたり0.0
01〜5モル、接触温度は20℃〜還元剤の沸点の範囲
から選べば良い。接触圧力は、常圧、加圧のいずれでも
実施可能であり、接触時間は30分〜50時間の範囲が
適当である。接触後は水で洗浄した後に減圧乾燥を行う
ことによって反応に適する担体を得ることができる。
When the reducing agent is in a liquid state, a carrier made of carbon may be immersed in the reducing agent and brought into contact therewith. As the contact method at this time, a method in which a carrier made of a reducing agent and carbon is added to a container with a cooling pipe and the container is brought into contact at a predetermined temperature is suitably adopted. The amount of the reducing agent used is 0.0
The contact temperature may be selected from a range of from 20 ° C. to the boiling point of the reducing agent. The contact pressure can be either normal pressure or pressurization, and the contact time is suitably in the range of 30 minutes to 50 hours. After the contact, the carrier is washed with water and then dried under reduced pressure to obtain a carrier suitable for the reaction.

【0011】次に、酸化剤と接触させる方法において、
酸化剤としては公知の酸化剤を使用することができる
が、本発明の効果を発揮させるためには、硝酸および過
酸化水素が好適であり、特に硝酸が好適である。硝酸は
濃度13.5〜1N、過酸化水素は濃度3〜60重量%
の水溶液を好適に用いることができる。接触方法や酸化
剤の使用量、接触温度、接触時間等の条件は、上記した
還元剤で説明した方法や条件をそのまま採用することが
できる。
Next, in the method of contacting with an oxidizing agent,
As the oxidizing agent, a known oxidizing agent can be used, but in order to exert the effects of the present invention, nitric acid and hydrogen peroxide are preferable, and nitric acid is particularly preferable. Nitric acid has a concentration of 13.5 to 1N, and hydrogen peroxide has a concentration of 3 to 60% by weight.
Aqueous solution can be suitably used. The conditions such as the contact method, the amount of the oxidizing agent used, the contact temperature, and the contact time can be the same as those described for the reducing agent.

【0012】有機ハロゲン化物と接触させる方法におい
て使用される有機ハロゲン化物としては特に制限されな
いが、炭素数1〜4のハロゲン化アルカン類が好適に使
用可能である。具体的には、クロロメタン、ジクロロメ
タン、クロロホルム、四塩化炭素、ジクロロエタン、ヘ
キサクロロエタン、1,2−ジクロロプロパン、ヘキサ
クロロブタジエン等を挙げることができる。さらには、
四塩化炭素、ヘキサクロロエタン、ヘキサクロロブタジ
エン等のパーハロゲン化物を使用したときに良好な効果
が得られるために好適である。有機ハロゲン化物が液状
のものはそのまま、固体状のものは液状の有機ハロゲン
化物に溶解して使用することができる。
The organic halide used in the method of contacting with an organic halide is not particularly limited, but halogenated alkanes having 1 to 4 carbon atoms can be suitably used. Specific examples include chloromethane, dichloromethane, chloroform, carbon tetrachloride, dichloroethane, hexachloroethane, 1,2-dichloropropane, and hexachlorobutadiene. Furthermore,
The use of perhalides such as carbon tetrachloride, hexachloroethane, and hexachlorobutadiene is preferable because good effects can be obtained. A liquid organic halide can be used as it is, and a solid organic halide can be used by dissolving it in a liquid organic halide.

【0013】接触方法は、前記した還元剤との接触方法
をそのまま採用することができる。有機ハロゲン化物の
使用量は特に制限されないが、担体の全量が十分に浸る
量あればよい。固体状の有機ハロゲン化物を液状の有機
ハロゲン化物に溶解させて用いる場合の濃度は固体状の
有機ハロゲン化物の溶解度にもよるが、通常1〜80重
量%の範囲から選ばれる。接触温度は20〜200℃、
接触時間は30分〜50時間の範囲から選べばよい。圧
力は常圧でも加圧でも実施可能である。その後、ジクロ
ロメタン、クロロホルム、四塩化炭素、ジクロロエタン
等の低沸点の有機ハロゲン化物での洗浄や減圧乾燥は必
要に応じて採用することができる。
As the contacting method, the above-mentioned method for contacting with a reducing agent can be employed as it is. The amount of the organic halide to be used is not particularly limited, but may be an amount sufficient to immerse the entire amount of the carrier. When the solid organic halide is used by dissolving it in a liquid organic halide, the concentration is usually selected from the range of 1 to 80% by weight, though it depends on the solubility of the solid organic halide. Contact temperature is 20 ~ 200 ℃,
The contact time may be selected from a range of 30 minutes to 50 hours. The pressure may be normal pressure or pressurization. Thereafter, washing with a low-boiling organic halide such as dichloromethane, chloroform, carbon tetrachloride, dichloroethane or the like or drying under reduced pressure can be employed as necessary.

【0014】こうして得られた炭素よりなる担体に周期
律表第8族金属を担持させることにより本発明で用いる
触媒を調製することができる。周期律表第8族金属とし
ては、鉄、コバルト、ニッケル、ルテニウム、ロジウ
ム、パラジウム、オスミウム、イリジウム、白金等を挙
げることができ、この内、白金、パラジウム、ロジウ
ム、ルテニウムが高活性であるために好適であり、特
に、白金、パラジウムが好ましい。さらに金、銀、銅よ
りなる周期律表第1B族金属を上記周期律表第8族金属
に対して0.01〜50重量%の範囲で併用することも
できる。
The catalyst used in the present invention can be prepared by supporting a metal of Group 8 of the periodic table on the carbon support thus obtained. As the Group 8 metals of the periodic table, iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, platinum and the like can be mentioned. Of these, platinum, palladium, rhodium and ruthenium are highly active. And platinum and palladium are particularly preferred. Further, a metal of Group 1B of the periodic table consisting of gold, silver, and copper may be used in a range of 0.01 to 50% by weight based on the metal of Group 8 of the periodic table.

【0015】周期律表第8族金属の担体への担持方法
は、公知の方法を何等制限なく採用することができる。
例えば、含浸法、共沈法、イオン交換法等を挙げること
ができる。含浸法としては、周期律表第8族金属の前駆
体として塩化物、アンモニウム塩、アンミン錯体、有機
錯塩、硝酸塩、酢酸塩あるいは金属を適当な溶媒に溶解
させ、その溶液を担体に含浸させ、室温で数時間放置し
た後、100〜150℃程度の温度で加熱して担体中に
残存する溶媒を除去し、さらに、水素、ヒドラジン等の
還元剤の存在下、20〜500℃の温度で周期律表第8
族金属の前駆体を金属状態に還元するという方法を好適
に採用することができる。
As a method for loading the Group VIII metal on the carrier, known methods can be employed without any limitation.
For example, an impregnation method, a coprecipitation method, an ion exchange method and the like can be mentioned. As an impregnation method, chloride, ammonium salt, ammine complex, organic complex salt, nitrate, acetate or a metal as a precursor of a metal belonging to Group 8 of the periodic table is dissolved in a suitable solvent, and the solution is impregnated into a carrier. After leaving at room temperature for several hours, it is heated at a temperature of about 100 to 150 ° C. to remove the solvent remaining in the carrier, and is further cycled at a temperature of 20 to 500 ° C. in the presence of a reducing agent such as hydrogen or hydrazine. Ritsuyo 8
A method of reducing the group metal precursor to a metal state can be suitably employed.

【0016】本発明において用いられる触媒中の周期律
表第8族金属の含有量は、良好な触媒作用を期待するた
めに、0.01重量%以上が好ましく、通常は経済性な
どの理由から、0.01〜50重量%の範囲、好ましく
は0.1〜10重量%の範囲内である。
The content of the Group 8 metal of the periodic table in the catalyst used in the present invention is preferably 0.01% by weight or more in order to expect good catalytic action. , 0.01 to 50% by weight, preferably 0.1 to 10% by weight.

【0017】このようにして得られた触媒を用いて四塩
化炭素と水素とを反応させて塩化原子を水素原子で置換
したクロロホルムを製造する。
Using the catalyst thus obtained, carbon tetrachloride is reacted with hydrogen to produce chloroform in which a chlorine atom is replaced by a hydrogen atom.

【0018】四塩化炭素は、通常そのまま、または相溶
しうる溶媒で希釈して使用される。希釈に使用される溶
媒としては、例えば、ジクロロメタン、クロロホルム等
の塩素化炭化水素であることが好ましい。濃度としては
特に制限されないが、1〜100重量%の範囲から採用
できる。
The carbon tetrachloride is usually used as it is or after being diluted with a compatible solvent. As the solvent used for dilution, for example, chlorinated hydrocarbons such as dichloromethane and chloroform are preferable. The concentration is not particularly limited, but can be adopted in the range of 1 to 100% by weight.

【0019】反応は、回分式、連続式、半連続式のいず
れでも実施可能である。また、液相および気相のいずれ
も実施可能であるが、選択率や触媒寿命の観点から液相
法が好ましい。液相法において、水素は気相および液相
のいずれに供給してもよいが、通常は、液相に供給する
ことが液相への水素の溶解速度をあげて反応を迅速に行
わせることができるために好ましい。液相法において、
反応は、固定床、懸濁床のいずれも採用可能である。触
媒の使用量は、特に制限されないが、原料の有機ハロゲ
ン化物100重量部に対する割合で0.01〜50重量
部の範囲であることが好ましい。
The reaction can be carried out in any of a batch system, a continuous system, and a semi-continuous system. Further, any of a liquid phase and a gas phase can be carried out, but a liquid phase method is preferred from the viewpoint of selectivity and catalyst life. In the liquid phase method, hydrogen may be supplied to either the gas phase or the liquid phase, but usually, supplying it to the liquid phase is to increase the rate of dissolution of hydrogen in the liquid phase so that the reaction can be performed quickly. Is preferred because In the liquid phase method,
The reaction can employ either a fixed bed or a suspension bed. The amount of the catalyst used is not particularly limited, but is preferably in the range of 0.01 to 50 parts by weight based on 100 parts by weight of the organic halide as the raw material.

【0020】反応温度は、有機ハロゲン化物の転化率を
高くし、副生成物の生成を抑制するために10〜250
℃の範囲が好ましく、特に触媒寿命の観点から50〜2
00℃、さらには50〜150℃の範囲であることが好
ましい。また、反応圧力は常圧および加圧のいずれでも
よいが、一般には常圧〜200Kg/cm2の範囲が好
ましく、さらには、2〜100Kg/cm2の範囲が好
ましい。
The reaction temperature is set to 10 to 250 to increase the conversion of the organic halide and suppress the generation of by-products.
° C is preferable, and especially from the viewpoint of catalyst life, it is 50 to 2 ° C.
It is preferably in the range of 00 ° C, more preferably 50 to 150 ° C. The reaction pressure may be either normal pressure or pressurization, but is generally preferably in the range of normal pressure to 200 kg / cm 2 , and more preferably in the range of 2 to 100 kg / cm 2 .

【0021】水素と四塩化炭素との反応モル比は特に限
定されない。水素を多くすると反応率が上がるが、より
水素化脱塩素が進行した低次塩素化炭素の生成割合が多
くなる。通常は、四塩化炭素1モルに対して水素を0.
1〜10モル反応させることが好適である。
The reaction molar ratio of hydrogen to carbon tetrachloride is not particularly limited. When the amount of hydrogen is increased, the reaction rate is increased, but the production rate of low-order chlorinated carbon in which hydrodechlorination has progressed is increased. Usually, hydrogen is added in an amount of 0.1 to 1 mol of carbon tetrachloride.
It is preferable to make 1 to 10 moles of the reaction.

【0022】本発明において、反応系から生成物を単
離、精製する方法は特に限定されず、ろ過、蒸留等の公
知の方法を採用することができる。
In the present invention, the method for isolating and purifying the product from the reaction system is not particularly limited, and known methods such as filtration and distillation can be employed.

【0023】本発明の方法は、原料である四塩化炭素か
ら一つの塩素原子を水素原子に置換する水素化脱塩素反
応に適しており、原料として四塩化炭素を用い、主とし
てクロロホルムを得ることができる。なお、クロロホル
ムを原料としたときには主として塩化メチレンを得るこ
ともである。
The method of the present invention is suitable for a hydrodechlorination reaction in which one chlorine atom is replaced with a hydrogen atom from carbon tetrachloride as a raw material, and it is possible to obtain mainly chloroform using carbon tetrachloride as a raw material. it can. When chloroform is used as the raw material, methylene chloride may be mainly obtained.

【0024】[0024]

【発明の効果】本発明の作用機構は明かではないが、還
元剤および酸化剤と接触させる場合は、炭素よりなる担
体の表面官能基が不活性基に変換されることによって、
炭素担体の表面の性質がかわり、副生物の重合が起こり
にくくなったためと推定される。また、有機ハロゲン化
物と接触させる場合は、炭素よりなる担体上の重合活性
点が予め接触させる有機ハロゲン化物により消失したた
めと推定される。
The mechanism of action of the present invention is not clear, but when it is brought into contact with a reducing agent and an oxidizing agent, the surface functional group of the carbon support is converted into an inactive group.
It is presumed that the properties of the surface of the carbon carrier changed and polymerization of by-products became difficult to occur. Further, when the organic halide is brought into contact with an organic halide, it is presumed that the polymerization active sites on the carrier made of carbon have been eliminated by the organic halide brought into contact in advance.

【0025】本発明によれば、副生成物の生成を減少さ
せ、目的物の選択性を高めることができ、200時間以
上にわたって高い活性を維持したまま、四塩化炭素を水
素化脱塩素することができる。従って、本発明は工業的
に極めて有用である。
According to the present invention, the production of by-products can be reduced, the selectivity of the target product can be increased, and hydrodechlorination of carbon tetrachloride while maintaining high activity for 200 hours or more can be achieved. Can be. Therefore, the present invention is extremely useful industrially.

【0026】[0026]

【実施例】以下、本発明を更に具体的に説明するため実
施例を掲げるが、本発明はこれらの実施例に限定される
ものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0027】 実施例1(水素還元による改質活性炭担体に白金を担持
させた触媒の調製) 両端に入口と出口とを有する石英製円筒型容器に活性炭
(比表面積;1300m2/g、細孔容積;0.87m3
/g、粒径;780〜340μm)50gを両端を石英
ウールで固定して入れ、窒素ガスを400ml/分の流
速で流しながら1000℃に昇温し、同温度を1時間保
持した。1時間後供給ガスを水素に切り換え400ml
/分の流速で流しながら同温度を1時間保持した後、窒
素ガスに切り換え室温まで冷却した。得られた水素還元
による改質活性炭は45.5gであった。
Example 1 (Preparation of a catalyst in which platinum is supported on a modified activated carbon carrier by hydrogen reduction) Activated carbon (specific surface area: 1300 m 2 / g, pores) was placed in a quartz cylindrical container having an inlet and an outlet at both ends. Capacity: 0.87m 3
/ G, particle size: 780 to 340 μm) were fixed at both ends with quartz wool, and the temperature was raised to 1000 ° C. while flowing nitrogen gas at a flow rate of 400 ml / min, and the temperature was maintained for 1 hour. After 1 hour, switch the supply gas to hydrogen 400ml
After maintaining the same temperature for 1 hour while flowing at a flow rate of / min, the gas was switched to nitrogen gas and cooled to room temperature. The amount of the activated carbon modified by hydrogen reduction obtained was 45.5 g.

【0028】次いで、10gの改質活性炭に30mlの
水を加え、攪拌下、塩化白金酸6水和物の水溶液(白金
含量1重量%)30gを加え、室温で3時間攪拌した
後、100℃で12時間加熱することにより余分な水分
を除去した。その後、大気圧下で300℃の温度で3時
間、水素を200ml/分の流速で流して還元した。さ
らに、水素気流下室温まで冷却した。触媒中には3重量
%の白金が含まれていた。
Next, 30 ml of water was added to 10 g of the modified activated carbon, and 30 g of an aqueous solution of chloroplatinic acid hexahydrate (platinum content: 1% by weight) was added thereto with stirring. For 12 hours to remove excess water. Thereafter, hydrogen was reduced at a flow rate of 200 ml / min under atmospheric pressure at a temperature of 300 ° C. for 3 hours. Furthermore, it cooled to room temperature under hydrogen stream. The catalyst contained 3% by weight of platinum.

【0029】実施例2 水素ガスによる処理温度を600℃とし、同温度の保持
時間を10時間とした以外は実施例1と同様に操作し
て、改質活性炭に3重量%の白金を担持させた触媒を得
た。
Example 2 The same operation as in Example 1 was carried out except that the treatment temperature with hydrogen gas was set at 600 ° C. and the holding time at the same temperature was set at 10 hours, so that 3% by weight of platinum was supported on the modified activated carbon. A catalyst was obtained.

【0030】 実施例3(水素還元による改質活性炭にパラジウムを担
持させた触媒の調製) 塩化白金酸にかえて塩化パラジウムの水溶液(パラジウ
ム含量1重量%)5gを用いた以外は実施例1と同様に
操作して、改質活性炭に0.5重量%のパラジウムを担
持させた触媒を得た。
Example 3 (Preparation of catalyst in which palladium is supported on modified activated carbon by hydrogen reduction) Example 1 was repeated except that 5 g of an aqueous solution of palladium chloride (1% by weight of palladium) was used instead of chloroplatinic acid. The same operation was performed to obtain a catalyst in which 0.5% by weight of palladium was supported on the modified activated carbon.

【0031】 実施例4(ヒドラジン還元による改質活性炭に白金を担
持させた触媒の調製) 冷却管を備えた攪拌機付きガラス容器にヒドラジン一水
和物200mlと実施例1で使用したのと同様の活性炭
50gを入れて、攪拌しながら120℃に加熱した。同
温度で3時間保持し室温まで冷却した後、活性炭をろ取
し、水でろ液が中性になるまで洗浄した。その後、11
0℃で真空乾燥した。得られたヒドラジン還元による改
質活性炭は48.9gであった。
Example 4 (Preparation of a catalyst in which platinum is supported on modified activated carbon by hydrazine reduction) In a glass container equipped with a stirrer equipped with a cooling tube, 200 ml of hydrazine monohydrate was used in the same manner as in Example 1. 50 g of activated carbon was added and heated to 120 ° C. with stirring. After maintaining at the same temperature for 3 hours and cooling to room temperature, the activated carbon was collected by filtration and washed with water until the filtrate became neutral. Then, 11
Vacuum dried at 0 ° C. The amount of the activated carbon modified by hydrazine reduction was 48.9 g.

【0032】次いで、実施例1と同様に操作してヒドラ
ジン還元による改質活性炭に白金を担持させた触媒を得
た。触媒中には3重量%の白金が含まれていた。
Then, the same procedure as in Example 1 was carried out to obtain a catalyst in which platinum was supported on modified activated carbon obtained by hydrazine reduction. The catalyst contained 3% by weight of platinum.

【0033】 実施例5(13.5N硝酸酸化による改質活性炭に白金
を担持させた触媒の調製) 冷却管を備えた攪拌機付きガラス容器に13.5N硝酸
200mlと実施例1で使用したのと同様の活性炭50
gを入れて、攪拌しながら86℃に加熱した。同温度で
1時間保持し室温まで冷却した後、活性炭をろ取し、水
でろ液が中性になるまで洗浄した。その後、110℃で
真空乾燥した。得られた13.5N硝酸酸化による改質
活性炭は57.2gであった。
Example 5 (Preparation of catalyst in which platinum is supported on modified activated carbon by 13.5N nitric acid oxidation) [0033] 200 ml of 13.5N nitric acid was used in Example 1 in a glass container equipped with a stirrer equipped with a cooling pipe. Similar activated carbon 50
g and heated to 86 ° C. with stirring. After maintaining at the same temperature for 1 hour and cooling to room temperature, the activated carbon was collected by filtration and washed with water until the filtrate became neutral. Then, it was vacuum-dried at 110 ° C. The obtained activated carbon modified by 13.5N nitric acid oxidation weighed 57.2 g.

【0034】次いで、実施例1と同様に操作して13.
5N硝酸酸化による改質活性炭に白金を担持させた触媒
を得た。触媒中には3重量%の白金が含まれていた。
Next, the same operation as in Example 1 was performed.
A catalyst in which platinum was supported on activated carbon modified by 5N nitric acid oxidation was obtained. The catalyst contained 3% by weight of platinum.

【0035】 実施例6(2N硝酸酸化による改質活性炭に白金を担持
させた触媒の調製) 2Nの硝酸を用い、処理温度を100℃とした以外は実
施例5と同様に行った。得られた2N硝酸酸化による改
質活性炭は56.2gであった。次いで、実施例1と同
様に操作して2N硝酸酸化による改質活性炭に白金を担
持させた触媒を得た。触媒中には3重量%の白金が含ま
れていた。
Example 6 (Preparation of a catalyst in which platinum is supported on modified activated carbon by 2N nitric acid oxidation) A process was performed in the same manner as in Example 5 except that 2N nitric acid was used and the treatment temperature was 100 ° C. The amount of the activated carbon modified by the 2N nitric acid oxidation was 56.2 g. Next, a catalyst in which platinum was supported on activated carbon modified by 2N nitric acid oxidation was obtained in the same manner as in Example 1. The catalyst contained 3% by weight of platinum.

【0036】 実施例7(四塩化炭素接触による改質活性炭に白金を担
持させた触媒の調製) 攪拌機付きオートクレーブに四塩化炭素200mlと実
施例1で使用したのと同様の活性炭50g入れ水素に置
換した後密閉し、160℃に昇温した。同温度で16時
間保持し室温まで冷却後、活性炭をろ取し、四塩化炭素
で十分に洗浄した。その後、110℃で真空乾燥した。
得られた四塩化炭素接触による改質活性炭は51.5g
であった。
Example 7 (Preparation of a catalyst in which platinum is supported on modified activated carbon by contact with carbon tetrachloride) In an autoclave equipped with a stirrer, 200 ml of carbon tetrachloride and 50 g of activated carbon similar to that used in Example 1 were placed and replaced with hydrogen. After sealing, the temperature was raised to 160 ° C. After maintaining at the same temperature for 16 hours and cooling to room temperature, the activated carbon was collected by filtration and sufficiently washed with carbon tetrachloride. Then, it was vacuum-dried at 110 ° C.
51.5 g of the modified activated carbon obtained by contact with carbon tetrachloride was obtained.
Met.

【0037】次いで、実施例1と同様に操作して四塩化
炭素接触による改質活性炭に白金を担持させた触媒を得
た。触媒中には3重量%の白金が含まれていた。
Then, the same procedure as in Example 1 was carried out to obtain a catalyst in which platinum was supported on modified activated carbon by contact with carbon tetrachloride. The catalyst contained 3% by weight of platinum.

【0038】 実施例8(ヘキサクロロエタン接触による改質活性炭に
白金を担持させた触媒の調製) 10重量%のヘキサクロロエタンのジクロロメタン溶液
200mlを用いた以外は実施例7と同様に行った。得
られたヘキサクロロエタン接触による改質活性炭は5
2.5gであった。
Example 8 (Preparation of Catalyst Having Platinum Supported on Modified Activated Carbon by Contacting with Hexachloroethane) A procedure was carried out in the same manner as in Example 7, except that 200 ml of a 10% by weight hexachloroethane dichloromethane solution was used. The obtained activated carbon modified by contact with hexachloroethane is 5
2.5 g.

【0039】次いで、実施例1と同様に操作してヘキサ
クロロエタン接触による改質活性炭に白金を担持させた
触媒を得た。触媒中には3重量%の白金が含まれてい
た。
Next, the same procedure as in Example 1 was carried out to obtain a catalyst in which platinum was supported on modified activated carbon by contact with hexachloroethane. The catalyst contained 3% by weight of platinum.

【0040】実施例9(クロロホルムの製造) 内径50mm、容器内高さ200mmのオートクレーブ
に四塩化炭素60gを入れ、実施例1〜8で調製した触
媒を5.0g入れた後、反応器を閉じた。反応器内の空
気を除去した後、水素を常温で35Kg/cm2・G充
填した。ディスクタービン翼を取り付けた攪拌機にて5
00rpmで攪拌しながら、反応器内を105℃に加熱
制御し、その後、四塩化炭素を定量ポンプにて、0.2
5g/分で反応器内に連続供給した。水素の供給は、1
時間に1回、30Kg/cm2・Gまでガス抜きを行
い、水素を45Kg/cm2・Gまで供給することで行
った。反応液の抜き出しは、反応液が36ml残るよう
に調整した反応器内に差し込んでいるフィルター付き液
抜き出し配管で行った。抜き出しにより減圧された分
は、水素にて45Kg/cm2・Gまで加圧した。反応
ガスおよび液を分析して経時変化を追った結果を表1に
示した。
Example 9 (Preparation of chloroform) 60 g of carbon tetrachloride was placed in an autoclave having an inner diameter of 50 mm and a height of 200 mm in a vessel, and 5.0 g of the catalyst prepared in Examples 1 to 8 was added. Was. After removing the air in the reactor, hydrogen was charged at room temperature at 35 kg / cm 2 · G. 5 with a stirrer equipped with a disk turbine blade
While stirring at 00 rpm, the inside of the reactor was heated and controlled to 105 ° C., and then carbon tetrachloride was added to the reactor with a metering pump at 0.2
It was continuously fed into the reactor at 5 g / min. The supply of hydrogen is 1
Time once performs degassing to 30Kg / cm 2 · G, was performed by supplying hydrogen to 45Kg / cm 2 · G. Withdrawal of the reaction solution was performed with a liquid extraction pipe with a filter inserted into a reactor adjusted so that 36 ml of the reaction solution remained. The pressure reduced by the extraction was increased to 45 kg / cm 2 · G with hydrogen. Table 1 shows the results of analyzing the reaction gas and the liquid and following the change over time.

【0041】[0041]

【表1】 [Table 1]

【0042】比較例1 未処理の活性炭を用い、実施例1と同様に操作して調製
した3重量%白金担持活性炭触媒を使用した以外は、実
施例9と同様に操作して経時変化を追った。その結果を
表1に示した。
Comparative Example 1 The same procedure as in Example 9 was carried out except that untreated activated carbon and a 3% by weight platinum-supported activated carbon catalyst prepared and operated in the same manner as in Example 1 were used. Was. The results are shown in Table 1.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−129130(JP,A) 特開 平1−258632(JP,A) 特開 平1−258631(JP,A) 特開 平1−132537(JP,A) (58)調査した分野(Int.Cl.6,DB名) C07C 19/04 C07C 17/23 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-129130 (JP, A) JP-A-1-258632 (JP, A) JP-A 1-258631 (JP, A) JP-A-1- 132537 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C07C 19/04 C07C 17/23

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】触媒の存在下に四塩化炭素と水素とを反応
させて塩素原子を水素原子で置換したクロロホルムを製
造する方法において、触媒として、炭素よりなる担体を
還元剤、酸化剤または有機ハロゲン化物と接触させた後
に周期律表第8族金属を担持させた触媒を用いることを
特徴とするクロロホルムの製造方法。
A method for producing chloroform in which a chlorine atom is replaced by a hydrogen atom by reacting carbon tetrachloride and hydrogen in the presence of a catalyst, wherein a catalyst comprising carbon is used as a catalyst as a reducing agent, an oxidizing agent or an organic compound. A method for producing chloroform, which comprises using a catalyst in which a metal of Group 8 of the periodic table is supported after contacting with a halide.
JP5084689A 1993-04-12 1993-04-12 Method for producing chloroform Expired - Fee Related JP2868968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5084689A JP2868968B2 (en) 1993-04-12 1993-04-12 Method for producing chloroform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5084689A JP2868968B2 (en) 1993-04-12 1993-04-12 Method for producing chloroform

Publications (2)

Publication Number Publication Date
JPH06298680A JPH06298680A (en) 1994-10-25
JP2868968B2 true JP2868968B2 (en) 1999-03-10

Family

ID=13837646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5084689A Expired - Fee Related JP2868968B2 (en) 1993-04-12 1993-04-12 Method for producing chloroform

Country Status (1)

Country Link
JP (1) JP2868968B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012111717A (en) * 2010-11-25 2012-06-14 Ne Chemcat Corp Method for producing compound containing dichloromethyl group

Also Published As

Publication number Publication date
JPH06298680A (en) 1994-10-25

Similar Documents

Publication Publication Date Title
EP0361484B1 (en) Process for preparation of allyl acetate
JP4846576B2 (en) Palladium-containing catalyst and method for producing the same
US6630118B2 (en) Process for the direct synthesis of hydrogen peroxide
CN108290139A (en) The catalytic hydrogenation of halonitro aromatic compound
CN108435171B (en) Preparation method of bimetallic Pt-Bi catalyst and method for preparing DHA (docosahexaenoic acid) by selectively catalyzing and oxidizing glycerol
US5057470A (en) Regeneration of noble metal catalysts used in hydrodehalogenation of halogen-substituted hydrocarbons containing fluorine and at least one other halogen
KR950003329B1 (en) Method for hydrogenation an aldehyde and/or a ketone
JP2868968B2 (en) Method for producing chloroform
JPH11347411A (en) Production of catalyst and production of acetic alkenyl ester
JPH08337542A (en) Production of 1,1,1,3,3-pentafluoropropane
JP2841410B2 (en) Ammonia decomposition catalyst
JPH05320076A (en) Method for reducing polychlorinated alkanes
US4891346A (en) Redispersal of Ru, Os, Rh and Pd catalysts and processes therewith
JPH07100383A (en) Catalyst for acyloxy modification of conjugated diene and production of unsaturated glycol diester using the same
US5202510A (en) Activation of noble metal catalysts for use in hydrodehalogenation of halogen-substituted hydrocarbons containing fluorine and at least one other halogen
EP1205246B1 (en) Process for preparation of catalyst
JP2735755B2 (en) Method for producing chloroform
JPH0453585B2 (en)
JP3547162B2 (en) Method for producing lower halogenated hydrocarbon
JP3540392B2 (en) Process for producing unsaturated glycol diester and catalyst used in this process
JPH07178341A (en) Regenerating method of ruthenium catalyst
JP3422062B2 (en) Method for producing diacetoxybutene
JPH06191804A (en) Production of hydrogen peroxide
JP4232266B2 (en) Phenyl ester production method
JP2023510701A (en) Method for reactivating noble metal-iron catalysts and carrying out chemical reactions

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071225

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091225

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111225

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees