JP2867368B2 - Method for producing cyclohexanol derivative - Google Patents

Method for producing cyclohexanol derivative

Info

Publication number
JP2867368B2
JP2867368B2 JP2333166A JP33316690A JP2867368B2 JP 2867368 B2 JP2867368 B2 JP 2867368B2 JP 2333166 A JP2333166 A JP 2333166A JP 33316690 A JP33316690 A JP 33316690A JP 2867368 B2 JP2867368 B2 JP 2867368B2
Authority
JP
Japan
Prior art keywords
reaction
liquid crystal
compound
mol
cyclohexanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2333166A
Other languages
Japanese (ja)
Other versions
JPH04198143A (en
Inventor
裕史 矢野
文夫 森内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arakawa Chemical Industries Ltd
Original Assignee
Arakawa Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arakawa Chemical Industries Ltd filed Critical Arakawa Chemical Industries Ltd
Priority to JP2333166A priority Critical patent/JP2867368B2/en
Publication of JPH04198143A publication Critical patent/JPH04198143A/en
Application granted granted Critical
Publication of JP2867368B2 publication Critical patent/JP2867368B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電気化学的表示材料である液晶材料の原料と
して有用なシクロヘキサノール誘導体の製造法に関す
る。
Description: TECHNICAL FIELD The present invention relates to a method for producing a cyclohexanol derivative useful as a raw material for a liquid crystal material as an electrochemical display material.

[従来の技術] 液晶表示セルの中で現在主流をなすものは、電界効果
型セルの一種のTN型セルである。このTN型セルにおいて
は、G.BauerによってMol.Cryst.Liq.Cryst.63,45(198
1)に報告されているように、セル外観を損なう原因と
なるセル表面での干渉縞の発生を防止するために、セル
に充填される液晶材料の屈折律の異方性(△n)とセル
における液晶層の厚さ(d)μmの積を或る特定の値に
設定する必要がある。実用的に使用されている液晶表示
セルにおける液晶層の厚さは、通常6〜10μmの限定さ
れた範囲で或る値に設定されるため、△n・dの値を0.
5に設定する場合は、△nの値の小さな液晶材料が必要
となり、△n・dの値を1.0、1.6または2.2に設定する
場合は、逆に、△nの値の大きな液晶材料が必要とな
る。このように、液晶表示セルの表示特性に応じて△n
の値が小さい液晶材料と大きい液晶材料が必要とされ
る。
[Prior Art] A liquid crystal display cell that is currently the mainstream is a TN cell, which is a type of field effect cell. Cryst. Liq. Cryst. 63, 45 (198
As reported in 1), the anisotropy (縞 n) of the refractive index of the liquid crystal material filled in the cell is used to prevent the occurrence of interference fringes on the cell surface, which may impair the appearance of the cell. It is necessary to set the product of the thickness (d) μm of the liquid crystal layer in the cell to a specific value. The thickness of the liquid crystal layer in a liquid crystal display cell that is practically used is usually set to a certain value within a limited range of 6 to 10 μm.
When set to 5, a liquid crystal material with a small value of Δn is required, and when a value of Δn · d is set to 1.0, 1.6 or 2.2, conversely, a liquid crystal material with a large value of Δn is required Becomes As described above, Δn depends on the display characteristics of the liquid crystal display cell.
A liquid crystal material having a small value and a large liquid crystal material are required.

一方、実用可能な液晶材料の多くは、通常、室温付近
にネマチック相を有する化合物と室温より高い温度領域
にネマチック相を化合物から成る数種またはそれ以上の
成分を混合することによって調整される。
On the other hand, most practical liquid crystal materials are usually prepared by mixing a compound having a nematic phase near room temperature and several or more components of the compound having a nematic phase in a temperature range higher than room temperature.

現在実用化されている上記の如き混合液晶の多くは、
少なくとも−30℃〜+65℃の全温度範囲にわたってネマ
チック相を有することが要求されているため、室温付近
または室温より高い温度領域にネマチック相を有する液
晶を必要とされており、数多くの報告がなされている。
かかる有用な液晶はいずれもその分子内にシクロヘキサ
ン環を有する液晶であり、例えば、特公平2−39498
号、特公平2−39497号、特公平2−37333号、特公昭64
−935号、特公昭63−55496号、特公昭63−53178号、特
公昭63−46742号、特開平2−36153号、特開平2−3613
3号、特昭開64−22835号、特開昭63−287737号などがあ
げられる。
Many of the mixed liquid crystals as described above that are currently in practical use are:
Since it is required to have a nematic phase over at least the entire temperature range of −30 ° C. to + 65 ° C., there is a need for a liquid crystal having a nematic phase near or above room temperature, and many reports have been made. ing.
Such useful liquid crystals are all liquid crystals having a cyclohexane ring in the molecule.
No. 2-39497, Tokuhei 2-37333, Tokubo Sho64
No. 935, JP-B-63-55496, JP-B-63-53178, JP-B-63-46742, JP-A-2-36153, JP-A-2-3613
3, JP-B-64-22835 and JP-A-63-287737.

[発明が解決しようとする課題] 本発明が解決しようとする課題は、現在母体液晶とし
て実用化されているネマチック混合液晶に添加すること
により、混合液晶の△nの値を減少させ、かつネマチッ
ク相を示す温度範囲の上限であるネマチック相・等方性
液体相転移温度を上昇させることが可能であるシクロヘ
キサン環を有する液晶に使用することのできる、原料化
合物として有用なシクロヘキサノール誘導体を提供する
ことにある。
[Problem to be Solved by the Invention] The problem to be solved by the present invention is to reduce the value of Δn of the mixed liquid crystal by adding it to a nematic mixed liquid crystal which is currently practically used as a base liquid crystal, Provided is a cyclohexanol derivative useful as a raw material compound, which can be used for a liquid crystal having a cyclohexane ring capable of increasing a nematic phase / isotropic liquid phase transition temperature which is an upper limit of a temperature range showing a phase. It is in.

[課題を解決するための手段] すなわち本発明は、 1.一般式(II): (式中、Xはハロゲン原子または−OSO2C6H4CH3を表
す。nは1〜10の整数を表す)で表されるベンゼン誘導
体とアルコール類とを縮合させた後、核水添を行うこと
を特徴とする一般式(I): (式中、Rは不斉炭素を含むことがある炭素数1〜5の
アルキル基、nは前記と同じ。)で表されるシクロヘキ
サノール誘導体の製造法に関する。
[Means for Solving the Problems] That is, the present invention provides: 1. a general formula (II): (Wherein, X represents a halogen atom or —OSO 2 C 6 H 4 CH 3 ; n represents an integer of 1 to 10), and after condensation with alcohols, nuclear hydrogenation is performed. Formula (I): (Wherein, R is an alkyl group having 1 to 5 carbon atoms which may contain an asymmetric carbon, and n is the same as described above).

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

上記一般式(I)で表されるシクロヘキサノール誘導
体は、例えば化合物(IV): (式中、nは前記と同じ)で表されるフェノール誘導体
から次のような工程により合成する事ができる。
The cyclohexanol derivative represented by the general formula (I) is, for example, a compound (IV): (Wherein n is the same as described above) can be synthesized by the following steps.

一般式(IV)で表される化合物のフェノール性水酸基
を臭化ベンジルで保護した後、該化合物中のエステル基
を還元剤を使用し、一般式(V)で表されるアルコール
へ還元する。このとき使用する還元剤は特に制限され
ず、エステル基を還元できる各種公知のものを使用で
き、例えばLiAlH4、NaAlH2(OCH2CH2OCH3、LiBH4
どが経済的にも有利である。使用する還元剤の量は一般
式(IV)で表される基質1モルに対し1〜4モル程度、
好ましくは2.0〜3.5モルを使用する。還元反応に際して
使用される溶媒としてはアルコー系の溶媒以外であれば
特に限定されないが、ベンゼン、エーテル、トルエン、
キシレン、テトラヒドロフラン、ヘキサンが好適であ
る。
After protecting the phenolic hydroxyl group of the compound represented by the general formula (IV) with benzyl bromide, the ester group in the compound is reduced to an alcohol represented by the general formula (V) using a reducing agent. The reducing agent used at this time is not particularly limited, and various known agents capable of reducing an ester group can be used. For example, LiAlH 4 , NaAlH 2 (OCH 2 CH 2 OCH 3 ) 2 , LiBH 4 and the like are economically advantageous. It is. The amount of the reducing agent to be used is about 1 to 4 mol per 1 mol of the substrate represented by the general formula (IV),
Preferably 2.0 to 3.5 moles are used. The solvent used in the reduction reaction is not particularly limited as long as it is not an alcohol-based solvent, but benzene, ether, toluene,
Xylene, tetrahydrofuran, hexane are preferred.

次に、一般式(V)で表されるアルコールを公知の方
法、例えばP.Hodge,et.al.,JCS.PerkinI(1984),195、
R.T.Hrubiec,J.Org.Chem.,(1984),49に記載の方法に
準じてハロゲン化もしくはトシルクロライドによってト
シルエステルとすることによって化合物(II)を誘導で
きる。
Next, the alcohol represented by the general formula (V) can be prepared by a known method, for example, P. Hodge, et.al., JCS. PerkinI (1984), 195,
RTHrubiec, J. Org. Chem., (1984), 49, Compound (II) can be derived by halogenation or tosyl chloride tosyl ester.

次に、化合物(II)を後述のアルコール類と塩基性物
質との存在下、縮合させることによって化合物(III)
を製造する事ができる。上記反応において使用される塩
基性物質としては、水素化カリウム、水素化ナトリウム
等のアルカリ金属水素化物、リチウム、ナトリウム、カ
リウム等のアルカリ金属、ナトリウムエチラート、ナト
リウムメチラート等のアルカリ金属アルコラート、炭酸
ナトリウム、炭酸カリウム等の炭酸アルカリ金属等が例
示される。また、上記反応で用いられるアルコール類と
しては、メタノール、エタノール、プロパノール、ブタ
ノール、(S)−2−ブタノール、(R)−2−ブタノ
ール、(S)−2−ペンタノール、(R)−2−ペンタ
ノール、(S)−2−メチル−1−ブタノールがあげら
れる。かかる塩基性物質の使用量は用いられるアルコー
ル類に対して通常1倍当量以上とされ、その上限につい
ては特に制限されないが、好ましくは3倍当量程度であ
る。上記アルコール類と化合物(II)との使用量の当量
比は、1:5〜5:1程度、好ましくは1:3〜3:1である。上記
反応において反応温度は、通常−50℃〜120℃程度、好
ましくは−30℃〜100℃の範囲である。反応溶媒として
は、例えばテトラヒドロフラン、ジエチルエーテル、ア
セトン、メチルエチルケトン、トルエン、ベンゼン、ク
ロロホルム、ジメチルホルムアミド等、該反応に際して
不活性な溶媒が単独もしくは混合物として使用でき、そ
の使用量については特に制限されない。
Next, the compound (II) is condensed in the presence of an alcohol and a basic substance to be described later to give the compound (III)
Can be manufactured. Examples of the basic substance used in the above reaction include alkali metal hydrides such as potassium hydride and sodium hydride; alkali metals such as lithium, sodium and potassium; alkali metal alcoholates such as sodium ethylate and sodium methylate; and carbonates. Examples thereof include alkali metal carbonates such as sodium and potassium carbonate. The alcohols used in the above reaction include methanol, ethanol, propanol, butanol, (S) -2-butanol, (R) -2-butanol, (S) -2-pentanol, and (R) -2. -Pentanol and (S) -2-methyl-1-butanol. The amount of the basic substance to be used is usually at least one equivalent to the alcohol used, and the upper limit thereof is not particularly limited, but is preferably about three equivalents. The equivalent ratio of the amounts of the alcohols and compound (II) used is about 1: 5 to 5: 1, preferably 1: 3 to 3: 1. In the above reaction, the reaction temperature is usually in the range of about -50 ° C to 120 ° C, preferably in the range of -30 ° C to 100 ° C. As a reaction solvent, for example, a solvent inert to the reaction such as tetrahydrofuran, diethyl ether, acetone, methyl ethyl ketone, toluene, benzene, chloroform, dimethylformamide or the like can be used alone or as a mixture, and the amount used is not particularly limited.

次に、得られた化合物(III)を接触水素化反応せし
めることにより、目的化合物であるシクロヘキサノール
誘導体(I)を得る事ができる。また、化合物(III)
の接触水素化反応を行う際、使用する触媒によっては脱
ベンジル化反応が優先して起り、フェノール誘導体(V
I)の生成も認められるが、これを単離することなく反
応を進めることにより本発明の目的物たる化合物(I)
を収得しうる。
Next, by subjecting the obtained compound (III) to catalytic hydrogenation reaction, the cyclohexanol derivative (I) as the target compound can be obtained. Compound (III)
When performing catalytic hydrogenation of phenol, debenzylation occurs preferentially depending on the catalyst used, and the phenol derivative (V
The formation of compound (I), which is the object of the present invention, can be achieved by proceeding the reaction without isolating the compound (I).
Can be obtained.

上記水素化反応に用いられる触媒としては特に制限は
されず、通常の水素化触媒を使用することができる。好
ましい水素化触媒としては、例えばパラジウム、白金、
ルテニウム、ロジウム等の金属を、炭素粉末、ゼオライ
ト、シリカ、アルミナ等の各種担体に担持させたものが
該当する。触媒の使用量としては、化合物(III)に対
し、1〜40重量%程度、好ましくは5〜20重量%の範囲
である。接触水素化反応はオートクレーブ中、水素圧が
5Kg/cm2〜200Kg/cm2程度、好ましくは40Kg/cm2〜150Kg/
cm2の範囲で行なうのがよく、この際溶剤の有無は不問
とされる。
The catalyst used for the hydrogenation reaction is not particularly limited, and a usual hydrogenation catalyst can be used. Preferred hydrogenation catalysts include, for example, palladium, platinum,
A material in which a metal such as ruthenium and rhodium is supported on various carriers such as carbon powder, zeolite, silica, and alumina corresponds to the above. The amount of the catalyst to be used is about 1 to 40% by weight, preferably 5 to 20% by weight, relative to compound (III). In the catalytic hydrogenation reaction, the hydrogen pressure
5Kg / cm 2 ~200Kg / cm 2, preferably about 40Kg / cm 2 ~150Kg /
The reaction is preferably performed in the range of cm 2 , in which case the presence or absence of the solvent is not considered.

用いる溶媒としては特に制限はないが、酢酸エチル、
テトラヒドロフラン、エタノール、ジオキサンなどが好
ましい。接触水素化反応終了後、減圧蒸留によって目的
のシクロヘキサノール誘導体を得る事ができる。
There is no particular limitation on the solvent used, but ethyl acetate,
Preferred are tetrahydrofuran, ethanol, dioxane and the like. After completion of the catalytic hydrogenation reaction, the desired cyclohexanol derivative can be obtained by distillation under reduced pressure.

[実施例] 以下、実施例にもとづき本発明を更に具体的に説明す
るが、本発明はこれらに限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto.

実施例1 4−(1′−メトキシエチル)−1−シクロヘキサノー
ルの合成 (第1段) パラヒドロキシフェニル酢酸メチルエステル150g(0.
9モル)、臭化ベンジル188g(1.1モル)および無水炭酸
カリウム248g(1.8モル)をアセトン1に加え、10時
間加熱還流した。反応終了後、沈澱物を濾別し、アセト
ンで充分に洗浄し、母液と合わせて減圧濃縮した。残査
をシリカゲルクロマトグラフィー(CHCl3)で精製し、
パラベンジルオキシフェニル酢酸メチルエステル196g
(収率76%)を得た。NMR(CDCl3);δ(ppm)=3.51
(s,2H),4.38(s,3H),5.12(s,2H),6.98(d,2H),7.
35(m,5H),7.98(d,2H) (第2段) テトラヒドロフラン(THF)800mlにリチウムアルミニ
ウムハイドライド15g(0.4モル)を加え、撹拌下パラベ
ンジルオキシフェニル酢酸メチルエステル50g(0.2モ
ル)をTHF 200mlに溶解し、滴下した。このとき反応温
度は10℃以上にならないように注意しながら行い、滴下
終了後、更に室温で15時間反応した。ついでTHFを減圧
留去したのち、ジエチルエーテル500mlを加え、10%塩
酸水溶液、水、飽和食塩水で順に洗浄した。有機層を濃
縮し、パラベンジルオキシフェニルエタノール35g(収
率76%)を得た。
Example 1 Synthesis of 4- (1′-methoxyethyl) -1-cyclohexanol (First Step) 150 g of methyl parahydroxyphenylacetate (0.
9 mol), 188 g (1.1 mol) of benzyl bromide and 248 g (1.8 mol) of anhydrous potassium carbonate were added to acetone 1 and the mixture was refluxed for 10 hours. After completion of the reaction, the precipitate was separated by filtration, sufficiently washed with acetone, and combined with the mother liquor and concentrated under reduced pressure. The residue was purified by silica gel chromatography (CHCl 3 ),
Parabenzyloxyphenylacetic acid methyl ester 196g
(76% yield). NMR (CDCl 3 ); δ (ppm) = 3.51
(S, 2H), 4.38 (s, 3H), 5.12 (s, 2H), 6.98 (d, 2H), 7.
35 (m, 5H), 7.98 (d, 2H) (2nd stage) To 800 ml of tetrahydrofuran (THF) was added 15 g (0.4 mol) of lithium aluminum hydride, and with stirring, 50 g (0.2 mol) of methyl methyl parabenzyloxyphenylacetate was added. It was dissolved in 200 ml of THF and added dropwise. At this time, the reaction was carried out with care so that the reaction temperature did not become 10 ° C. or higher. After the completion of the dropwise addition, the reaction was further carried out at room temperature for 15 hours. Then, THF was distilled off under reduced pressure, 500 ml of diethyl ether was added, and the mixture was washed sequentially with a 10% aqueous hydrochloric acid solution, water, and saturated saline. The organic layer was concentrated to obtain 35 g of parabenzyloxyphenylethanol (yield: 76%).

NMR(CDCl3);δ(ppm)=1.60(s,1H),2.85(t,2
H),3.53(t,2H),5.12(s,2H),6.68(d,2H),7.35
(m,5H),7.98(d,2H) (第3段) パラベンジルオキシフェニルエタノール50g(0.21モ
ル)を四塩化炭素500ml中に溶解し、−10℃で三臭化リ
ンを滴下した。同温度に保ちながら10時間反応後、反応
混合物を減圧濃縮し、ジエチルエーテル300mlを加え、
水で十分に洗浄した。有機層を濃縮し、4−ベンジルオ
キシ−1−(1′−ブロモエチル)ベンゼン43.5g(収
率71%)を得た。NMR(CDCl3);δ(ppm)=2.78(t,2
H),3.65(t,2H),5.12(s,2H),6.96(d,2H),7.35
(m,5H),7.98(d,2H) (第4段) THF 500mlに4−ベンジルオキシ−1(1′−ブロモ
エチル)ベンゼン30g(0.1モル)、ヨウ化メチル21g
(0.15モル)、ナトリウムメチラート7.5g(0.15モル)
を加え、15時間加熱還流後、反応混合物を減圧濃縮し
た。残査をシリカゲルクロマトグラフィ(CHCl3)で精
製し、4−ベンジルオキシ−1−(1′−メトキシエチ
ル)ベンゼン21g(収率87%)を得た。NMR(CDCl3);
δ(ppm)=2.78(t,2H),3.35(s,3H),3.58(t,2H),
5.12(s,2H),6.96(d,2H),7.35(m,5H),7.98(d,2
H) (第5段) 4−ベンジルオキシ−1−(1′−メトキシエチル)
ベンゼン50g(0.2モル)を0.5%(w/w)の酢酸を含むエ
タノール100mlに溶解し、5%Ru−炭素粉末5gを加えオ
ートクレーブ中、水素圧80Kg/cm2、70℃で5時間反応し
た。触媒を濾別後、母液を蒸留し、4mmHgで97〜98℃の
留分を分取して4−(1′−メトキシエチル)−1−シ
クロヘキサノール27g(収率86%)を得た。NMR(CDC
l3);δ(ppm)=0.98(m,1H),1.15〜1.80(m,10H),
1.95(m,1H),3.30(s,3H),3.37(m,2H),3.52(m,0.5
H),3.94(m,0.5H) 実施例2 実施例1において、触媒を5%Ru−炭素粉末の化わり
に5%Rh−炭素粉末を用い、常温常圧で還元反応を行う
こと以外は同様の操作を行い、4−(1′−メトキシエ
チル)−1−シクロヘキサノール29g(収率92%)を得
た。NMRの分析結果は実施例1と同様であった。
NMR (CDCl 3 ); δ (ppm) = 1.60 (s, 1H), 2.85 (t, 2
H), 3.53 (t, 2H), 5.12 (s, 2H), 6.68 (d, 2H), 7.35
(M, 5H), 7.98 (d, 2H) (3rd stage) 50 g (0.21 mol) of parabenzyloxyphenylethanol was dissolved in 500 ml of carbon tetrachloride, and phosphorus tribromide was added dropwise at -10 ° C. After reacting for 10 hours at the same temperature, the reaction mixture was concentrated under reduced pressure, and 300 ml of diethyl ether was added.
Washed thoroughly with water. The organic layer was concentrated to obtain 43.5 g (yield: 71%) of 4-benzyloxy-1- (1'-bromoethyl) benzene. NMR (CDCl 3 ); δ (ppm) = 2.78 (t, 2
H), 3.65 (t, 2H), 5.12 (s, 2H), 6.96 (d, 2H), 7.35
(M, 5H), 7.98 (d, 2H) (4th stage) In 500 ml of THF, 30 g (0.1 mol) of 4-benzyloxy-1 (1'-bromoethyl) benzene and 21 g of methyl iodide
(0.15 mol), 7.5 g of sodium methylate (0.15 mol)
Was added and the mixture was heated under reflux for 15 hours, and then the reaction mixture was concentrated under reduced pressure. The residue was purified by silica gel chromatography (CHCl 3 ) to obtain 21 g of 4-benzyloxy-1- (1′-methoxyethyl) benzene (87% yield). NMR (CDCl 3 );
δ (ppm) = 2.78 (t, 2H), 3.35 (s, 3H), 3.58 (t, 2H),
5.12 (s, 2H), 6.96 (d, 2H), 7.35 (m, 5H), 7.98 (d, 2
H) (5th stage) 4-benzyloxy-1- (1'-methoxyethyl)
50 g (0.2 mol) of benzene was dissolved in 100 ml of ethanol containing 0.5% (w / w) acetic acid, 5 g of 5% Ru-carbon powder was added, and the mixture was reacted in an autoclave at a hydrogen pressure of 80 kg / cm 2 and 70 ° C. for 5 hours. . After filtering off the catalyst, the mother liquor was distilled, and a fraction at 97-98 ° C was fractionated at 4 mmHg to obtain 27 g of 4- (1′-methoxyethyl) -1-cyclohexanol (86% yield). NMR (CDC
l 3 ); δ (ppm) = 0.98 (m, 1H), 1.15 to 1.80 (m, 10H),
1.95 (m, 1H), 3.30 (s, 3H), 3.37 (m, 2H), 3.52 (m, 0.5
H), 3.94 (m, 0.5H) Example 2 The same procedure as in Example 1 except that the catalyst was replaced with 5% Ru-carbon powder and 5% Rh-carbon powder was used, and the reduction reaction was carried out at normal temperature and pressure. Was performed to obtain 29 g of 4- (1'-methoxyethyl) -1-cyclohexanol (yield 92%). NMR analysis results were the same as in Example 1.

実施例3 実施例1において、パラヒドロキシフェニル酢酸メチ
ルエステルをもちいる代わりに、パラヒドロキシフェニ
ルプロピオン酸メチルエステル84g(0.5モル)を用いる
こと以外は同様の操作を行い、4−(1′−メトキシプ
ロピル)−1−シクロヘキサノール29g(全収率35%)
を得た。
Example 3 The procedure of Example 1 was repeated, except that 84 g (0.5 mol) of methyl parahydroxyphenylpropionate was used instead of using methyl methyl parahydroxyphenylacetate. Propyl) -1-cyclohexanol 29 g (35% overall yield)
I got

NMR(CDCl3);δ(ppm)=0.92(m,1H),1.13〜1.78
(m,12H),1.92(m,1H),3.28(s,3H),3.33(m,2H),
3.48(m,0.5H),3.91(m,0.5H) 実施例4 実施例3において、5%Ru−炭素粉末を用いる代わり
に、5%Rh−炭素粉末を用い、常温常圧で還元反応を行
うこと以外は同様の操作を行い、4−(1′−メトキシ
プロピル)−1−シクロヘキサノール30g(全収率36
%)を得た。NMRの分析結果は実施例3と同様であっ
た。
NMR (CDCl 3); δ ( ppm) = 0.92 (m, 1H), 1.13~1.78
(M, 12H), 1.92 (m, 1H), 3.28 (s, 3H), 3.33 (m, 2H),
3.48 (m, 0.5H), 3.91 (m, 0.5H) Example 4 In Example 3, instead of using 5% Ru-carbon powder, 5% Rh-carbon powder was used, and the reduction reaction was performed at normal temperature and normal pressure. The same operation was carried out except that 30 g of 4- (1′-methoxypropyl) -1-cyclohexanol (total yield: 36
%). NMR analysis results were the same as in Example 3.

実施例5 実施例3において、5%Ru−炭素粉末を用いる代わり
に、5%Pt−炭素粉末を用い、常温常圧で還元反応を行
うこと以外は同様の操作を行い、4−(1′−メトキシ
プロピル)−1−シクロヘキサノール25g(全収率30
%)を得た。NMRの分析結果は実施例3と同様であっ
た。
Example 5 The procedure of Example 3 was repeated, except that 5% Pt-carbon powder was used instead of 5% Ru-carbon powder, and the reduction reaction was carried out at normal temperature and pressure. -Methoxypropyl) -1-cyclohexanol 25 g (total yield 30
%). NMR analysis results were the same as in Example 3.

実施例6 実施例1において、ナトリウムメチラートの代わり
に、ナトリウムエチラートを用いること以外は同様の操
作を行い、4−(1′−エトキシエチル)−1−シクロ
ヘキサノール18g(全収率20%)を得た。NMR(CDC
l3);δ(ppm)=0.98(m,1H),1.20(t,3H),1.21〜
1.80(m,10H),1.95(m,1H),3.37(m,2H),3.47(q.2
H),3.52(m,0.5H),3.94(m,0.5H) 実施例7 実施例1において、ナトリウムメチラートの代わり
に、(S)−2−ペンタノールと金属ナトリウムとを等
モルづつTHF中で反応させて得られたアルコキシドを用
いること以外は、同様の操作を行い4−[1′−(1″
−メチルブチルオキシエチル)]−1−シクロヘキサノ
ール28g(全収率25%)を得た。
Example 6 The same operation as in Example 1 was carried out except that sodium methylate was used instead of sodium methylate, to obtain 18 g of 4- (1′-ethoxyethyl) -1-cyclohexanol (total yield: 20%). ) Got. NMR (CDC
l 3 ); δ (ppm) = 0.98 (m, 1H), 1.20 (t, 3H), 1.21 ~
1.80 (m, 10H), 1.95 (m, 1H), 3.37 (m, 2H), 3.47 (q.2
H), 3.52 (m, 0.5H), 3.94 (m, 0.5H) Example 7 In Example 1, instead of sodium methylate, (S) -2-pentanol and sodium metal were equimolarly in THF. 4- [1 ′-(1 ″), except that the alkoxide obtained by the reaction in
-Methylbutyloxyethyl)]-1-cyclohexanol 28g (total yield 25%) was obtained.

NMR(CDCl3);δ(ppm)=0.88(t,3H),0.98(m,1
H),1.15〜1.81(m,17H),1.95(m,1H),3.37(m,2H),
3.52(m,0.5H),3.94(m,0.5H),4.40(m,1H) 実施例8 4−(1′−メトキシエチル)−1−シクロヘキサノー
ルの合成 パラベンジルオキシフェニルエチルトシレート38.2g
(0.1モル)をTHF200mlに溶解し、ナトリウムメチラー
ト(0.15モル)の100ml THF溶液を20〜25℃にて滴下
し、滴下終了後、更に40〜50℃で5時間撹拌した。反応
終了後、減圧濃縮し、残渣をクロロホルムに溶解した。
有機層を順に0.1Nの水酸化ナトリウム溶液および水で洗
浄した後、有機層を減圧濃縮した。得られた4−ベンジ
ルオキシ1−(1′−メトキシエチル)ベンゼン18g
(収率75%)を実施例1に準じて接触還元を行い、4−
(1′−メトキシエチル)−1−シクロヘキサノール9.
5g(収率85%)を得た。NMRの分析結果は実施例と同様
であった。
NMR (CDCl 3 ); δ (ppm) = 0.88 (t, 3H), 0.98 (m, 1
H), 1.15 to 1.81 (m, 17H), 1.95 (m, 1H), 3.37 (m, 2H),
3.52 (m, 0.5H), 3.94 (m, 0.5H), 4.40 (m, 1H) Example 8 Synthesis of 4- (1'-methoxyethyl) -1-cyclohexanol 38.2 g of parabenzyloxyphenylethyl tosylate
(0.1 mol) was dissolved in 200 ml of THF, and a 100 ml THF solution of sodium methylate (0.15 mol) was added dropwise at 20 to 25 ° C. After the addition was completed, the mixture was further stirred at 40 to 50 ° C for 5 hours. After completion of the reaction, the mixture was concentrated under reduced pressure, and the residue was dissolved in chloroform.
After the organic layer was washed with a 0.1N sodium hydroxide solution and water in that order, the organic layer was concentrated under reduced pressure. 18 g of the obtained 4-benzyloxy 1- (1′-methoxyethyl) benzene
(Yield 75%) was subjected to catalytic reduction according to Example 1 to give 4-
(1'-methoxyethyl) -1-cyclohexanol 9.
5 g (85% yield) were obtained. NMR analysis results were the same as in the examples.

[発明の効果] 本発明によれば、母体液晶として実用化されている各
種ネマチック混合液晶に添加することにより、混合液晶
の△nの値を減少させ、かつネマチック相を示す温度範
囲の上限であるネマチック相・等方性液体相転移温度を
上昇させることが可能なシクロヘキサン環を有する液晶
原料として有用なシクロヘキサノール誘導体を容易に提
供することができるという多大の効果が奏せられる。
[Effects of the Invention] According to the present invention, the value of Δn of the mixed liquid crystal is reduced by adding it to various nematic mixed liquid crystals practically used as a base liquid crystal, and at the upper limit of the temperature range showing a nematic phase. There is a great effect that a cyclohexanol derivative useful as a liquid crystal material having a cyclohexane ring capable of increasing a certain nematic phase / isotropic liquid phase transition temperature can be easily provided.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C07C 43/13 C07C 41/16 CA(STN) CAOLD(STN) REGISTRY(STN)Continuation of the front page (58) Fields investigated (Int. Cl. 6 , DB name) C07C 43/13 C07C 41/16 CA (STN) CAOLD (STN) REGISTRY (STN)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式(II): (式中、Xはハロゲン原子または−OSO2C6H4CH3を表
す。nは1〜10の整数を表す)で表されるベンゼン誘導
体とアルコール類とを縮合させた後、核水添を行うこと
を特徴とする一般式(I): (式中、Rは不斉炭素を含むことがある炭素数1〜5の
アルキル基、nは前記と同じ。)で表されるシクロヘキ
サノール誘導体の製造法。
1. A compound of the general formula (II): (Wherein, X represents a halogen atom or —OSO 2 C 6 H 4 CH 3 ; n represents an integer of 1 to 10), and after condensation with alcohols, nuclear hydrogenation is performed. Formula (I): (Wherein, R is an alkyl group having 1 to 5 carbon atoms which may contain an asymmetric carbon, and n is the same as described above).
JP2333166A 1990-11-28 1990-11-28 Method for producing cyclohexanol derivative Expired - Fee Related JP2867368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2333166A JP2867368B2 (en) 1990-11-28 1990-11-28 Method for producing cyclohexanol derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2333166A JP2867368B2 (en) 1990-11-28 1990-11-28 Method for producing cyclohexanol derivative

Publications (2)

Publication Number Publication Date
JPH04198143A JPH04198143A (en) 1992-07-17
JP2867368B2 true JP2867368B2 (en) 1999-03-08

Family

ID=18263035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2333166A Expired - Fee Related JP2867368B2 (en) 1990-11-28 1990-11-28 Method for producing cyclohexanol derivative

Country Status (1)

Country Link
JP (1) JP2867368B2 (en)

Also Published As

Publication number Publication date
JPH04198143A (en) 1992-07-17

Similar Documents

Publication Publication Date Title
JP2867368B2 (en) Method for producing cyclohexanol derivative
JP3571376B2 (en) Method for producing 2,6-di-tert-alkylcyclohexanols
JP2915161B2 (en) Process for producing optically active amino alcohols and intermediates thereof
JPWO2005080364A1 (en) Method for producing alicyclic oxetane compound
JPH09100286A (en) Production of trans-cyclohexane compound
US6476279B2 (en) Method of making fluorinated alcohols
JPH0653700B2 (en) Substituted acetylene ketone
JPH0525158A (en) Chroman derivative and liquid crystal composition containing the same
JP2010248138A (en) Compound having octafluorobutylene structure and method for producing the same
EP0286991B1 (en) Process for preparing fluorine-substituted alicyclic diols
JP4940429B2 (en) Method for producing triarylethylethene derivative
JPH09151143A (en) New optically active cobalt (ii) complex and production of optically active alcohol
JP2762106B2 (en) Method for producing 3-hydroxypyrrolidine
CN103183591B (en) 4 '-dialkoxymethyl bis cyclohexane-4-base methyl alcohol and manufacture method thereof
JP2003040814A (en) New liquid crystal compound having 1,2-propanediyl group as coupling group and liquid crystal composition containing the same
WO1994008931A1 (en) Process and intermediates for the preparation of substituted 2-phenyl-5-(3-phenoxyphenyl)-1,1,1-trifluoropentanes
JP4788021B2 (en) Method for producing 1,2,3,4-tetrahydronaphthalene derivative
JP5011614B2 (en) Novel liquid crystalline compound having 1,2-propanediyl group and liquid crystal composition containing the same
JPH027937B2 (en)
JP2714852B2 (en) Liquid crystalline compound
Russell et al. Anthracyclines. XIII The Synthesis of (+)-(4R, 6R)-and (+)-(4S, 6R)-6-Acetyl-6-(t-butyldimethylsilyloxy)-4-ethoxy-4-methoxy-5, 6, 7, 8-tetrahydronaphthalen-1 (4H)-one: New Chiral AB Synthons for the Synthesis of (—)-7-Deoxydaunomycinone
JP4332777B2 (en) Process for producing trifluoromethoxycyclohexanes
JPH0314526A (en) Production of n-alkylbenzene
JPS63196534A (en) Optically active phenyl ether compound
CN115057775A (en) Preparation method of dimethyl 2, 2-dimethylmalonate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees