JP2868881B2 - Heat treatment method for compound semiconductor single crystal - Google Patents

Heat treatment method for compound semiconductor single crystal

Info

Publication number
JP2868881B2
JP2868881B2 JP26331690A JP26331690A JP2868881B2 JP 2868881 B2 JP2868881 B2 JP 2868881B2 JP 26331690 A JP26331690 A JP 26331690A JP 26331690 A JP26331690 A JP 26331690A JP 2868881 B2 JP2868881 B2 JP 2868881B2
Authority
JP
Japan
Prior art keywords
single crystal
heat treatment
compound semiconductor
film
treatment method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26331690A
Other languages
Japanese (ja)
Other versions
JPH04139099A (en
Inventor
孝信 鎌倉
章一 鷲塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26331690A priority Critical patent/JP2868881B2/en
Publication of JPH04139099A publication Critical patent/JPH04139099A/en
Application granted granted Critical
Publication of JP2868881B2 publication Critical patent/JP2868881B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Formation Of Insulating Films (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、化合物半導体ウェーハの特性改善を狙った
化合物半導体単結晶の熱処理法に関するもので、特に基
板内の抵抗の均一性や残量不純物の低減化が要求される
ホールセンサー及びIC用半絶縁性GaAsウェーハ等の品質
改善に使用される。
Description: Object of the Invention (Industrial application field) The present invention relates to a heat treatment method for a compound semiconductor single crystal aiming at improving the characteristics of a compound semiconductor wafer, and in particular, to a method of uniforming the resistance in a substrate. It is used to improve the quality of Hall sensors and semi-insulating GaAs wafers for ICs, which are required to reduce the properties and residual impurities.

(従来の技術) GaAs単結晶の特性向上のため、単結晶引き上げ時の熱
環境の最適化を含めて、種々の育成直後の単結晶の熱処
理方法が試みられており、その内のいくつかは工業的に
も採用されるに至っている。このような熱処理方法の従
来例について第4図を参照して説明する。
(Prior art) In order to improve the characteristics of GaAs single crystals, various heat treatment methods for single crystals immediately after growth have been attempted, including optimization of the thermal environment during single crystal pulling. It has been adopted industrially. A conventional example of such a heat treatment method will be described with reference to FIG.

同図(a)に示す熱処理法は、開管法又はAs(ひ素)
蒸気圧制御法と呼ばれ、育成直後の状態(as grown)の
GaAs単結晶1を、直接石英炉2内に導入し、例えば同図
(c)に示す熱処理シークェンスに従って、特性改善の
ための熱処理を行なう。又同時に、GaAs単結晶に固有な
構成元素の蒸気圧の差によるAsの蒸発を防止する目的
で、同図(a)に示すように石英炉2の一端からAsH3
Arとの混合ガスを導入、他端から除害装置を経て系外に
排出し、炉内のAsの蒸気圧を所望値に制御する。
The heat treatment method shown in FIG. 3A is the open tube method or As (arsenic).
This method is called the vapor pressure control method, and is the state immediately after growth (as grown).
The GaAs single crystal 1 is directly introduced into the quartz furnace 2 and subjected to a heat treatment for improving characteristics according to, for example, a heat treatment sequence shown in FIG. At the same time, for the purpose of preventing the evaporation of As due to the difference in vapor pressure of the constituent elements unique to the GaAs single crystal, AsH 3 is connected from one end of the quartz furnace 2 as shown in FIG.
A mixed gas with Ar is introduced and discharged from the other end to the outside of the system through a detoxification device, and the vapor pressure of As in the furnace is controlled to a desired value.

又同図(b)に示す熱処理法は、真空封管法と呼ば
れ、育成直後のGaAs単結晶1は封止カプセル(石英)3
に封入して石英炉4に導入され、熱処理される。これら
蒸気圧制御法及び真空封管法は工業的に採用されている
が、いずれの場合も、特性改善のための熱処理パターン
の最適化を行なうことに注意が払われており、単結晶自
体に手を加えることは少なかった。
The heat treatment method shown in FIG. 2B is called a vacuum tube method, and the GaAs single crystal 1 immediately after the growth is sealed in a sealing capsule (quartz) 3.
And is introduced into the quartz furnace 4 and heat-treated. Although the vapor pressure control method and the vacuum sealing method are industrially adopted, in each case, attention has been paid to optimizing the heat treatment pattern for improving the characteristics, and the single crystal itself has been used. There were few changes.

又さらに最近の新しい試みとして溶融B2O3中に単結晶
を保持し、Asの蒸発を防ぐ熱処理法が提案されている。
Further, as a recent new attempt, a heat treatment method has been proposed in which a single crystal is retained in molten B 2 O 3 and evaporation of As is prevented.

次に育成直後の単結晶を、第4図に示す構成及び温度
条件で熱処理を行なったときに生ずる単結晶自身の問題
点、熱処理装置上の制約及び装置が単結晶へ与える影響
について以下述べる。
Next, the problems of the single crystal itself, the restrictions on the heat treatment apparatus, and the effects of the apparatus on the single crystal immediately after the growth, when the single crystal is heat-treated under the configuration and temperature conditions shown in FIG.

まず単結晶に対しては、(イ)単結晶中に含まれる重
金属、炭素、ほう素等の不純物は、どこにもゲッタされ
ないため、育成直後のレベルもしくは炉内の不純物レベ
ルとなること、(ロ)炉内に導入されるガスは、単結晶
との反応性の少ない不活性ガスに限定されることがあげ
られる。
First, for a single crystal, (a) impurities such as heavy metals, carbon, and boron contained in the single crystal are not gettered anywhere, so that they have a level immediately after growth or an impurity level in a furnace. ) The gas introduced into the furnace is limited to an inert gas having low reactivity with the single crystal.

又熱処理装置上の制約及びその影響については、通常
行なわれる熱処理条件600℃以上で生ずるAsの高い蒸気
圧と、これにより生ずる単結晶のストイキオメトリー維
持のため、(イ)AsH3を用いた蒸気圧制御法あるいは真
空封管法のいずれかが必要であり、(ロ)このため蒸気
圧制御法ではAsH3の除害装置等、真空封管法では真空封
管装置等が必要となり、ウェーハコストが上昇すること
があげられる。
Regarding the restrictions on the heat treatment equipment and its effects, (A) AsH 3 was used in order to maintain the high vapor pressure of As generated at 600 ° C. or higher and the stoichiometry of the single crystal generated by the heat treatment. Either the vapor pressure control method or the vacuum sealing method is required. (B) For this reason, the vapor pressure control method requires an abatement device for AsH 3 and the vacuum sealing method requires a vacuum sealing device. The cost may rise.

さらにB2O3溶液中の熱処理においても、ルツボを含
め、大掛りな装置構成となり又B2O3、ルツボ等の繰り返
し利用がきかず、コスト上昇要因となり、ウェーハには
ねかえっていた。
Further, even in the heat treatment in the B 2 O 3 solution, a large-scale apparatus configuration including the crucible was required, and the B 2 O 3 , the crucible, and the like could not be repeatedly used.

(発明が解決しようとする課題) 従来技術で述べたように、GaAs等の化合物半導体単結
晶の特性向上のため、育成直後の結晶に行なう従来の熱
処理法では、(イ)単結晶中の不純物はどこにもゲッタ
されない、(ロ)単結晶のストイキオメトリー維持のた
めの設備や、炉内導入ガス等に費用がかかりすぎる等の
課題がある。
(Problems to be Solved by the Invention) As described in the prior art, in order to improve the characteristics of a compound semiconductor single crystal such as GaAs, the conventional heat treatment performed on the crystal immediately after growth involves the following steps. There is a problem that (b) equipment for maintaining stoichiometry of a single crystal and gas introduced into the furnace are too expensive.

本発明は、化合物半導体単結晶の熱処理法において、
設備等がウェーハコスト上昇につながらない簡便な方法
で、単結晶より放出される有害ガスの発生を抑え、単結
晶のストイキオメトリーを維持し、又不純物の混入を抑
制し、残量不純物を低減して、単結晶の特性向上が得ら
れる化合物半導体単結晶の熱処理法を提供することを目
的とする。
The present invention relates to a heat treatment method for a compound semiconductor single crystal,
A simple method that does not lead to an increase in wafer cost by equipment, etc., suppresses generation of harmful gases released from the single crystal, maintains stoichiometry of the single crystal, suppresses contamination of impurities, and reduces residual impurities. Accordingly, it is an object of the present invention to provide a heat treatment method for a compound semiconductor single crystal in which the characteristics of the single crystal can be improved.

[発明の構成] (課題を解決するための手段とその作用) 本発明の熱処理法は、化合物半導体単結晶の主要構成
元素の酸化物から成る被膜を、該単結晶表面に形成した
後、該酸化物被膜を保護膜として該単結晶を熱処理する
化合物半導体単結晶の熱処理法におけるものである。
[Structure of the Invention] (Means for Solving the Problem and Action Thereof) According to the heat treatment method of the present invention, a film made of an oxide of a main constituent element of a compound semiconductor single crystal is formed on the surface of the single crystal. A heat treatment method for a compound semiconductor single crystal in which the single crystal is heat-treated using an oxide film as a protective film.

上記化合物半導体単結晶の主要構成元素の酸化物被膜
は、構成元素酸化物の混合割合によりその沸点を上昇さ
せることができ、又熱処理により緻密な酸化物が形成さ
れる。これにより単結晶の特性改善のために行なう熱処
理工程において、上記酸化物被膜は、高い処理温度でも
単結晶の蒸発を抑え、外部からの不純物の混入を防止す
る等保護膜としての作用をする。
The oxide film of the main constituent element of the compound semiconductor single crystal can have its boiling point raised by the mixing ratio of the constituent element oxide, and a dense oxide is formed by heat treatment. Thus, in the heat treatment step performed to improve the characteristics of the single crystal, the oxide film functions as a protective film, for example, suppressing evaporation of the single crystal even at a high processing temperature and preventing entry of impurities from the outside.

そして本発明の熱処理法は、前段の熱処理法におい
て、化合物半導体単結晶表面に、該単結晶の主要構成元
素のアルコキシド溶液を塗布し、酸化物被膜を形成する
方法である。アルコール等により粘度調整されたアルコ
キシド溶液は室温で安定で、スプレイ法やディップ法に
より容易に単結晶上に被膜形成が可能である。このアル
コキシド被膜は、約200℃程度の温度で溶剤が飛び、又4
00℃程度で重合が進むため、600℃以上の温度域では、
安定な酸化物被膜となる。このように、比較的低温で安
定した保護用酸化膜が形成できるので、該膜形成に際
し、炉内からの汚染、有害ガスの放出等が抑制され、簡
便な炉でも、特性向上のための単結晶の熱処理が可能と
なる。
The heat treatment method of the present invention is a method in which an alkoxide solution of a main constituent element of the single crystal is applied to the surface of the compound semiconductor single crystal to form an oxide film in the heat treatment method of the preceding stage. The alkoxide solution whose viscosity has been adjusted with an alcohol or the like is stable at room temperature, and can easily form a film on a single crystal by a spray method or a dipping method. This alkoxide film has a solvent splash at about 200 ° C.
Because polymerization proceeds at about 00 ° C, in the temperature range of 600 ° C or more,
It becomes a stable oxide film. As described above, since a protective oxide film that is stable at a relatively low temperature can be formed, contamination and release of harmful gases from the furnace during formation of the film are suppressed. Heat treatment of the crystal becomes possible.

(実施例) 請求項1及び2記載の本発明の化合物半導体単結晶の
熱処理法の実施例として、GaAs単結晶を取り上げ、以下
説明する。
(Example) A GaAs single crystal will be described below as an example of the heat treatment method for a compound semiconductor single crystal according to the first and second aspects of the present invention.

第1図は、本発明の前記実施例にかかる熱処理工程を
示す模式的概要図である。
FIG. 1 is a schematic diagram showing a heat treatment step according to the embodiment of the present invention.

第1図(a)において、育成直後(as grown)のGaAs
単結晶1及びアルコキシド溶液12を用意する。アルコキ
シド溶液12は、GaAs単結晶の構成元素であるGa及びAsの
アルコキシド(アルコール類の水酸基の水素をGa又はAs
で置換した化合物)を用意し、アルコール又はエステル
等で溶かす。各々のアルコキシドとしてプロポキシド即
ちGa(C3H7O)及びAs(C3H7O)を用い、又溶剤とし
て、プロパノール又はブタノール等を用い、さらに粘度
調整のため微量のH2Oを入れ、粘度を40Cp程度とした。
ここでアルコキシド溶液は、上記の組み合わせのみなら
ず、広範囲の条件で選ぶことができる。又水分の調整
(加水分解の程度)により、任意の粘度が選べるが、こ
れは溶液の塗布法(スプレイあるいはディップ等)によ
り調整される類のものである。又上記溶液をGaAs単結晶
に塗布するにあたってはGa(C3H7O)とAs(C3H7O)
の混合溶液を用いたが、Ga2O3及びAs2O5のそれぞれの沸
点が約1900℃及び約400℃であることを考慮して、Ga(C
3H7O)リッチもしくは単独の方が高い沸点が得られ、
保護膜としては望ましい。しかし配合の割合は、後工程
の特性改善のための熱処理温度によって決まるため、熱
処理温度が高いほど、Ga(C3H7O)の割合を増し、保
護膜としての条件を満たすよう調整すべきである。
In FIG. 1 (a), GaAs immediately after growth (as grown)
A single crystal 1 and an alkoxide solution 12 are prepared. The alkoxide solution 12 contains alkoxides of Ga and As, which are constituent elements of a GaAs single crystal (hydrogen of hydroxyl group of alcohols is Ga or As).
Is prepared and dissolved with an alcohol or an ester. Propoxide, that is, Ga (C 3 H 7 O) 3 and As (C 3 H 7 O) 3 are used as each alkoxide, and propanol or butanol is used as a solvent, and a small amount of H 2 O is used for viscosity adjustment. And the viscosity was adjusted to about 40 Cp.
Here, the alkoxide solution can be selected under a wide range of conditions as well as the above combination. An arbitrary viscosity can be selected by adjusting the water content (degree of hydrolysis), but this is a type adjusted by a coating method (spray or dip) of the solution. In applying the above solution to GaAs single crystal, Ga (C 3 H 7 O) 3 and As (C 3 H 7 O) 5
However, considering that the respective boiling points of Ga 2 O 3 and As 2 O 5 are about 1900 ° C. and about 400 ° C., Ga (C
3 H 7 O) Higher boiling point is obtained with 3 rich or single,
It is desirable as a protective film. However, since the proportion of the compound is determined by the heat treatment temperature for improving the characteristics in the post-process, the higher the heat treatment temperature, the greater the proportion of Ga (C 3 H 7 O) 3 , so that the condition as the protective film is adjusted. Should.

第1図(b)において、前記内容に従い、Ga及びAsの
アルコキシドの混合比を5:1とし、GaAs単結晶1に塗布
した。塗布は、ディップ法を用い、繰り返しディップす
ることで均一性をあげ、約100μmの厚さまで塗布し
た。
In FIG. 1 (b), the mixture was applied to the GaAs single crystal 1 at a mixing ratio of Ga and As alkoxide of 5: 1 according to the above description. The coating was applied to a thickness of about 100 μm by increasing the uniformity by repeatedly dipping using a dipping method.

第1図(c)において、その後、約150℃のオーブン1
3に約30分間入れ、塗布膜14中の有機溶剤を蒸発させ
た。ただし室温から温度を上げる熱処理では、昇温過程
で有機溶剤が蒸発するので前記オーブン乾燥の必要はな
い。又塗布膜厚についても特性改善の熱処理条件によっ
て決まるもので、本実施例における約800℃10時間の熱
処理条件では、上記膜厚で十分であった。
In FIG. 1 (c), the oven 1 at about 150 ° C.
3 was placed for about 30 minutes to evaporate the organic solvent in the coating film 14. However, in the heat treatment for raising the temperature from room temperature, the organic solvent evaporates during the temperature raising process, so that the oven drying is not necessary. Further, the thickness of the applied film is also determined by the heat treatment conditions for improving the characteristics. Under the heat treatment conditions of about 800 ° C. for 10 hours in the present example, the above film thickness was sufficient.

次に第1図(d)において、オーブン乾燥を終えたGa
As単結晶15について、通常のアニール炉16を用い、800
℃10時間程度の特性改善の熱処理を行なった。炉内への
導入にあたっては、150℃のオーブン乾燥の単結晶で
は、塗布膜がポーラスで、脆いため、剥れやクラック等
が生じないよう十分注意する必要があった。このポーラ
スな塗布膜は、その後約400℃程度の熱処理を受けに従
い緻密な酸化膜となり、さらにその後の約600℃以上の
熱工程で、GaAs単結晶からのAs蒸発を防止する保護酸化
膜となる。これは単結晶よりも酸化膜に対するAsに偏析
が小さく、且つ酸化膜中のAs拡散の低下による働きであ
る。800℃10時間の熱処理においては、前述の膜厚(約1
00μm)で十分Asの蒸発を防止できた。又保護膜である
酸化膜即ちGa2O3とAs2O5との蒸発については、GaとAsと
の原子レベルでの混合により沸点上昇効果があり、As2O
5の蒸発は見られなかった。しかし、さらに高温、例え
ば1100℃以上の熱処理においては、保護膜である混合酸
化膜の沸点を上げるため、Ga単独による酸化膜を形成し
た方が望ましかった。しかしAsの蒸発防止の効果につい
ては、1100℃の熱処理と800℃の熱処理とで有意差は見
られなかった。
Next, in FIG. 1 (d), Ga
For the As single crystal 15, using a normal annealing furnace 16, 800
A heat treatment for improving characteristics at about 10 ° C. was performed. In the introduction into the furnace, it was necessary to pay sufficient attention not to cause peeling, cracking, and the like, because the coating film of the oven-dried single crystal at 150 ° C. was porous and brittle. This porous coating film becomes a dense oxide film after being subjected to a heat treatment at about 400 ° C., and becomes a protective oxide film for preventing As evaporation from the GaAs single crystal in a subsequent heating step at about 600 ° C. or more. . This is because the segregation of As in the oxide film is smaller than that of the single crystal and the diffusion of As in the oxide film is reduced. In the heat treatment at 800 ° C for 10 hours, the above-mentioned film thickness (about 1
(00 μm) sufficiently prevented evaporation of As. As for the evaporation of the oxide film as a protective film, that is, the evaporation of Ga 2 O 3 and As 2 O 5 , the mixing at the atomic level of Ga and As has an effect of increasing the boiling point, and As 2 O 3
No evaporation of 5 was seen. However, in a heat treatment at a higher temperature, for example, at 1100 ° C. or higher, it is more desirable to form an oxide film of Ga alone in order to raise the boiling point of the mixed oxide film as the protective film. However, regarding the effect of preventing evaporation of As, there was no significant difference between the heat treatment at 1100 ° C and the heat treatment at 800 ° C.

上記熱処理を行なった単結晶を通常のウェーハ加工工
程に流し、高品質のGaAsウェーハが得られる。
The heat-treated single crystal is sent to a normal wafer processing step, and a high-quality GaAs wafer is obtained.

次に、上記実施例の熱処理法により得られたGaAs単結
晶の特性を調べた。比較のため、従来のAsH3フロー蒸気
圧制御熱処理法(第4図(a))により得られたGaAs単
結晶の特性も同時に調べた。
Next, the characteristics of the GaAs single crystal obtained by the heat treatment method of the above example were examined. For comparison, the characteristics of the GaAs single crystal obtained by the conventional AsH 3 flow vapor pressure control heat treatment method (FIG. 4A) were also examined.

(a) 800℃10時間程度の熱処理では、本発明法及び
従来法どちらの単結晶も、比抵抗分布は同等レベルで、
又ストイキオメトリーの変化もないことが確認された。
(A) With a heat treatment at 800 ° C. for about 10 hours, the resistivity distribution of the single crystal of the present invention and the single crystal of the conventional method are at the same level.
It was also confirmed that there was no change in stoichiometry.

(b) 800℃10時間の条件でGaAs単結晶を熱処理する
とき、炉の使用回数と単結晶中の比抵抗分布との依存性
を調べた。その結果を第2図に示す。同図において横軸
は熱処理炉の使用回数を、縦軸はウェーハ面内の比抵抗
分布(%)を示す。
(B) When the GaAs single crystal was heat-treated at 800 ° C. for 10 hours, the dependence between the number of times the furnace was used and the resistivity distribution in the single crystal was examined. The result is shown in FIG. In the figure, the horizontal axis represents the number of times the heat treatment furnace was used, and the vertical axis represents the specific resistance distribution (%) in the wafer surface.

●印は本発明、○印は従来のそれぞれの熱処理後の単
結晶の比抵抗分布の平均を表わし、1つの単結晶の3部
位(例えば育成方向に3区分)ごとに各2枚のウェーハ
をとり、各ウェーハ面内の3点の比抵抗値から求めたも
のである。同図から明らかなように、本発明の熱処理法
によれば、炉の使用回数との依存性は認められず、常に
安定した熱処理ができる。これに対し、従来法では炉の
使用回数が増加すると、単結晶の比抵抗のバラツキ幅が
増加する。
The symbol ● indicates the present invention, and the symbol ○ indicates the average of the resistivity distribution of the conventional single crystal after each heat treatment, and two wafers for each three sites of one single crystal (for example, three sections in the growing direction). The values are obtained from the specific resistance values at three points in each wafer surface. As is clear from the figure, according to the heat treatment method of the present invention, there is no dependence on the number of times the furnace has been used, and stable heat treatment can always be performed. On the other hand, in the conventional method, as the number of times the furnace is used increases, the variation width of the specific resistance of the single crystal increases.

(c) 800℃約10時間の熱処理に1150℃10時間の高温
熱処理を含めた多段熱処理を実施し、得られた単結晶ウ
ェーハのライフタイムをフォト・ルミネッセンス法によ
り測定した。その結果を第3図に示す。横軸は、800℃1
0時間の熱処理とこれに1150℃10時間の高温熱処理を含
めた熱処理との区別、縦軸はライフタイム(ns)を示
し、図中の●点は平均値、●印を通る縦線分はライフタ
イム値の分布範囲を示す。同図より、高温熱処理(>11
00℃)を含む多段熱処理において、本発明ではライフタ
イムの向上が計られる等の効果が得られた。
(C) A multi-stage heat treatment including a heat treatment at 800 ° C. for about 10 hours and a high-temperature heat treatment at 1150 ° C. for 10 hours was performed, and the lifetime of the obtained single crystal wafer was measured by a photoluminescence method. FIG. 3 shows the results. The horizontal axis is 800 ° C1
The distinction between 0-hour heat treatment and heat treatment including high-temperature heat treatment at 1150 ° C for 10 hours, the vertical axis indicates the lifetime (ns), the dot in the figure is the average value, and the vertical line passing through the mark is The distribution range of the lifetime value is shown. From the figure, high-temperature heat treatment (> 11
(00 ° C.), the present invention has obtained effects such as improvement of the lifetime.

上記(a)ないし(c)の結果等から、本発明の熱処
理法では、単結晶上に形成された酸化物が、単結晶外か
らの汚染に対して阻止(ブロック)効果を持ち、且つ単
結晶自体に対してもゲッタリング効果を有することが判
明し、比抵抗の均一性のみならず、結晶純度向上にも効
果があることがわかった。
From the results of the above (a) to (c) and the like, in the heat treatment method of the present invention, the oxide formed on the single crystal has an effect of blocking (blocking) contamination from outside the single crystal, and It has been found that the crystal itself has a gettering effect, and that it is effective not only in uniformity of the specific resistance but also in crystal purity.

本発明の熱処理法では、酸化物被膜を保護膜として使
用するので、通常の熱処理炉を利用できる。このため、
従来法では必要不可欠であった有害ガス(As蒸気等)の
除害装置、真空封管装置、ガス供給設備等が不要とな
り、ウェーハコストの低減化をはかることができ、従来
法に比し価格メリットを持つことが判明した。
In the heat treatment method of the present invention, since an oxide film is used as a protective film, a normal heat treatment furnace can be used. For this reason,
Elimination of harmful gas (As vapor, etc.) abatement equipment, vacuum sealing equipment, gas supply equipment, etc., which were indispensable in the conventional method, are no longer necessary, and wafer costs can be reduced. It turned out to have benefits.

以上の実施例では、化合物半導体単結晶として、GaAs
単結晶について述べたが、GaP及びInP単結晶について
も、それぞれの構成元素のアルコキシドを用い表面に酸
化物被膜を形成しこれを保護膜として熱処理することに
よりGaAs単結晶の場合とほぼ同様の比抵抗の均一性、純
度向上の効果のみならず、ウェーハコストの低減が得ら
れた。また、その他の化合物半導体単結晶においても、
得られる効果は共通しており、AlGaAs,InGaAs等の多元
系の化合物半導体単結晶で構成元素の蒸気圧の異なるも
のについて、本発明は特に有効な技術である。
In the above embodiment, GaAs was used as the compound semiconductor single crystal.
Although a single crystal has been described, GaP and InP single crystals have almost the same ratio as the GaAs single crystal by forming an oxide film on the surface using alkoxides of the respective constituent elements and performing heat treatment as a protective film. Not only the effect of improving the uniformity and the purity of the resistance but also the cost of the wafer was reduced. In other compound semiconductor single crystals,
The obtained effects are common, and the present invention is a particularly effective technique for multi-component compound semiconductor single crystals such as AlGaAs and InGaAs having different vapor pressures of constituent elements.

以上の実施例では、単結晶表面に酸化物被膜を形成す
るのに、主要構成元素のアルコキシド被膜を塗布した
後、加熱して酸化物被膜としたが、これに限定されな
い。
In the above embodiments, the oxide film is formed by applying an alkoxide film of a main constituent element and then heating the oxide film to form the oxide film on the single crystal surface. However, the present invention is not limited to this.

例えばGaAs単結晶表面に、CVD法により主要構成元素
の酸化物被膜(Ga2O3,As2O5)を形成してもよいし、又
酸化性ガス雰囲気中でGaAs単結晶を熱処理して、その表
面に前記酸化物被膜を形成しても差し支えない。
For example, an oxide film (Ga 2 O 3 , As 2 O 5 ) of a main constituent element may be formed on a GaAs single crystal surface by a CVD method, or a GaAs single crystal may be heat-treated in an oxidizing gas atmosphere. The oxide film may be formed on the surface.

[発明の効果] これまで詳述したように、本発明の化合物半導体単結
晶の熱処理法は、熱処理設備等がウェーハコスト上昇に
つながらない安価で簡便な方法で、単結晶から放出され
る有害ガスの発生を抑え、単結晶のストイキオメトリー
を維持し、又不純物の混入を抑制し、さらに残量不純物
を低減することができる。本発明の熱処理法により、化
合物半導体単結晶の抵抗の均一性、ライフタイム等の特
性の向上が得られる。
[Effects of the Invention] As described in detail above, the heat treatment method for a compound semiconductor single crystal of the present invention is a method for heat treatment equipment and the like, which is an inexpensive and simple method that does not lead to an increase in wafer cost, and which is capable of reducing harmful gases released from the single crystal. Generation can be suppressed, stoichiometry of the single crystal can be maintained, impurities can be suppressed from being mixed, and residual impurities can be further reduced. According to the heat treatment method of the present invention, it is possible to improve the uniformity of the resistance of the compound semiconductor single crystal and the characteristics such as the lifetime.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の化合物半導体単結晶熱処理法の工程を
示す概念図、第2図は熱処理炉の使用回数と比抵抗分布
との関係を示す図、第3図は本発明及び従来それぞれの
熱処理法とライフタイムとの関係を示す図、第4図は従
来の熱処理法を説明するための模式図である。 1……育成直後のGaAs単結晶、12……アルコキシド溶
液、13……150℃オーブン、14……アルコキシド溶液の
塗布膜、15……オーブン乾燥後のGaAs単結晶、16……通
常のアニール炉。
FIG. 1 is a conceptual diagram showing the steps of the compound semiconductor single crystal heat treatment method of the present invention, FIG. 2 is a diagram showing the relationship between the number of times of use of a heat treatment furnace and the resistivity distribution, and FIG. FIG. 4 is a diagram showing a relationship between a heat treatment method and a lifetime, and FIG. 4 is a schematic diagram for explaining a conventional heat treatment method. 1 ... GaAs single crystal immediately after growth, 12 ... alkoxide solution, 13 ... 150 ° C oven, 14 ... coating film of alkoxide solution, 15 ... GaAs single crystal after oven drying, 16 ... normal annealing furnace .

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】化合物半導体単結晶の主要構成元素の酸化
物から成る被膜を、該単結晶表面に形成した後、該酸化
物被膜を保護膜として該単結晶を熱処理する化合物半導
体単結晶の熱処理法において、該単結晶表面に、該単結
晶の主要構成元素のアルコキシドを含む被膜を形成する
工程と、該被膜を加熱して前記アルコキシドを含む被膜
を酸化物被膜に変える工程とを含むことを特徴とする化
合物半導体単結晶の熱処理法。
1. A heat treatment of a compound semiconductor single crystal, comprising: forming a film made of an oxide of a main constituent element of the compound semiconductor single crystal on the surface of the single crystal; and heat-treating the single crystal using the oxide film as a protective film. Forming a film containing an alkoxide of a main constituent element of the single crystal on the surface of the single crystal, and heating the film to convert the film containing the alkoxide into an oxide film. Characteristic heat treatment method for compound semiconductor single crystal.
JP26331690A 1990-10-01 1990-10-01 Heat treatment method for compound semiconductor single crystal Expired - Fee Related JP2868881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26331690A JP2868881B2 (en) 1990-10-01 1990-10-01 Heat treatment method for compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26331690A JP2868881B2 (en) 1990-10-01 1990-10-01 Heat treatment method for compound semiconductor single crystal

Publications (2)

Publication Number Publication Date
JPH04139099A JPH04139099A (en) 1992-05-13
JP2868881B2 true JP2868881B2 (en) 1999-03-10

Family

ID=17387790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26331690A Expired - Fee Related JP2868881B2 (en) 1990-10-01 1990-10-01 Heat treatment method for compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JP2868881B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100372059C (en) * 2003-12-24 2008-02-27 上海宏力半导体制造有限公司 Method for forming semiconductor material wafer and structure therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5661446B2 (en) * 2010-12-14 2015-01-28 株式会社クリーンベンチャー21 Method for producing crystalline semiconductor particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100372059C (en) * 2003-12-24 2008-02-27 上海宏力半导体制造有限公司 Method for forming semiconductor material wafer and structure therefor

Also Published As

Publication number Publication date
JPH04139099A (en) 1992-05-13

Similar Documents

Publication Publication Date Title
US6958092B2 (en) Epitaxial silicon wafer with intrinsic gettering and a method for the preparation thereof
KR940007587B1 (en) Manufacturing method of semiconductor device
US20100136768A1 (en) Method for simultaneous doping and oxidizing semiconductor substrates and the use thereof
EP0193021A1 (en) A method of forming an ion implanted gallium arsenide device
EP0092540A1 (en) Method of gettering semiconductor devices
US3556879A (en) Method of treating semiconductor devices
JPS5833693B2 (en) Manufacturing method of semiconductor device
US20030051656A1 (en) Method for the preparation of an epitaxial silicon wafer with intrinsic gettering
CN1151546C (en) Combined preannel/oxidation process using quick heat treatment
JPH0782085A (en) Improved method for crystallization of silicon crystal
JP2868881B2 (en) Heat treatment method for compound semiconductor single crystal
Kunii et al. Si Surface Cleaning by Si2H6–H2 Gas Etching and Its Effects on Solid-Phase Epitaxy
US6238478B1 (en) Silicon single crystal and process for producing single-crystal silicon thin film
US5786605A (en) Semiconductor device produced by a single furnace cycle diffusion and oxidation process
JP3138174B2 (en) Low temperature selective growth method of silicon or silicon alloy
JP3213032B2 (en) Fabrication of integrated circuits using amorphous layers
KR970008326B1 (en) Method for treating semiconductor substrates
JPH10144698A (en) Silicon wafer and its manufacture
JPH033244A (en) Heat treatment method for semiconductor silicon substrate
JPH04330717A (en) Manufacture of semiconductor film
JP2588632B2 (en) Oxygen precipitation method for silicon single crystal
KR0137550B1 (en) Formation method of gate oxide
US20040144977A1 (en) Semiconductor wafer with a thin epitaxial silicon layer, and production process
JPH0969526A (en) Production of semiconductor device
JP2593148B2 (en) Method for growing single crystal of compound semiconductor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees