JP2868199B2 - Method for producing pentafluorophenyl alkali metal salt using pentafluorobenzene in a chain ether solvent - Google Patents

Method for producing pentafluorophenyl alkali metal salt using pentafluorobenzene in a chain ether solvent

Info

Publication number
JP2868199B2
JP2868199B2 JP32627493A JP32627493A JP2868199B2 JP 2868199 B2 JP2868199 B2 JP 2868199B2 JP 32627493 A JP32627493 A JP 32627493A JP 32627493 A JP32627493 A JP 32627493A JP 2868199 B2 JP2868199 B2 JP 2868199B2
Authority
JP
Japan
Prior art keywords
pentafluorobenzene
pentafluorophenyl
alkali metal
solvent
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32627493A
Other languages
Japanese (ja)
Other versions
JPH06247975A (en
Inventor
喜彦 池田
猛夫 山根
栄一 加地
研二 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOSOO AKUZO KK
Original Assignee
TOSOO AKUZO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26572130&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2868199(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by TOSOO AKUZO KK filed Critical TOSOO AKUZO KK
Priority to JP32627493A priority Critical patent/JP2868199B2/en
Publication of JPH06247975A publication Critical patent/JPH06247975A/en
Application granted granted Critical
Publication of JP2868199B2 publication Critical patent/JP2868199B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はペンタフルオロベンゼン
を原料として用い、ペンタフルオロフェニルアルカリ金
属塩を効率よく製造する方法に関する。本発明で得られ
るペンタフルオロフェニルアルカリ金属塩は、種々の医
薬品中間体あるいは塩化ホウ素などのホウ素化合物と反
応させて、カチオン錯体重合の助触媒として極めて有用
なホウ素誘導体、例えばトリス(ペンタフルオロフェニ
ル)ホウ素あるいはテトラキス(ペンタフルオロフェニ
ル)ボレート誘導体を製造する場合の、重要な反応剤と
して用いられる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for efficiently producing pentafluorophenyl alkali metal salts using pentafluorobenzene as a raw material. The pentafluorophenyl alkali metal salt obtained in the present invention is reacted with various pharmaceutical intermediates or boron compounds such as boron chloride to form a boron derivative extremely useful as a cocatalyst for cationic complex polymerization, for example, tris (pentafluorophenyl). It is used as an important reactant when producing boron or tetrakis (pentafluorophenyl) borate derivatives.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】ペンタ
フルオロフェニルアルカリ金属塩は、例えば塩化ホウ素
などのホウ素化合物と反応させて、重合反応の触媒成分
として極めて有用なホウ素誘導体、例えばトリス(ペン
タフルオロフェニル)ホウ素を製造する場合の、ホウ素
にペンタフルオロフェニル基を導入する重要な反応試薬
として用いられる。(例えば、Synthesis of Fluoroorg
anic Compounds, p.190, Springer-Verlag (1985))
2. Description of the Related Art An alkali metal salt of pentafluorophenyl is reacted with a boron compound such as boron chloride to form a boron derivative, for example, tris (pentafluorophenyl), which is extremely useful as a catalyst component for a polymerization reaction. It is used as an important reagent for introducing a pentafluorophenyl group into boron when producing phenyl) boron. (Eg, Synthesis of Fluoroorg
anic Compounds, p.190, Springer-Verlag (1985))

【0003】現在までに、いくつかのペンタフルオロフ
ェニルアルカリ金属塩合成反応が知られている。例えば
ペンタフルオロフェニル基源の出発原料として比較的高
価なペンタフルオロブロモベンゼンとブチルリチウムを
用いて臭素−金属交換反応をさせペンタフルオロフェニ
ルリチウムを生成させる方法は、既に知られている。例
えば、Synthesis of Fluoroorganic Compounds, p.190,
Springer-Verlag(1985)ではジエチルエーテル−ヘキサ
ン中−70℃でペンタフルオロフェニルリチウムを調製し
二酸化硫黄と反応させることにより94%収率でペンタフ
ルオロフェニルスルフェン酸リチウムを得ている。
[0003] To date, several pentafluorophenyl alkali metal salt synthesis reactions are known. For example, a method for producing pentafluorophenyllithium by performing a bromine-metal exchange reaction using relatively expensive pentafluorobromobenzene and butyllithium as starting materials for a pentafluorophenyl group source has already been known. For example, Synthesis of Fluoroorganic Compounds, p. 190,
Springer-Verlag (1985) prepares pentafluorophenyllithium in diethyl ether-hexane at -70 ° C and reacts with sulfur dioxide to obtain lithium pentafluorophenylsulfenate in 94% yield.

【0004】また、ペンタフルオロベンゼンをペンタフ
ルオロフェニル基源の出発原料として用いて、ブチルリ
チウムを用いて水素−金属交換反応をさせペンタフルオ
ロフェニルリチウムを生成させる方法も既に知られてい
る。例えば、J. Org. Chem.,2385, 29 (1964)ではペン
タフルオロベンゼンとブチルリチウムより調製したペン
タフルオロフェニルリチウムを炭酸ガスと反応させるこ
とにより反応収率は不明ながら精製収率で反応溶媒系に
よってジエチルエーテル−ヘキサン系で68%、ジエチル
エーテル系で80.9%またジエチルエーテル−テトラヒド
ロフラン系で82%の収率でペンタフルオロ安息香酸を得
ている。また、J. Org. Chem., 4229,31 (1966) ではペ
ンタフルオロベンゼンとブチルリチウムより調製したペ
ンタフルオロフェニルリチウムをヘキサフルオロアセト
ンと反応させ反応収率は不明ながら精製収率で79%の収
率でウンデカフルオロ−2−フェニル−2−プロパノー
ルを得ている。
[0004] Further, a method of using pentafluorobenzene as a starting material of a pentafluorophenyl group source and performing a hydrogen-metal exchange reaction with butyllithium to produce pentafluorophenyllithium is already known. For example, in J. Org. Chem., 2385, 29 (1964), pentafluorophenyllithium prepared from pentafluorobenzene and butyllithium is reacted with carbon dioxide to obtain a reaction solvent system with a purification yield, although the reaction yield is unknown. As a result, pentafluorobenzoic acid was obtained in a yield of 68% in a diethyl ether-hexane system, 80.9% in a diethyl ether system and 82% in a diethyl ether-tetrahydrofuran system. In J. Org. Chem., 4229, 31 (1966), pentafluorophenyllithium prepared from pentafluorobenzene and butyllithium was reacted with hexafluoroacetone to obtain a 79% purification yield, although the reaction yield was unknown. Undecafluoro-2-phenyl-2-propanol was obtained at a rate.

【0005】ペンタフルオロブロモベンゼンは、ペンタ
フルオロベンゼンに比べて、ブチルリチウム等の有機金
属化合物に対して反応性が高い。ブチルリチウムを用い
て水素−金属交換反応をさせペンタフルオロフェニルリ
チウムを生成させる場合、ジエチルエーテル等の鎖状エ
ーテル系溶媒中においてもテトラヒドロフラン等の環状
エーテル系溶媒中においても、反応は5分程度で完結し
ほぼ定量的にペンタフルオロフェニルリチウムが生成す
る。しかし、ペンタフルオロブロモベンゼンは、ペンタ
フルオロベンゼンを臭素化して得られるため、価格が高
くなる。つまり、工業的にはより安価なペンタフルオロ
ベンゼンの使用が望まれる。
[0005] Pentafluorobromobenzene has higher reactivity with organometallic compounds such as butyllithium than pentafluorobenzene. When pentafluorophenyllithium is produced by performing a hydrogen-metal exchange reaction using butyllithium, the reaction takes about 5 minutes in a chain ether solvent such as diethyl ether or a cyclic ether solvent such as tetrahydrofuran. Completely and almost quantitatively, pentafluorophenyllithium is produced. However, since pentafluorobromobenzene is obtained by brominating pentafluorobenzene, the price is high. In other words, industrially, it is desired to use cheaper pentafluorobenzene.

【0006】しかし、ペンタフルオロベンゼンは、反応
性がペンタフルオロブロモベンゼンよりも低いため、ブ
チルリチウムを用いて脱プロトン化反応をさせペンタフ
ルオロフェニルリチウムを生成させる場合、鎖状エーテ
ル系溶媒中におけるよりも鎖状エーテル系溶媒にテトラ
ヒドロフランなどの環状エーテル系溶媒を添加すること
により、収率が向上することがJ. Org. Chem., 2835, 2
9 (1964)で報告されている。
However, since pentafluorobenzene has lower reactivity than pentafluorobromobenzene, when pentafluorophenyllithium is produced by deprotonation reaction using butyllithium, pentafluorobenzene is less reactive than a linear ether solvent. The addition of a cyclic ether solvent such as tetrahydrofuran to a chain ether solvent can also improve the yield. J. Org. Chem., 2835, 2
9 (1964).

【0007】一般に、ブチルリチウム等の有機金属化合
物は0℃以上の温度では、エーテル系溶媒と反応するこ
とが知られている。したがって、ブチルリチウム等の有
機金属化合物は、通常ヘキサン、シクロヘキサン、ペン
タン等の飽和炭化水素系溶媒の溶液として商業的に取り
引きされている。従って、ペンタフルオロベンゼンを鎖
状エーテル系溶媒中で、商業的に取り引きされているヘ
キサンなどの飽和炭化水素系溶媒のブチルリチウム溶液
を用いてペンタフルオロフェニルリチウムを生成させる
場合、ブチルリチウムの希釈溶媒である飽和炭化水素系
溶媒が反応系内に混入するため、鎖状エーテル系溶媒−
炭化水素系溶媒の混合溶媒となり、さらに反応が起こり
難くなる。(例えば、J. Org. Chem., 2385, 29 (196
4))
In general, it is known that an organometallic compound such as butyllithium reacts with an ether solvent at a temperature of 0 ° C. or higher. Therefore, organometallic compounds such as butyllithium are usually commercially sold as solutions of saturated hydrocarbon solvents such as hexane, cyclohexane and pentane. Accordingly, when pentafluorobenzene is produced in a chain ether-based solvent using a butyllithium solution of a commercially available saturated hydrocarbon-based solvent such as hexane, pentafluorophenyllithium is diluted with butyllithium. Is mixed into the reaction system, the chain ether solvent-
It becomes a mixed solvent of hydrocarbon-based solvents, and the reaction hardly occurs. (See, for example, J. Org. Chem., 2385, 29 (196
Four))

【0008】一方、ルイス酸性の非常に強い化合物、例
えばトリス(ペンタフルオロフェニル)ホウ素等を製造
する場合には環状エーテル系溶媒が反応系内に存在する
と強い配位力によって生成物に環状エーテルが配位した
錯体を形成し、除去が困難となる場合も多い。
On the other hand, when a compound having a very strong Lewis acidity, such as tris (pentafluorophenyl) boron, is produced, if a cyclic ether solvent is present in the reaction system, the cyclic ether is added to the product by strong coordination force. Often, a coordinated complex is formed, making removal difficult.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記の状
況に鑑み、ペンタフルオロベンゼンをペンタフルオロフ
ェニル基源の出発原料として用いて、テトラヒドロフラ
ンなどの環状エーテル系溶媒を用いない反応溶媒系にお
いて、再現性良く高収率でペンタフルオロフェニルアル
カリ金属塩を製造する方法を種々検討した結果本発明に
至ったものである。
In view of the above situation, the present inventors have developed a reaction solvent system which uses pentafluorobenzene as a starting material for a pentafluorophenyl group source and does not use a cyclic ether solvent such as tetrahydrofuran. The present inventors have conducted various studies on a method for producing a pentafluorophenyl alkali metal salt with high reproducibility and high yield, and have reached the present invention.

【0010】即ち本発明の要旨とするところは、式
[I]で表されるペンタフルオロベンゼン1当量に対し
て、 0.5〜 1.5当量の式[II]で表される有機金属化合
物を鎖状エーテル系溶媒、炭化水素系溶媒あるいは鎖状
エーテル系溶媒と炭化水素系溶媒の混合溶媒中で−120
℃〜80℃で反応させることにより、式[III] で表される
ペンタフルオロフェニルアルカリ金属塩を発生させる製
造方法に関する。
That is, the gist of the present invention is that 0.5 to 1.5 equivalents of the organometallic compound represented by the formula [II] is added to one chain equivalent of pentafluorobenzene represented by the formula [I]. -120 in a solvent mixture, a hydrocarbon solvent or a mixed solvent of a chain ether solvent and a hydrocarbon solvent.
The present invention relates to a production method for generating a pentafluorophenyl alkali metal salt represented by the formula [III] by reacting at a temperature of from 80 ° C to 80 ° C.

【0011】[0011]

【作用】以下に、本発明を詳細に説明する。本発明で云
う鎖状エーテル系溶媒とは、ジエチルエーテル、ジプロ
ピルエーテル、ジイソプロピルエーテル、ジブチルエー
テル、ジイソアミルエーテル、1,2−ジメトキシエタ
ン、1,2−ジエトキシエタン、ジ−2−メトキシエチ
ルエーテル等を示す。
Hereinafter, the present invention will be described in detail. The chain ether solvent referred to in the present invention is diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, diisoamyl ether, 1,2-dimethoxyethane, 1,2-diethoxyethane, di-2-methoxyethyl. Indicates ether and the like.

【0012】本発明で云う環状エーテル系溶媒とは、テ
トラヒドロフラン、テトラヒドロピラン、1,4−ジオ
キサン等を示す。
The cyclic ether solvent used in the present invention includes tetrahydrofuran, tetrahydropyran, 1,4-dioxane and the like.

【0013】次に、本発明で云う炭化水素系溶媒とはペ
ンタン、イソペンタン、ヘキサン、シクロヘキサン、ヘ
プタン、オクタン、ノナン、デカン、ウンデカン、ドデ
カン、トリデカン、テトラデカン、ペンタデカン、ヘキ
サデカン、n−パラフィンあるいは石油エーテル等の飽
和炭化水素とベンゼン、トルエン、o−キシレン、m−
キシレン、p−キシレン、1,2,3−トリメチルベン
ゼン、1,2,4−トリメチルベンゼン、1,2,5−
トリメチルベンゼン、1,3,5−トリメチルベンゼ
ン、エチルベンゼン、プロピルベンゼンあるいはブチル
ベンゼン等の芳香族系炭化水素とこれらの混合物を示
す。
[0013] Next, the hydrocarbon solvent referred to in the present invention is pentane, isopentane, hexane, cyclohexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, n-paraffin or petroleum ether. Such as benzene, toluene, o-xylene, m-
Xylene, p-xylene, 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, 1,2,5-
Aromatic hydrocarbons such as trimethylbenzene, 1,3,5-trimethylbenzene, ethylbenzene, propylbenzene and butylbenzene, and mixtures thereof are shown.

【0014】次に、この発明で云う式[II]の中で反応
に影響を及ぼさない官能基とは、メチル基、エチル基、
プロピル基、イソプロピル基、プロペニル基、2−イソ
プロペニル基、アリル基、ブチル基、 sec−ブチル基、
tert−ブチル基、イソブチル基、ペンチル基、 sec−ペ
ンチル基、tert−ペンチル基、 neo−ペンチル基、イソ
ペンチル基、ヘキシル基、 sec−ヘキシル基、イソヘキ
シル基、 sec−イソヘキシル基、シクロヘキシル基、フ
ェニル基、ベンジル基、o−トリル基、m−トリル基、
p−トリル基、メトキシメチル基、メチルチオメチル
基、2−ジメチルアミノエチル基、o−アニス基、m−
アニス基、p−アニス基、トリメチルシリルメチル基等
を示し、式[II]で表される有機金属化合物の例として
メチルリチウム、エチルリチウム、プロピルリチウム、
イソプロピルリチウム、ブチルリチウム、イソブチルリ
チウム、 sec−ブチルリチウム、tert−ブチルリチウ
ム、ペンチルリチウム、イソペンチルリチウム、 sec−
ペンチルリチウム、tert−ペンチルリチウム、 sec−イ
ソペンチルリチウム、ヘキシルリチウム、イソヘキシル
リチウム、 sec−ヘキシルリチウム、シクロヘキシルリ
チウム、フェニルリチウム、o−トリルリチウム、m−
トリルリチウム、p−トリルリチウム、トリメチルシリ
ルリチウム、フェニルナトリウム、o−トリルナトリウ
ム、m−トリルナトリウム、p−トリルナトリウム、ブ
チルリチウム/カリウムtert−ブトキシドあるいはブチ
ルリチウム/ナトリウムtert−ブトキシド等があり、望
ましくは、塩基性の強いイソプロピルリチウム、 sec−
ブチルリチウム、tert−ブチルリチウム、 sec−ペンチ
ルリチウム、tert−ペンチルリチウム、 sec−イソペン
チルリチウム、 sec−ヘキシルリチウム、シクロヘキシ
ルリチウム、ブチルリチウム/カリウムtert−ブトキシ
ドあるいはブチルリチウム/ナトリウムtert−ブトキシ
ド等である。
Next, in the formula [II] of the present invention, the functional groups which do not affect the reaction include methyl group, ethyl group,
Propyl, isopropyl, propenyl, 2-isopropenyl, allyl, butyl, sec-butyl,
tert-butyl, isobutyl, pentyl, sec-pentyl, tert-pentyl, neo-pentyl, isopentyl, hexyl, sec-hexyl, isohexyl, sec-isohexyl, cyclohexyl, phenyl Benzyl group, o-tolyl group, m-tolyl group,
p-tolyl group, methoxymethyl group, methylthiomethyl group, 2-dimethylaminoethyl group, o-anis group, m-
Examples of the organometallic compound represented by the formula [II] include an anis group, a p-anis group, and a trimethylsilylmethyl group, and examples of the organometallic compound include methyllithium, ethyllithium, and propyllithium.
Isopropyl lithium, butyl lithium, isobutyl lithium, sec-butyl lithium, tert-butyl lithium, pentyl lithium, isopentyl lithium, sec-
Pentyl lithium, tert-pentyl lithium, sec-isopentyl lithium, hexyl lithium, isohexyl lithium, sec-hexyl lithium, cyclohexyl lithium, phenyl lithium, o-tolyl lithium, m-
There are tolyl lithium, p-tolyl lithium, trimethylsilyl lithium, phenyl sodium, o-tolyl sodium, m-tolyl sodium, p-tolyl sodium, butyl lithium / potassium tert-butoxide or butyl lithium / sodium tert-butoxide. , Strong basic isopropyl lithium, sec-
Butyllithium, tert-butyllithium, sec-pentyllithium, tert-pentyllithium, sec-isopentyllithium, sec-hexyllithium, cyclohexyllithium, butyllithium / potassium tert-butoxide or butyllithium / sodium tert-butoxide. .

【0015】製造の具体的な方法として以下順次説明す
る。式[I]で表されるペンタフルオロベンゼンをエー
テル系溶媒、炭化水素系溶媒あるいはエーテル系溶媒と
炭化水素系溶媒の混合溶媒に溶解した溶液にペンタフル
オロベンゼン1当量に対して 0.5〜 1.5当量の式[II]
で表される有機金属化合物を−120 ℃〜80℃で反応させ
ることにより、式[III] で表されるペンタフルオロフェ
ニルアルカリ金属塩を発生させる際に、式[I]で表さ
れるペンタフルオロベンゼンより式[II]で表される有
機金属化合物が少なすぎると未反応のペンタフルオロベ
ンゼンが大量に残ってしまい、過剰に使用すると生成す
る式[III] で表されるペンタフルオロフェニル金属塩の
フッ素ともハロゲン−金属交換反応する恐れがあるため
0.8〜1.20当量の式[II]で表される有機金属化合物を
使用するのが望ましく、反応温度は−80℃より低すぎる
と反応の進行が極めて遅く、0℃より高すぎると副反応
の進行が極めて早くなりいずれの場合も収率が非常に低
くなる。そのため−80℃〜0℃の範囲で反応させるのが
望ましい。反応混合物は、同温度で5分から 120分間反
応させることにより式[III] で表されるペンタフルオロ
フェニルアルカリ金属塩を調製する。
The specific method of manufacturing will be described below in order. A solution of the pentafluorobenzene represented by the formula [I] in an ether solvent, a hydrocarbon solvent or a mixed solvent of an ether solvent and a hydrocarbon solvent is added in an amount of 0.5 to 1.5 equivalents to 1 equivalent of pentafluorobenzene. Formula [II]
When the pentafluorophenyl alkali metal salt represented by the formula [III] is generated by reacting the organometallic compound represented by the formula at -120 ° C. to 80 ° C., the pentafluoro compound represented by the formula [I] If the amount of the organometallic compound represented by the formula [II] is too small than that of benzene, a large amount of unreacted pentafluorobenzene remains, and if it is used in excess, the pentafluorophenyl metal salt represented by the formula [III] is formed. Because halogen and metal exchange reaction may occur with fluorine.
It is desirable to use 0.8 to 1.20 equivalents of the organometallic compound represented by the formula [II]. When the reaction temperature is lower than -80 ° C, the reaction proceeds extremely slowly. When the reaction temperature is higher than 0 ° C, the side reaction proceeds. Is very fast and in each case the yield is very low. Therefore, it is desirable that the reaction is carried out in the range of -80 ° C to 0 ° C. The reaction mixture is reacted at the same temperature for 5 to 120 minutes to prepare an alkali metal salt of pentafluorophenyl represented by the formula [III].

【0016】ここで生成する式[III] で表されるペンタ
フルオロフェニルアルカリ金属塩は、C6 5 Li、C
6 5 Na、C6 5 Kである。
The pentafluorophenyl alkali metal salt represented by the formula [III] produced here is C 6 F 5 Li, C
6 F 5 Na, a C 6 F 5 K.

【0017】[0017]

【発明の効果】本発明は、カチオン錯体重合触媒を調製
する際の助触媒である、例えばトリス(ペンタフルオロ
フェニル)ボラン等の化合物を製造するための重要な反
応剤であるペンタフルオロフェニルアルカリ金属塩を臭
化ペンタフルオロベンゼンでなくより安価なペンタフル
オロベンゼンより鎖状エーテル系溶媒中高収率で製造す
る方法を提供できる点で価値のあるものである。
Industrial Applicability The present invention relates to an alkali metal pentafluorophenyl which is an important reactant for producing a compound such as tris (pentafluorophenyl) borane, which is a cocatalyst for preparing a cationic complex polymerization catalyst. This is valuable in that it can provide a method for producing a salt from a less expensive pentafluorobenzene instead of pentafluorobenzene bromide in a chain ether-based solvent at a high yield.

【0018】[0018]

【実施例】以下に、実施例を挙げて本発明を更に詳しく
説明するが、これは説明を具体的に行うための例であっ
て、以下の実施例により本発明は何らの制限を受けるも
のではない。反応の収率は大過剰のヨウ化メチルと反応
させて生成したペンタフルオロトルエンをガスクロマト
グラフィーによって定量するか、二酸化炭素を吹き込み
生成したペンタフルオロ安息香酸をガスクロマトグラフ
ィーによって定量するか、0.25当量の三塩化ホウ素を反
応させた後塩化N,N−ジメチルアニリニウムによって
対陽イオン交換して生成したN,N−ジメチルアニリニ
ウムテトラキス(ペンタフルオロフェニル)ボレートに
誘導して19F−NMRによって定量した値である。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, this is an example for specifically explaining the present invention, and the present invention is not limited by the following examples. is not. The reaction yield is determined by gas chromatography of pentafluorotoluene produced by reacting with a large excess of methyl iodide, or by gas chromatography of pentafluorobenzoic acid produced by blowing carbon dioxide, or 0.25 equivalents. Of N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate produced by counter cation exchange with N, N-dimethylanilinium chloride after reaction with boron trichloride, and quantification by 19 F-NMR Value.

【0019】(実施例1)100ml のガラス製3ッ口フラ
スコに、50mlガラス製滴下ロート、温度抵抗体およびセ
プタムラバーを装着し、系内を十分窒素置換する。フラ
スコ内にペンタフルオロベンゼン5g(29.8mmol)とジ
エチルエーテル30mlを装入し溶液を−65℃に冷却する。
その後、滴下ロートに装入した15.5wt%のtert−ブチル
リチウムのペンタン溶液12.3g(29.8mmol)を内温が−
55℃を越えないようにしながら滴下する。滴下終了後、
−65〜−55℃で攪拌しペンタフルオロフェニルリチウム
を調製する。調製したペンタフルオロフェニルリチウム
の溶液をヨウ化メチルのテトラヒドロフラン溶液に−55
〜−65℃で加え同温度で30分間攪拌後徐々に室温まで昇
温しガスクロマトグラフィーによってペンタフルオロト
ルエンを定量したところ97.1%であった。
Example 1 A 100 ml glass three-necked flask was equipped with a 50 ml glass dropping funnel, a temperature resistor, and a septum rubber, and the system was sufficiently purged with nitrogen. 5 g (29.8 mmol) of pentafluorobenzene and 30 ml of diethyl ether are charged into the flask, and the solution is cooled to -65 ° C.
Thereafter, 12.3 g (29.8 mmol) of a 15.5 wt% tert-butyl lithium pentane solution charged in the dropping funnel was cooled to −
Add dropwise while not exceeding 55 ° C. After dropping,
Stir at -65 to -55 ° C to prepare pentafluorophenyl lithium. A solution of the prepared pentafluorophenyllithium was added to a solution of methyl iodide in tetrahydrofuran at -55.
After adding at -65 ° C and stirring at the same temperature for 30 minutes, the temperature was gradually raised to room temperature, and pentafluorotoluene was determined by gas chromatography to be 97.1%.

【0020】(実施例2)100ml のガラス製3ッ口フラ
スコに、50mlガラス製滴下ロート、温度抵抗体およびセ
プタムラバーを装着し、系内を十分窒素置換する。フラ
スコ内にペンタフルオロベンゼン5g(29.8mmol)とジ
エチルエーテル30mlを装入し溶液を−65℃に冷却する。
その後、滴下ロートに装入した15.5wt%の sec−ブチル
リチウムのヘキサン溶液14.2g(34.3mmol)を内温が−
55℃を越えないようにしながら滴下する。滴下終了後、
−65〜−55℃で攪拌しペンタフルオロフェニルリチウム
を調製する。調製したペンタフルオロフェニルリチウム
の溶液に二酸化炭素を吹き込み、ガスクロマトグラフィ
ーにより定量したペンタフルオロ安息香酸の収率は、9
6.8%であった。
Example 2 A 100 ml glass three-necked flask was equipped with a 50 ml glass dropping funnel, a temperature resistor and a septum rubber, and the system was sufficiently purged with nitrogen. 5 g (29.8 mmol) of pentafluorobenzene and 30 ml of diethyl ether are charged into the flask, and the solution is cooled to -65 ° C.
Thereafter, 14.2 g (34.3 mmol) of a 15.5 wt% sec-butyl lithium hexane solution charged in the dropping funnel was cooled to −
Add dropwise while not exceeding 55 ° C. After dropping,
Stir at -65 to -55 ° C to prepare pentafluorophenyl lithium. Carbon dioxide was blown into the prepared solution of pentafluorophenyllithium, and the yield of pentafluorobenzoic acid determined by gas chromatography was 9%.
It was 6.8%.

【0021】(実施例3)100ml のガラス製3ッ口フラ
スコに、50mlガラス製滴下ロート、温度抵抗体およびセ
プタムラバーを装着し、系内を十分窒素置換する。フラ
スコ内にペンタフルオロベンゼン5g(29.8mmol)とジ
エチルエーテル30mlを装入し溶液を−65℃に冷却する。
その後、滴下ロートに装入した16.1wt%の sec−ブチル
リチウムのヘキサン溶液12.3g(29.8mmol)を内温が−
55℃を越えないようにしながら滴下する。滴下終了後、
−65〜−55℃で攪拌しペンタフルオロフェニルリチウム
を調製する。調製したペンタフルオロフェニルリチウム
の溶液に二酸化炭素を吹き込み、ガスクロマトグラフィ
ーにより定量したペンタフルオロ安息香酸の収率は、9
6.8%であった。
Example 3 A 50 ml glass dropping funnel, a temperature resistor and a septum rubber were attached to a 100 ml glass three-necked flask, and the inside of the system was sufficiently purged with nitrogen. 5 g (29.8 mmol) of pentafluorobenzene and 30 ml of diethyl ether are charged into the flask, and the solution is cooled to -65 ° C.
Thereafter, 12.3 g (29.8 mmol) of a 16.1 wt% sec-butyllithium hexane solution charged in the dropping funnel was cooled to −
Add dropwise while not exceeding 55 ° C. After dropping,
Stir at -65 to -55 ° C to prepare pentafluorophenyl lithium. Carbon dioxide was blown into the prepared solution of pentafluorophenyllithium, and the yield of pentafluorobenzoic acid determined by gas chromatography was 9%.
It was 6.8%.

【0022】(実施例4)100ml のガラス製3ッ口フラ
スコに、50mlガラス製滴下ロート、温度抵抗体およびセ
プタムラバーを装着し、系内を十分窒素置換する。フラ
スコ内にペンタフルオロベンゼン5g(29.8mmol)とジ
エチルエーテル30mlを装入し溶液を−65℃に冷却する。
その後、滴下ロートに装入した16.1wt%のtert−ブチル
リチウムのペンタン溶液12.3g(29.8mmol)を内温が−
55℃を越えないようにしながら滴下する。滴下終了後、
−65〜−55℃で攪拌しペンタフルオロフェニルリチウム
を調製する。調製したペンタフルオロフェニルリチウム
の溶液に−65〜−55℃で1mol/Lの三塩化ホウ素のヘキ
サン溶液(7.45ml,7.45mmol)を加え、同温度で30分攪
拌した後室温まで昇温し得られたリチウムテトラキス
(ペンタフルオロフェニル)ボレートの溶液を19F−N
MRでペンタフルオロトルエンを内部標準物質として定
量した収率は92.3%であった。
Example 4 A 100 ml glass three-necked flask was equipped with a 50 ml glass dropping funnel, a temperature resistor and a septum rubber, and the system was sufficiently purged with nitrogen. 5 g (29.8 mmol) of pentafluorobenzene and 30 ml of diethyl ether are charged into the flask, and the solution is cooled to -65 ° C.
Then, 12.3 g (29.8 mmol) of a 16.1 wt% tert-butyl lithium pentane solution charged in the dropping funnel was cooled to −
Add dropwise while not exceeding 55 ° C. After dropping,
Stir at -65 to -55 ° C to prepare pentafluorophenyl lithium. A 1 mol / L boron trichloride hexane solution (7.45 ml, 7.45 mmol) was added to the prepared solution of pentafluorophenyllithium at -65 to -55 ° C, and the mixture was stirred at the same temperature for 30 minutes and then heated to room temperature. The solution of the obtained lithium tetrakis (pentafluorophenyl) borate is supplied with 19 F-N
The yield determined by MR using pentafluorotoluene as an internal standard was 92.3%.

【0023】(実施例5)100ml のガラス製3ッ口フラ
スコに、50mlガラス製滴下ロート、温度抵抗体およびセ
プタムラバーを装着し、系内を十分窒素置換する。フラ
スコ内に15.5wt%のブチルリチウムのヘキサン溶液12.3
g(29.8mmol)とカリウムtert−ブトキシド 3.3g(2
9.8mmol)とジエチルエーテル15mlを装入し溶液を−65
℃に冷却する。その後、滴下ロートに装入したペンタフ
ルオロベンゼン5g(29.8mmol)とジエチルエーテル15
mlを内温が−55℃を越えないようにしながら滴下する。
滴下終了後、−65〜−55℃で攪拌しペンタフルオロフェ
ニルリチウムを調製する。調製したペンタフルオロフェ
ニルリチウムの溶液をヨウ化メチルのテトラヒドロフラ
ン溶液に−55〜−65℃で加え同温度で30分間攪拌後徐々
に室温まで昇温しガスクロマトグラフィーによってペン
タフルオロトルエンを定量したところ95.9%であった。
Example 5 A 50 ml glass dropping funnel, a temperature resistor and a septum rubber were attached to a 100 ml glass three-necked flask, and the system was sufficiently purged with nitrogen. In a flask 12.3 wt% butyllithium hexane solution 12.3
g (29.8 mmol) and potassium tert-butoxide 3.3 g (2
9.8 mmol) and 15 ml of diethyl ether.
Cool to ° C. Then, 5 g (29.8 mmol) of pentafluorobenzene and diethyl ether 15
Add dropwise while keeping the internal temperature not exceeding -55 ° C.
After completion of the dropwise addition, the mixture is stirred at -65 to -55 ° C to prepare pentafluorophenyllithium. The prepared solution of pentafluorophenyllithium was added to a solution of methyl iodide in tetrahydrofuran at −55 to −65 ° C., and the mixture was stirred at the same temperature for 30 minutes, then gradually heated to room temperature, and pentafluorotoluene was quantified by gas chromatography. %Met.

【0024】(実施例6)100ml のガラス製3ッ口フラ
スコに、50mlガラス製滴下ロート、温度抵抗体およびセ
プタムラバーを装着し、系内を十分窒素置換する。フラ
スコ内にペンタフルオロベンゼン5g(29.8mmol)とジ
エチルエーテル30mlを装入し溶液を−65℃に冷却する。
その後、滴下ロートに装入した15.0wt%のブチルナトリ
ウムのヘキサン溶液15.9g(29.8mmol)を内温が−55℃
を越えないようにしながら滴下する。滴下終了後、−65
〜−55℃で攪拌しペンタフルオロフェニルナトリウムを
調製する。調製したペンタフルオロフェニルナトリウム
の溶液をヨウ化メチルのテトラヒドロフラン溶液に−55
〜−65℃で加え同温度で30分間攪拌後徐々に室温まで昇
温しガスクロマトグラフィーによってペンタフルオロト
ルエンを定量したところ93.2%であった
Example 6 A 100 ml glass three-necked flask was equipped with a 50 ml glass dropping funnel, a temperature resistor and a septum rubber, and the system was sufficiently purged with nitrogen. 5 g (29.8 mmol) of pentafluorobenzene and 30 ml of diethyl ether are charged into the flask, and the solution is cooled to -65 ° C.
Thereafter, 15.9 g (29.8 mmol) of a 15.0 wt% butyl sodium hexane solution charged in the dropping funnel was heated to an internal temperature of −55 ° C.
And do not exceed After dropping, −65
Stir at ~ -55 ° C to prepare sodium pentafluorophenyl. The prepared solution of sodium pentafluorophenyl was added to a solution of methyl iodide in tetrahydrofuran at -55.
After adding at -65 ° C and stirring at the same temperature for 30 minutes, the temperature was gradually raised to room temperature, and pentafluorotoluene was determined by gas chromatography to be 93.2%.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C07C 63/70 C07C 63/70 (72)発明者 石丸 研二 山口県新南陽市宮の前1丁目1番地31号 一心寮 (56)参考文献 特開 平6−247979(JP,A) 特許2790606(JP,B2) (58)調査した分野(Int.Cl.6,DB名) C07F 1/00 C07F 1/02 C07F 1/04 C07C 17/00 C07C 25/13 C07C 63/70 CA(STN) REGISTRY(STN)──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI C07C 63/70 C07C 63/70 (72) Inventor Kenji Ishimaru 1-1-1 Miya-no-mae, Shinnanyo-shi, Yamaguchi Prefecture Isshin-ryo (56) References JP-A-6-247979 (JP, A) Patent 2790606 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) C07F 1/00 C07F 1/02 C07F 1/04 C07C 17 / 00 C07C 25/13 C07C 63/70 CA (STN) REGISTRY (STN)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 次の式[I] C6 HF5 [I] で表されるペンタフルオロベンゼン1当量に対して、
0.5〜 1.5当量の一般式[II] RM [II] (式中、Mはアルカリ金属イオンを示し、Rは炭素数が
1〜10の炭化水素基を示し、該炭化水素基には反応に影
響を及ぼさない官能基を含んでいても良い。)で表され
る有機金属化合物を鎖状エーテル系溶媒、炭化水素系溶
媒あるいは鎖状エーテル系溶媒と炭化水素系溶媒の混合
溶媒中で−120 ℃〜80℃で反応させることにより、次の
一般式[III] C6 5 M [III] (式中、Mはアルカリ金属イオンを示す。)で表される
ペンタフルオロフェニルアルカリ金属塩を発生させる製
造方法。
1. An equivalent of pentafluorobenzene represented by the following formula [I] C 6 HF 5 [I]:
0.5 to 1.5 equivalents of the general formula [II] RM [II] (wherein M represents an alkali metal ion, R represents a hydrocarbon group having 1 to 10 carbon atoms, and the hydrocarbon group has an influence on the reaction. The organic metal compound represented by the formula (1) may be contained in a chain ether solvent, a hydrocarbon solvent or a mixed solvent of a chain ether solvent and a hydrocarbon solvent at -120 ° C. by reacting at to 80 ° C., (wherein, M represents an alkali metal ion.) following general formula [III] C 6 F 5 M [III] to generate pentafluorophenyl alkali metal salt represented by Production method.
JP32627493A 1992-12-28 1993-11-30 Method for producing pentafluorophenyl alkali metal salt using pentafluorobenzene in a chain ether solvent Expired - Lifetime JP2868199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32627493A JP2868199B2 (en) 1992-12-28 1993-11-30 Method for producing pentafluorophenyl alkali metal salt using pentafluorobenzene in a chain ether solvent

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-361481 1992-12-28
JP36148192 1992-12-28
JP32627493A JP2868199B2 (en) 1992-12-28 1993-11-30 Method for producing pentafluorophenyl alkali metal salt using pentafluorobenzene in a chain ether solvent

Publications (2)

Publication Number Publication Date
JPH06247975A JPH06247975A (en) 1994-09-06
JP2868199B2 true JP2868199B2 (en) 1999-03-10

Family

ID=26572130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32627493A Expired - Lifetime JP2868199B2 (en) 1992-12-28 1993-11-30 Method for producing pentafluorophenyl alkali metal salt using pentafluorobenzene in a chain ether solvent

Country Status (1)

Country Link
JP (1) JP2868199B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5340507A (en) * 1991-07-26 1994-08-23 Fmc Corporation Catalyzed hydrocarbyllithium process

Also Published As

Publication number Publication date
JPH06247975A (en) 1994-09-06

Similar Documents

Publication Publication Date Title
US5510536A (en) Production method of tris(pentafluorophenyl)borane using pentafluorophenylmagnesium derivatives prepared from pentafluorobenzene
US5362423A (en) Method of producing pentafluorophenylmagnesium derivatives using pentafluorobenzene
US5493056A (en) Method of producing tetrakis (pentafluorophenyl) borate derivatives using pentafluorophenyl alkali metal salt prepared from pentafluorobenzene
JP2868199B2 (en) Method for producing pentafluorophenyl alkali metal salt using pentafluorobenzene in a chain ether solvent
RU2159246C2 (en) Method of preparing fluoroarylmagnesium derivative and method of preparing fluoroarylborane compound (versions)
US5545759A (en) Method of producing tris(pentafluorophenyl)borane using pentafluorophenyl alkali metal salt prepared from pentafluorobenzene
JP2790606B2 (en) Method for producing tetrakis (pentafluorophenyl) borate derivative using pentafluorophenyl alkali metal salt prepared from pentafluorobenzene
JP2868202B2 (en) Method for producing tris (pentafluorophenyl) borane using pentafluorophenyl alkali metal salt prepared from pentafluorobenzene
JPS639518B2 (en)
JP2868200B2 (en) Method for producing pentafluorophenyl magnesium derivative using pentafluorobenzene
JPS6072833A (en) Improved preparation of aromatic vinyl compound
US6713642B2 (en) Method for producing alkali metal monohydridoborates and monohydridoaluminates
WO1992009609A1 (en) High purity alkyllithium compounds and process of preparation
US5387727A (en) Method of producing pentafluorophenyl alkali metal salt using pentafluorobenzene in a chain ether type solvent
CA2293213C (en) Method for producing organoalkali-metal compounds
WO2018139470A1 (en) Method for synthesizing sodium 2,2,6,6-tetramethylpiperidide compound
JP2868201B2 (en) Method for producing tris (pentafluorophenyl) borane using pentafluorophenylmagnesium derivative prepared from pentafluorobenzene
Chupka Jr et al. Preparation and thermolysis reactions of hydroxytetraarylantimony compounds
KR102077880B1 (en) Process for producing tetrakis(f aryl)borate salts
JP3907733B2 (en) Method for producing fluorinated arylmagnesium derivative
JP3751713B2 (en) Method for producing triarylborane phosphine complex
US5744071A (en) Processes for preparing alkynyl ketones and precursors thereof
KR20190004106A (en) Continuous production method of haloaryl based compounds
KR20180133033A (en) Synthesis method of haloaryl silane compounds
CN109232385B (en) Preparation method of magnesium dichloride (2,2,6, 6-tetramethylpiperidine) lithium salt

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981214