JP2863883B2 - Calixarene derivatives exhibiting flow birefringence - Google Patents

Calixarene derivatives exhibiting flow birefringence

Info

Publication number
JP2863883B2
JP2863883B2 JP2985693A JP2985693A JP2863883B2 JP 2863883 B2 JP2863883 B2 JP 2863883B2 JP 2985693 A JP2985693 A JP 2985693A JP 2985693 A JP2985693 A JP 2985693A JP 2863883 B2 JP2863883 B2 JP 2863883B2
Authority
JP
Japan
Prior art keywords
compound
arch
chemical formula
formula
production example
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2985693A
Other languages
Japanese (ja)
Other versions
JPH05271175A (en
Inventor
隆 小森
征治 新海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagaku Gijutsu Shinko Jigyodan
Original Assignee
Kagaku Gijutsu Shinko Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagaku Gijutsu Shinko Jigyodan filed Critical Kagaku Gijutsu Shinko Jigyodan
Publication of JPH05271175A publication Critical patent/JPH05271175A/en
Application granted granted Critical
Publication of JP2863883B2 publication Critical patent/JP2863883B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、カリックスアレーン誘
導体に関し、特に、低融点化され、流動複屈折相を有す
る新規なカリックスアレーン誘導体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a calixarene derivative, and more particularly to a novel calixarene derivative having a low melting point and a flowable birefringent phase.

【0002】[0002]

【従来の技術】カリックスアレーンはフェノールとホル
ムアルデヒドとの縮合反応による環状のオリゴマーであ
り、その分子構造が、ギリシア製の聖杯(Calix)に似
ている芳香族化合物(Arene)という理由によりこの名
称がつけられた。カリックスアレーンは、1950年前
後にZinkeらによってフェノール−ホルムアルデヒド樹
脂中に見い出され(A.Zinke, E.Zegler, Chem.Ber.,77,
264,(1944))、その後1970年代後半になって、Kaemm
ererらにより段階的方法ながら、環状4〜6量体が合成
され、初めて同定された(H.Kaemmerer, G.Happel, V.B
ohmer, D.Rathay, Monatsh.Chem., 109,767,(1978))。
さらに、Gutscheらはp−tert−ブチルフェノール
とホルムアルデヒドから一段階で4、6、8量体を収率
よく合成することを可能にした(C.D.Gutsche, Acc.Che
m.Res.,16,161,(1985))。これによってカリックスアレ
ーンの供給が容易になり、各種のカリックスアレーン誘
導体の製造法や構造・物性についての詳細な検討が行わ
れるようになった。
2. Description of the Related Art Calixarenes are cyclic oligomers formed by the condensation reaction of phenol and formaldehyde, and have the molecular structure similar to that of the Greek holy grail (Calix). Was attached. Calixarenes were found in phenol-formaldehyde resins by Zinke et al. Around 1950 (A. Zinke, E. Zegler, Chem. Ber., 77,
264, (1944)) and later in the late 1970s, Kaemm
A cyclic 4- to hexamer was synthesized in a stepwise manner by Erer et al. and identified for the first time (H. Kaemmerer, G. Happel, VB
ohmer, D. Rathay, Monatsh. Chem., 109,767, (1978)).
Further, Gutsche et al. Made it possible to synthesize 4,6,8-mers in a single step with good yield from p-tert-butylphenol and formaldehyde (CDGutsche, Acc. Che.
m. Res., 16, 161, (1985)). This has facilitated the supply of calixarene, and has led to detailed studies on the production methods, structures, and properties of various calixarene derivatives.

【0003】カリックスアレーンは以下のような特徴を
有している。フェノール環員数を変えることにより、
空孔径の異なる化合物を合成できる、フェノール性水
酸基を利用して種々の官能基を導入できる、芳香族置
換反応により種々の官能基を導入できる、コンホメー
ションを制御できる。これらの特徴をうまく応用するこ
とによって、種々のイオンや分子との相互作用が制御可
能なことから、カリックスアレーン誘導体はクラウンエ
ーテルおよびシクロデキストリン系ホスト化合物に次ぐ
「第三の包接化合物」として、ホスト・ゲスト化学にお
ける有力な研究材料として注目を集めるとともに、実用
面においても各種の機能性材料として期待されている。
The calixarene has the following features. By changing the number of phenol ring members,
Conformation can be controlled in which compounds having different pore sizes can be synthesized, various functional groups can be introduced using a phenolic hydroxyl group, and various functional groups can be introduced by an aromatic substitution reaction. By properly applying these features, the interaction with various ions and molecules can be controlled, so calixarene derivatives are the `` third inclusion compounds '' next to crown ethers and cyclodextrin-based host compounds, It attracts attention as a leading research material in host-guest chemistry, and is expected as a variety of functional materials in practical use.

【0004】このような要求に答えるために、フェノー
ル性OH基の存する底縁(lower rimと称されることが
多い)およびその反対側の上縁(upper rim)側に、ア
ルキル基、エステル基、エーテル基その他種々の官能基
を導入したカリックスアレーン誘導体が多数得られてい
る。例えば、lower rim側のOH基をエステル基やエー
テル基で置換したカリックスアレーン誘導体は金属イオ
ンに対する認識能の優れたイオノホアとして機能するこ
とが見い出されている。
[0004] In order to meet such demands, an alkyl group, an ester group and a phenolic OH group are provided on the bottom edge (often referred to as lower rim) where the phenolic OH group is present and on the opposite upper edge (upper rim) side. Many calixarene derivatives into which ether groups or other various functional groups are introduced have been obtained. For example, it has been found that a calixarene derivative in which the OH group on the lower rim side is substituted with an ester group or an ether group functions as an ionophore having excellent recognition ability for metal ions.

【0005】[0005]

【発明が解決しようとする問題点】しかしながら、これ
らのカリックスアレーン誘導体のほとんどが、難溶性か
つ高融点であるため、取り扱いが非常に困難であるとい
う問題を抱えている。これは、カリックスアレーン自体
が有する構造的な硬さに由来するが、この構造的硬さこ
そがホスト分子としての特徴を発現しているという点に
おいて、カリックスアレーンは二律背反の問題を抱えて
いた。
However, most of these calixarene derivatives have a problem that they are very difficult to handle because they are hardly soluble and have a high melting point. This is due to the structural hardness of calixarene itself, but calixarene has a trade-off problem in that this structural hardness expresses the characteristics as a host molecule.

【0006】すなわち、従来のカリックスアレーン誘導
体においては「ホスト分子としての優れた特徴」と「良
溶解性・低融点等の取り扱い易さ」とを同時に満足する
ようなものは未だ開発されていない。
That is, none of the conventional calixarene derivatives satisfying both "excellent characteristics as a host molecule" and "ease of handling such as good solubility and low melting point" has not been developed yet.

【0007】[0007]

【課題を解決するための手段と発明の効果】本発明者ら
は、カリックスアレーンについて研究を続けるうちに、
従来のカリックスアレーン誘導体に見られる前述したよ
うな課題が解決された極めて特異な性質を有するカリッ
クスアレーン誘導体を見い出した。
Means for Solving the Problems and Effects of the Invention As the present inventors continued research on calixarenes,
The present inventors have found a calixarene derivative having extremely unique properties that solves the above-mentioned problems encountered in conventional calixarene derivatives.

【0008】すなわち、本発明は次の一般式〔化1〕で
表されるカリックスアレーン誘導体を提供する。
That is, the present invention provides a calixarene derivative represented by the following general formula [1].

【0009】[0009]

【化1】Embedded image

【0010】上記の一般式〔化1〕中、l、mおよびn
は、それぞれ、0〜7の整数である。但し、l+m+n
の値は3から7である。nは0である場合が多い。すな
わち、本発明は、フェノール環の員数が、4から8のカ
リックスアレーン誘導体である。
In the above general formula (I), l, m and n
Is an integer of 0 to 7, respectively. Where l + m + n
Is 3 to 7. n is often 0. That is, the present invention is a calixarene derivative having 4 to 8 phenol rings.

【0011】また、上記式中、X1およびX2は−Rまた
は−ORで表される原子団である。ここで、Rは、比較
的長鎖、すなわち、炭素数6〜22のアルキル基、アル
ケニル基、アルキニル基またはヒドロキシアルキル基を
示し、好ましくはアルキル基である。Rは一般に直鎖の
基であるが、分岐していてもよい。X1およびX2は、一
般には、互いに同一であるが、別異であってもよい。
In the above formula, X 1 and X 2 are an atomic group represented by —R or —OR. Here, R represents a relatively long chain, that is, an alkyl group, an alkenyl group, an alkynyl group or a hydroxyalkyl group having 6 to 22 carbon atoms, and is preferably an alkyl group. R is generally a linear group, but may be branched. X 1 and X 2 are generally the same as each other, but may be different.

【0012】式〔化1〕中、Y1およびY2は、−CH=
N−、−CH2−NH−、−CH=CH−、−N=N
−、−CO−O−および−NO=N−(アゾキシ基)か
ら選ばれる。Y1およびY2は、一般には、互いに同一で
あるが別異のものでもよい。
In the formula, Y 1 and Y 2 represent —CH =
N -, - CH 2 -NH - , - CH = CH -, - N = N
-, -CO-O- and -NO = N- (azoxy group). Y 1 and Y 2 are generally the same as each other, but may be different.

【0013】さらに、上記の一般式〔化1〕中、Z1
2およびZ3は、−OHまたはその置換基を示す。すな
わち、Z1、Z2およびZ3は、カリックスアレーンの lo
werrimにあるフェノール性OH基、または、カリックス
アレーンの所期の機能に応じて該OH基に従来より置換
・導入されていたような各種の官能基を示す。したがっ
て、そのような置換基例としては、−OR1、−OCH2
COOR2、OCH2COR3、または−OCH2CONR
4 2を挙げることができる(但し、R1、R2、R3および
4は、直鎖または分岐のアルキル基、アルケニル基、
アルキニル基またはヒドロキシアルキル基であり、その
炭素数は1〜18であるが、一般的には1〜10であ
る。Z1、Z2およびZ3の好ましい例は、−OCH3であ
る。
Further, in the above general formula [Chemical formula 1], Z 1 ,
Z 2 and Z 3 represent —OH or a substituent thereof. That is, Z 1 , Z 2 and Z 3 are lox of calixarene.
It indicates a phenolic OH group in werrim or various functional groups which have been conventionally substituted / introduced into the OH group according to the intended function of calixarene. Accordingly, examples of such substituents include -OR 1 , -OCH 2
COOR 2 , OCH 2 COR 3 , or —OCH 2 CONR
4 2 can be cited (wherein, R 1, R 2, R 3 and R 4 represents a linear or branched alkyl group, alkenyl group,
It is an alkynyl group or a hydroxyalkyl group, which has 1 to 18 carbon atoms, but generally has 1 to 10 carbon atoms. Preferred examples of Z 1, Z 2 and Z 3 are -OCH 3.

【0014】驚くべきことに、上に述べたような一般式
〔化1〕で表わされるカリックスアレーン誘導体は、溶
解性に優れ、融点が著しく低下し、流動複屈折性を示す
ことが見出された。すなわち、本発明のカリックスアレ
ーン誘導体は、多くの溶媒に対して良溶解性であり、親
化合物(出発物質となるカリックスアレーン)よりも少
なくとも約100℃以上も融点が低下し、そして、その
融点近くにおいて流動複屈折性を示す。ここで、流動複
屈折性とは、外部応力の付加によって生じた流れに沿っ
て分子配向が起こり、複屈折現象が認められることをい
う。
Surprisingly, it has been found that the calixarene derivative represented by the general formula (1) described above has excellent solubility, a remarkably reduced melting point, and exhibits flow birefringence. Was. That is, the calixarene derivative of the present invention is highly soluble in many solvents, has a melting point lower by at least about 100 ° C. or more than the parent compound (calixarene serving as a starting material), and is close to the melting point. Shows flow birefringence. Here, the term “flow birefringence” means that molecular orientation occurs along a flow generated by the application of an external stress, and a birefringence phenomenon is observed.

【0015】本発明のカリックスアレーン誘導体におい
てこのような性質が発現される理由は充分には明かでな
いが、カリックスアレーン構造の上縁(upper rim)側
に、芳香環を介してY1およびY2とX1およびX2とが存
在する特徴的な構造に由来するものと推測される。
Although the reason why such a property is expressed in the calixarene derivative of the present invention is not fully understood, Y 1 and Y 2 are located on the upper rim side of the calixarene structure via an aromatic ring. And X 1 and X 2 are presumed to be derived from the characteristic structure.

【0016】本発明のカリックスアレーン誘導体におい
てX1およびX2を構成する−Rまたは−ORのRは比較
的長鎖、すなわち、炭素数6〜22、好ましくは、8〜
16のアルキル基、アルケニル基、アルキニル基または
ヒドロキシアルキル基である。Rが短い場合は、低融点
下を起こさず、流動複屈折性も示さない。Rは、Y1
よびY2さらにはフェノール環員数等に応じて、所期の
カリックスアレーン誘導体を得るのに最適な基が選ばれ
る。概して言えば、Rの総炭素数がカリックスアレーン
の環数(l+m+n+1)の4〜18倍であることが好
ましい。総炭素数が環数の4倍より小さいと、R基導入
の効果が現れにくく、融点の低下が生じない。また18
倍より大きくなると、R基自身の運動性が低下し、同様
に融点の低下が生じない。
In the calixarene derivative of the present invention, R of -R or -OR constituting X 1 and X 2 has a relatively long chain, that is, 6 to 22 carbon atoms, preferably 8 to 8 carbon atoms.
16 alkyl groups, alkenyl groups, alkynyl groups or hydroxyalkyl groups. When R is short, no lower melting point occurs and no fluid birefringence is exhibited. As R, an optimum group for obtaining a desired calixarene derivative is selected according to Y 1 and Y 2, the number of phenol ring members, and the like. Generally speaking, it is preferable that the total carbon number of R is 4 to 18 times the number of rings (l + m + n + 1) of the calixarene. When the total number of carbon atoms is smaller than four times the number of rings, the effect of introducing the R group is hardly exhibited, and the melting point does not decrease. Also 18
If it is larger than twice, the mobility of the R group itself decreases, and similarly, the melting point does not decrease.

【0017】Y1およびY2が、−CH=N−(アゾメチ
ン基)またはその還元体である−CH2−NH−の場
合、X1およびX2を構成するRは、炭素数8〜16のア
ルキル基が特に好ましい。例えば、フェノール性OH基
がメトキシ基で置換されたカリックス[4]アレーン
(すなわち、Z1、Z2、Z3=OCH3、l+m+n=
3、n=0)に、ドデシルアニリンを結合させたカリッ
クスアレーン誘導体(すなわち、Y1およびY2が−CH
=N−、X1およびX2がC1225)は、室温以下で流動
性を示し始め、5〜40℃の広い温度範囲において極め
て明瞭な流動複屈折性を示すという好ましい性質を有し
ている。
When Y 1 and Y 2 are —CH = N— (azomethine group) or its reduced form —CH 2 —NH—, R constituting X 1 and X 2 has 8 to 16 carbon atoms. Is particularly preferred. For example, calix [4] arene having a phenolic OH group substituted with a methoxy group (ie, Z 1 , Z 2 , Z 3 OOCH 3 , 1 + m + n =
3, n = 0) and dodecyl aniline bonded to a calixarene derivative (that is, Y 1 and Y 2 are —CH
= N-, X 1 and X 2 are C 12 H 25) has a favorable property of exhibiting very clear flow birefringence in a wide temperature range started showing fluidity, of 5 to 40 ° C. below room temperature ing.

【0018】一般にY1、Y2の連結基の構造は、X1
よびX2を構成するRほどの寄与はないが、融点と関係
している。X1、X2およびZ1、Z2、Z3を特定のもの
に固定してY1、Y2を変化させた場合、融点を低下させ
る効果は、−CH=CH−<−NO=N−(アゾキシ
基)<−N=N−<−CH=N−<−CO−O<−CH
2−NH−の順に大きくなるが、それほど大きな違いで
はない。
Generally, the structure of the linking group of Y 1 and Y 2 does not contribute as much as R constituting X 1 and X 2 , but is related to the melting point. When X 1 , X 2 and Z 1 , Z 2 , and Z 3 are fixed to specific ones and Y 1 and Y 2 are changed, the effect of lowering the melting point is as follows: —CH = CH — <— NO = N -(Azoxy group) <-N = N-<-CH = N-<-CO-O <-CH
It increases in the order of 2- NH-, but not so much.

【0019】本発明のカリックスアレーン誘導体は、そ
の特異な性質を利用していろいろな応用が可能である。
以下、そのような応用について述べるが、本発明の用途
は以下に限定されるものではない。
The calixarene derivative of the present invention can be used in various applications by utilizing its unique properties.
Hereinafter, such an application will be described, but the application of the present invention is not limited to the following.

【0020】本発明のカリックスアレーン誘導体を液体
(等方性)状態を呈する温度下で互いに直交する偏光板
間に挟むと光は通過しないが、外部的な応力を加えると
複屈折が出現し光が偏光板間を通過するようになる。し
たがって、本発明のカリックスアレーン誘導体は、例え
ば、応力が外場として分子配向を起こすディスプレイや
圧力センサーなどとして利用できる。この際、本発明の
カリックスアレーン誘導体を用いる場合、応答は等方相
(液体)から複屈折相への変化に基づいているので、複
屈折相から複屈折相への変化に基づく液晶ディスプレイ
に比較して、光のオン・オフ時の透過光量の差が大き
く、コントラストの明瞭なディスプレイが得られる。ま
た、液晶ディスプレイでは、当初から分子配向を起こし
ておくための前処理が必要であるが、本発明のディスプ
レイではこのような配向処理を施さなくてもよいという
利点もある。
When the calixarene derivative of the present invention is sandwiched between polarizing plates orthogonal to each other at a temperature in which the liquid (isotropic) state is exhibited, birefringence appears when an external stress is applied and birefringence appears. Pass between the polarizing plates. Therefore, the calixarene derivative of the present invention can be used, for example, as a display or a pressure sensor in which stress causes molecular orientation as an external field. In this case, when the calixarene derivative of the present invention is used, the response is based on the change from the isotropic phase (liquid) to the birefringent phase, so that the response is compared with the liquid crystal display based on the change from the birefringent phase to the birefringent phase. As a result, a display having a clear contrast with a large difference in the amount of transmitted light when light is turned on and off is obtained. Further, a liquid crystal display requires a pretreatment for causing molecular orientation from the beginning, but the display of the present invention has an advantage that such an orientation treatment does not need to be performed.

【0021】別の応用例として、互いに直交する偏光板
間に挟み込んだ本発明の化合物に等方相温度下に応力を
与え、流動による配向を発生させたままで融点以下に温
度を下げる。すると、化合物の分子は配向したままで固
定され、永続的な複屈折を示すことになり、光は直交す
る偏光板を通過することができる。これを融点以上の環
境におくと、直ちに複屈折性は消失し、光は通過できな
くなる。これを用いれば、化合物の融点に対応した種々
の温度センサーを作ることができる。融点の異なる化合
物を幾つか組み合わせることによって任意の温度で光透
過性の失われる素子を作ることができる。これらは最高
温度計等として用いることができる。
As another application example, a stress is applied to the compound of the present invention sandwiched between polarizing plates orthogonal to each other at an isotropic phase temperature, and the temperature is lowered to a melting point or lower while the orientation by flow is generated. Then, the molecules of the compound are fixed while being oriented, and exhibit permanent birefringence, so that light can pass through orthogonal polarizing plates. If this is placed in an environment at or above the melting point, the birefringence immediately disappears and light cannot pass. By using this, various temperature sensors corresponding to the melting point of the compound can be produced. By combining several compounds having different melting points, an element that loses light transmittance at an arbitrary temperature can be produced. These can be used as a maximum thermometer or the like.

【0022】また、従来のカリックスアレーン誘導体
は、溶解度が低いので、均一な塗膜を得るのは困難であ
った。これに対して、本発明のカリックスアレーン誘導
体は溶解性がよいので、適当な揮発性溶媒に溶解させ塗
布する等の手段により均一な塗膜を形成させることがで
きる。このとき、当初の塗布を融点以下の温度条件下に
行い乳濁色の塗膜を形成すると、温度を上げることによ
り透明な塗膜となる。このような現象は、融点を境にし
て可逆的に再現できることから、温度センサーあるいは
偏光板を用いないディスプレイ素子に応用可能と思われ
る。
Further, since the conventional calixarene derivative has low solubility, it was difficult to obtain a uniform coating film. On the other hand, since the calixarene derivative of the present invention has good solubility, a uniform coating film can be formed by means such as dissolving in a suitable volatile solvent and coating. At this time, when the initial coating is performed under a temperature condition equal to or lower than the melting point to form an emulsion coating film, a transparent coating film is obtained by increasing the temperature. Since such a phenomenon can be reversibly reproduced at the melting point, it is considered that the phenomenon can be applied to a display element that does not use a temperature sensor or a polarizing plate.

【0023】さらに、本発明は、カリックスアレーン自
体が有する構造的な特徴を維持したまま、したがって、
カリックスアレーン構造が本来的に有する機能を損なう
ことなく、溶解性に優れ低融点であるなど取り扱い易い
カリックスアレーン誘導体を提供する。例えば、lower
rimのフェノール性水酸基を既述した従来から知られて
いるような官能基で置換することにより、特定の金属イ
オンを選択的に結合する能力を維持したまま、本発明に
従い、upper rimに、前記一般式〔化1〕に示すよう
に、芳香環を介してY1およびY2とX1およびX2とを配
置することにより極めて融点の低下したカリックスアレ
ーン誘導体を得ることができる。
Furthermore, the present invention maintains the structural characteristics of calixarene itself,
Provided is a calixarene derivative which has excellent solubility and a low melting point and is easy to handle without impairing the function inherently possessed by the calixarene structure. For example, lower
According to the present invention, by replacing the phenolic hydroxyl group of the rim with a functional group as described above, which is known in the art, while maintaining the ability to selectively bind a specific metal ion, the upper rim is added to the rim according to the present invention. By arranging Y 1 and Y 2 and X 1 and X 2 via an aromatic ring as shown in the general formula [Chemical formula 1], a calixarene derivative having an extremely low melting point can be obtained.

【0024】本発明のカリックスアレーン誘導体は、既
知の合成法を工夫することにより製造することができ
る。例えば、Y1およびY2が−N=N−、あるいは−N
O=N−基の場合の合成法を示すと図1のスキームのよ
うになる。
The calixarene derivative of the present invention can be produced by devising a known synthesis method. For example, if Y 1 and Y 2 are -N = N-, or -N
The synthesis method in the case of O = N- group is as shown in the scheme of FIG.

【0025】すなわち、(1)のような芳香族アミンを
過剰の酸に溶かし、冷却しながら亜硝酸ナトリウム水溶
液を滴下し、ジアゾニウム塩(2)を調製する。これと
カリックス[n]アレーン(3)を塩基性下で反応させ
アゾ化合物として、さらにアルキルまたはアルケニル、
またはアルキニルハライドを反応させて目的物(6)を
製造することができる。
That is, an aromatic amine such as (1) is dissolved in an excess of an acid, and an aqueous solution of sodium nitrite is added dropwise while cooling to prepare a diazonium salt (2). This is reacted with calix [n] arene (3) under basicity to form an azo compound, which is further alkyl or alkenyl,
Alternatively, the target product (6) can be produced by reacting an alkynyl halide.

【0026】化合物(1)のジアゾ化反応は、無機酸に
溶解するか塩の形で懸濁し、亜硝酸ナトリウムを加えて
反応させるのが一般的な方法である。理論的な酸の必要
量は2当量であるが、好ましくは、ジアゾアミノ化合物
の副生をを防ぐため、2.5〜3当量用いる。亜硝酸ナ
トリウムは当量使用し、過剰の亜硝酸はスルファミン
酸、尿素などを加えて分解する。反応温度は普通0〜1
5℃の間で行うことが好ましい。ここで用いられる無機
酸としては、塩酸、臭化水素酸、硫酸、硝酸、過塩素
酸、テトラフルオロほう酸などが挙げられる。
The diazotization reaction of the compound (1) is generally carried out by dissolving it in an inorganic acid or suspending it in the form of a salt and adding sodium nitrite to react. The theoretical required amount of the acid is 2 equivalents, but preferably 2.5 to 3 equivalents are used in order to prevent by-products of the diazoamino compound. Sodium nitrite is used in an equivalent amount, and excess nitrite is decomposed by adding sulfamic acid, urea and the like. Reaction temperature is usually 0-1
It is preferred to carry out between 5 ° C. Examples of the inorganic acid used here include hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, perchloric acid, and tetrafluoroboric acid.

【0027】化合物(2)と(3)の反応は、反応に活
性な形はフェノラートイオンであることから一般にはカ
リックス[n]アレーンを塩基性下で溶液とし、ときに
炭酸水素ナトリウム、酢酸ナトリウムなどの緩衝剤を加
えて、弱アルカリ性でジアゾニウム塩を加えてカップリ
ング反応を行う。溶媒としては、メタノール、エタノー
ル、アセトン、テトラヒドロフラン、ジメチルホルムア
ミド等の極性溶媒および、これらと水との混合溶媒系が
好ましい。また、テトラフルオロボラートのような非求
核性アニオンを含むジアゾニウム塩を用いる場合は、テ
トラヒドロフラン、ジメチルホルムアミド等の溶媒中
で、ピリジン共存下容易にカリックス[n]アレーンと
カップリングできる。
In the reaction of the compounds (2) and (3), the form active in the reaction is a phenolate ion, so that calix [n] arene is generally made into a solution under basicity, and sometimes sodium bicarbonate and acetic acid are used. The coupling reaction is carried out by adding a buffer such as sodium and adding a weakly alkaline diazonium salt. As the solvent, a polar solvent such as methanol, ethanol, acetone, tetrahydrofuran, dimethylformamide and the like, and a mixed solvent system of these and water are preferable. When a diazonium salt containing a non-nucleophilic anion such as tetrafluoroborate is used, it can be easily coupled with calix [n] arene in the presence of pyridine in a solvent such as tetrahydrofuran or dimethylformamide.

【0028】アゾカリックス[n]アレーン(4)とR
1X(5)の反応は、好ましくは塩基の存在下、室温〜
溶媒の沸点までの温度にて行われる。ここで用いられる
塩基としては例えば水酸化カリウム、水酸化ナトリウム
等の水酸化アルカリ:炭酸カリウム、炭酸ナトリウム等
の炭酸アルカリ:水酸化ナトリウム等のアルカリ金属水
素化物:ブチルリチウム等のアルキル化リチウムなどが
挙げられる。溶媒としては、アセトン、テトラヒドロフ
ラン、N,N−ジメチルホルムアミド、アセトニトリル
などが好ましい。
Azocalix [n] arene (4) and R
1 reaction of X (5) is preferably in the presence of a base, at room temperature to
The reaction is performed at a temperature up to the boiling point of the solvent. Examples of the base used herein include alkali hydroxides such as potassium hydroxide and sodium hydroxide: alkali carbonates such as potassium carbonate and sodium carbonate: alkali metal hydrides such as sodium hydroxide: lithium alkylates such as butyl lithium, and the like. No. As the solvent, acetone, tetrahydrofuran, N, N-dimethylformamide, acetonitrile and the like are preferable.

【0029】o−置換アゾカリックス[n]アレーン
(6)をH22等で酸化すると、アゾキシカリックス
[n]アレーン(7)を製造することができる。
When the o-substituted azocalix [n] arene (6) is oxidized with H 2 O 2 or the like, azoxycalix [n] arene (7) can be produced.

【0030】またY1およびY2が−N=CH−基の場合
の合成法を示すと図2のスキームのようになる。
FIG. 2 shows a synthesis method when Y 1 and Y 2 are —N = CH— groups.

【0031】すなわち、(8)のp−ニトロカリックス
[n]アレーンのニトロ基を還元剤にてアミノ基に還元
し、これにp−ホルミルアルキルベンゼン(10)を導
入することで目的物(11)を製造することができる。
(8)の還元に用いる還元剤としては、通常、芳香族ニ
トロ化合物のニトロ基をアミノ基に還元する還元剤を任
意に用いることができるが、例えばヒドラジン水和物を
触媒としての塩化鉄および活性炭の存在下に用いるのが
好ましい。また、用いる溶媒としてはメチルセロリルブ
が好ましい。
That is, the nitro group of the p-nitrocalix [n] arene of (8) is reduced to an amino group with a reducing agent, and p-formylalkylbenzene (10) is introduced into this to obtain the desired product (11). Can be manufactured.
As the reducing agent used in the reduction of (8), a reducing agent that reduces a nitro group of an aromatic nitro compound to an amino group can be used arbitrarily. For example, iron chloride and hydrazine hydrate as catalysts can be used. Preferably, it is used in the presence of activated carbon. Further, as the solvent to be used, methylcellolylbu is preferable.

【0032】化合物(9)と(10)の反応は、水と共
沸可能なベンゼン等の溶媒中で行うか、あるいはシリカ
ゲル、モレキュラシーブス、MgSO4、Na2SO4
の脱水剤を懸濁させた溶媒中で行なわれる。
The reaction of the compounds (9) and (10) is carried out in a solvent such as benzene which can be azeotroped with water, or by suspending a dehydrating agent such as silica gel, molecular sieves, MgSO 4 or Na 2 SO 4. The reaction is performed in a solvent that has been dissolved.

【0033】本発明に従うカリックスアレーン誘導体の
好ましい例である下記化合物〔化2〕に沿って製造法を
さらに詳述する。
The production method will be described in more detail along the following compound [Chemical Formula 2] which is a preferred example of the calixarene derivative according to the present invention.

【0034】[0034]

【化2】 Embedded image

【0035】反応スキームは、大略、図3のようにな
る。
The reaction scheme is roughly as shown in FIG.

【0036】すなわち、カリクッス[n]アレーン
(3)にアルキルまたはアルケニル、またはアルキニル
ハライド(4)を反応させ、次いで得られる化合物
(5)をホルミル化し化合物(6)を得る。この化合物
(6)とp−アルキルまたはアルケニル、またはアルキ
ニル或はアルコキシアニリン(7)を脱水縮合させるこ
とで化合物(2)(上記〔化2〕)が製造される。
That is, the calix [n] arene (3) is reacted with an alkyl or alkenyl or an alkynyl halide (4), and then the resulting compound (5) is formylated to obtain a compound (6). The compound (6) and the p-alkyl or alkenyl, or alkynyl or alkoxyaniline (7) are dehydrated and condensed to produce the compound (2) (the above [Chemical Formula 2]).

【0037】化合物(3)と(4)の反応は、好ましく
は塩基の存在下、室温〜溶媒の沸点までの温度にて、1
〜20時間程度反応することにより行われる。ここで用
いられる塩基としては例えば水酸化カリウム、水酸化ナ
トリウム等の水酸化アルカリ;炭酸カリウム、炭酸ナト
リウム等の炭酸アルカリ;水酸化ナトリウム等のアルカ
リ金属水素化物;ブチルリチウム等のアルキル化リチウ
ム等が挙げられる。また、溶媒は目的の反応を阻害する
ものでなければ任意のものが使用可能であるが、特にア
セトン、テトラヒドロフラン、N,N−ジメチルホルム
アミド、アセトニトリルなどが好適に用いられる。また
余分な副反応を避けるために、窒素ガス等の不活性雰囲
気下で反応を行うことが望ましい。また、化合物(5)
のホルミル化反応は、N,N−ジメチルホルムアミドお
よびオキシ塩化リン等を用いるVilsmeier反応や、ヘキ
サメチレンテトラミンおよびトリフルオロ酢酸等を用い
るDuff反応等が挙げられる。
The reaction of the compounds (3) and (4) is preferably carried out in the presence of a base at a temperature from room temperature to the boiling point of the solvent.
The reaction is carried out for about 20 hours. Examples of the base used herein include alkali hydroxides such as potassium hydroxide and sodium hydroxide; alkali carbonates such as potassium carbonate and sodium carbonate; alkali metal hydrides such as sodium hydroxide; lithium alkylates such as butyl lithium and the like. No. Any solvent can be used as long as it does not inhibit the desired reaction, but acetone, tetrahydrofuran, N, N-dimethylformamide, acetonitrile and the like are particularly preferably used. In order to avoid extra side reactions, it is desirable to carry out the reaction in an inert atmosphere such as nitrogen gas. Compound (5)
Examples of the formylation reaction include a Vilsmeier reaction using N, N-dimethylformamide and phosphorus oxychloride, and a Duff reaction using hexamethylenetetramine and trifluoroacetic acid.

【0038】また、化合物(7)としては、前記一般式
〔化2〕のR2に対応する炭素数1〜22の直鎖または
分岐のアルキル基、アルケニル基、アルキニル基、また
はヒドロキシアルキル基を有するアニリンであれば良
い。
As the compound (7), a linear or branched alkyl group, alkenyl group, alkynyl group or hydroxyalkyl group having 1 to 22 carbon atoms corresponding to R 2 in the general formula [Chemical Formula 2] can be used. Any aniline may be used.

【0039】化合物(6)と(7)の反応は、水と共沸
可能なベンゼン等の溶媒中で行うか、あるいはシリカゲ
ル、モレキュラーシーブス、MgSO4、Na2SO4
の脱水剤を懸濁させた溶媒中で行われる。
The reaction of the compounds (6) and (7) is carried out in a solvent such as benzene which can be azeotroped with water, or by suspending a dehydrating agent such as silica gel, molecular sieves, MgSO 4 or Na 2 SO 4. The reaction is performed in a solvent that has been dissolved.

【0040】Y1およびY2が、−CH2−NH−(また
は−NH−CH2−)のカリックスアレーン誘導体は、
図2または図3で示される(11)の化合物または
(2)のような化合物を適当な還元剤を用いて還元する
ことによって得ることができる。以下、本発明の特徴を
さらに明らかにするため、実施例に沿って本発明を説明
する。
A calixarene derivative in which Y 1 and Y 2 are —CH 2 —NH— (or —NH—CH 2 —) is
It can be obtained by reducing the compound of (11) shown in FIG. 2 or FIG. 3 or the compound of (2) using an appropriate reducing agent. Hereinafter, the present invention will be described along with examples in order to further clarify the features of the present invention.

【0041】[0041]

【実施例】図4に示すフローチャートに沿って本発明の
カリックスアレーン誘導体〔化11〕を製造した。
EXAMPLE A calixarene derivative [formula 11] of the present invention was produced according to the flowchart shown in FIG.

【0042】製造例1:中間体〔化9〕の製造 カリックス[8]アレーン4.52g(5.3ミリモ
ル)、水酸化ナトリウム7.5g(315ミリモル)、
およびヨウ化メチル68.4g(475ミリモル)を乾
燥させた200mlのテトラヒドロフランおよび、同じ
く乾燥させた、N,N−ジメチルホルムアミド10ml
よりなる混合溶媒中に添加し、この溶液を窒素気流下、
5時間加熱還流した。反応混合物より溶媒を減圧下に留
去し、残渣に500mlの水を注ぎ、500mlのクロ
ロホルムで抽出した。有機層を分離し、500mlの水
で4回洗浄した後、硫酸マグネシウムで乾燥した。溶液
を濃縮した後、メタノールで処理して白色の固形分を得
た。この固形分をさらにクロロホルムとメタノールの混
合溶媒から再結晶して純粋な中間体〔化9〕(図4中の
化合物(9))(白色結晶、4.0g、収率79%)を
得た。
Production Example 1 : Production of Intermediate [Chemical Formula 9] 4.52 g (5.3 mmol) of calix [8] arene, 7.5 g (315 mmol) of sodium hydroxide,
200 ml of tetrahydrofuran and 68.4 g (475 mmol) of methyl iodide and 10 ml of N, N-dimethylformamide, also dried
Into a mixed solvent consisting of
The mixture was refluxed for 5 hours. The solvent was distilled off from the reaction mixture under reduced pressure, and the residue was poured with 500 ml of water and extracted with 500 ml of chloroform. The organic layer was separated, washed four times with 500 ml of water, and dried over magnesium sulfate. After the solution was concentrated, it was treated with methanol to obtain a white solid. The solid was further recrystallized from a mixed solvent of chloroform and methanol to obtain a pure intermediate [Chemical formula 9] (compound (9) in FIG. 4) (white crystals, 4.0 g, yield 79%). .

【0043】[0043]

【化9】 Embedded image

【0044】1H-NMR(CDCl3,30℃)δ6.87(s,3H,ArH), 4.
04(s,2H,ArCH2Ar), 3.51(s,3H,ArOCH3); HPLC(CHCl3,si
lica,0.5ml/min.,254nm)6.6min.
1 H-NMR (CDCl 3 , 30 ° C.) δ6.87 (s, 3H, ArH), 4.
04 (s, 2H, ArCH 2 Ar), 3.51 (s, 3H, ArOCH 3 ); HPLC (CHCl 3 , si
lica, 0.5ml / min., 254nm) 6.6min.

【0045】製造例2:中間体〔化10〕の製造 オクタメトキシカリックス[8]アレーン3.80g
(3.96ミリモル)、ヘキサメチレンテトラミン42
g(300ミリモル)を200mlのトリフルオロ酢酸
中に添加し、この溶液を窒素気流下90〜112℃で8
0時間加熱還流した。反応混合物を氷水500ml中に
注ぎ、1時間攪拌を続け、200mlのクロロホルムで
3回抽出した。有機層を500mlの水で4回洗浄した
後、硫酸マグネシウムで乾燥した。溶媒を減圧下に留去
し、約5gの淡黄色固体を得た。この残渣をわずかの量
のクロロホルム−n−ヘキサン混合溶媒に溶かし込み、
クロロホルム:n−ヘキサン(4:1)の混合溶媒を展
開溶媒としてシリカゲル(ワコーゲルc−300)を充
填したカラムで分離・精製して純粋な中間体〔化10〕
(図4中の化合物(10))(白色粉末、550mg、
収率12%)を得た。
Production Example 2 : Production of Intermediate [Chemical Formula 10] 3.80 g of octamethoxycalix [8] arene
(3.96 mmol), hexamethylenetetramine 42
g (300 mmol) in 200 ml of trifluoroacetic acid and the solution is added under nitrogen at 90-112 ° C. for 8 hours.
The mixture was refluxed for 0 hours. The reaction mixture was poured into 500 ml of ice water, stirring was continued for 1 hour, and the mixture was extracted three times with 200 ml of chloroform. The organic layer was washed four times with 500 ml of water, and then dried over magnesium sulfate. The solvent was distilled off under reduced pressure to obtain about 5 g of a pale yellow solid. This residue was dissolved in a small amount of a chloroform-n-hexane mixed solvent,
Using a mixed solvent of chloroform: n-hexane (4: 1) as a developing solvent, the mixture was separated and purified on a column packed with silica gel (Wakogel c-300) to give a pure intermediate.
(Compound (10) in FIG. 4) (white powder, 550 mg,
Yield 12%).

【0046】[0046]

【化10】 1H-NMR(CDCl3,30℃)δ9.67(s,1H,Ar-CHO), 7.43(s,2H,A
rH), 4.12(s,2H,ArCH2Ar), 3.64(s,3H,ArOCH3); HPLC(C
HCl3,silica,1.5ml/min.,254nm)12.7min.
Embedded image 1 H-NMR (CDCl 3 , 30 ° C.) δ 9.67 (s, 1 H, Ar-CHO), 7.43 (s, 2 H, A
rH), 4.12 (s, 2H , ArCH 2 Ar), 3.64 (s, 3H, ArOCH 3); HPLC (C
HCl 3 , silica, 1.5ml / min., 254nm) 12.7min.

【0047】製造例3:化合物〔化11〕の製造 p−ホルミル−o−メチルカリックス[8]アレーン7
4mg(0.0625ミリモル)、ヘキサデシルアニリ
ン156mg(0.5ミリモル)、およびモレキュラシ
ーブス4A1/16 1.5gを8gのクロロホルム中に添
加し、この溶液を窒素気流下、20時間加熱還流した。
反応混合物を濾過後、溶媒を減圧下に留去し、約200
mgの黄色粘性物を得た。これをさらにクロロホルム−
メタノールの混合溶媒より再結晶して純粋な化合物〔化
11〕(図4中の化合物(11))(淡黄褐色粘性固
体)を得た。
Preparation Example 3 Preparation of Compound [Chemical Formula 11] p-Formyl-o-methylcalix [8] arene 7
4 mg (0.0625 mmol), 156 mg (0.5 mmol) of hexadecylaniline, and 1.5 g of molecular sieves 4A1 / 16 were added to 8 g of chloroform, and the solution was heated to reflux under a nitrogen stream for 20 hours.
After filtration of the reaction mixture, the solvent was distilled off under reduced pressure to give about 200
mg of yellow viscous material were obtained. This is further added to chloroform-
Recrystallization from a mixed solvent of methanol gave a pure compound [Chemical formula 11] (compound (11) in FIG. 4) (pale yellow-brown viscous solid).

【0048】[0048]

【化11】 1H-NMR(CDCl3,30℃)δ8.14(s,1H,ArCH=N), 7.46(s,2H,A
rH), 6.98(b,4H,AniH), 4.03(b,2H,ArCH2Ar), 3.47(s,3
H,ArOCH3), 2.52(b,2H,ArCH 2CH2), 1.54(s,2H,ArCH2C
H 2), 1.22(s,26H,C13H26), 0.85(m,3H,CH3); HPLC(CHCl
3,silica,0.5ml/min.,254nm)5.1min.
Embedded image 1 H-NMR (CDCl 3 , 30 ° C.) δ 8.14 (s, 1 H, ArCH = N), 7.46 (s, 2 H, A
rH), 6.98 (b, 4H , AniH), 4.03 (b, 2H, ArCH 2 Ar), 3.47 (s, 3
H, ArOCH 3 ), 2.52 (b, 2H, ArC H 2 CH 2 ), 1.54 (s, 2H, ArCH 2 C
H 2), 1.22 (s, 26H, C 13 H 26), 0.85 (m, 3H, CH 3); HPLC (CHCl
3 , silica, 0.5ml / min., 254nm) 5.1min.

【0049】物性測定例1:化合物〔化11〕の熱分析 製造例3で得られた化合物〔化11〕3.84mgを1
5μlのAg製密封型セルに量り取り、昇温速度1.0
℃/min.にて−30℃〜90℃の範囲でDSC測定
を行った(seiko,DSC120)。本化合物〔化11〕は約1
5℃から55℃に渡って複数個の吸熱ピークを持ってお
り、55℃以上では等方性液体である。中間体である
〔化10〕の融点が275〜280℃であることを考え
ると、アゾメチン結合を介してp−ヘキサデシルフェニ
ル基を導入したことで融点が250℃近く低下したこと
になる。また、本化合物〔化11〕は融点の劇的低下の
みならず、溶媒に対する溶解度も飛躍的に増大し、極め
て取り扱い易い化合物となった。DSCチャートを図5
に示す。さらに本化合物は融点付近の等方相において流
動複屈折性を示した。
Physical property measurement example 1 : Thermal analysis of compound [Chemical formula 11] 3.84 mg of the compound [Chemical formula 11] obtained in Production example 3 was added to 1
Weigh into a 5 μl Ag sealed cell and heat up at a rate of 1.0
° C / min. DSC measurement was performed in the range of −30 ° C. to 90 ° C. (seiko, DSC120). This compound [formula 11] has about 1
It has a plurality of endothermic peaks from 5 ° C to 55 ° C, and is an isotropic liquid at 55 ° C or higher. Considering that the melting point of the intermediate [Chemical Formula 10] is 275 to 280 ° C, the introduction of the p-hexadecylphenyl group via an azomethine bond lowers the melting point by nearly 250 ° C. In addition, the compound [Chemical Formula 11] not only has a dramatic decrease in melting point, but also has a drastically increased solubility in a solvent, making the compound extremely easy to handle. Figure 5 shows the DSC chart
Shown in Further, the compound showed a flow birefringence in an isotropic phase near the melting point.

【0050】製造例4:化合物〔化12〕の製造 製造例3におけるヘキサデシルアニリン156mgのか
わりにオクチルアニリン100mgを用いた他は、製造
例3と同様な操作を行い、下記式〔化12〕で表される
化合物を得た。
Preparation Example 4 Preparation of Compound [Chemical Formula 12] The same procedure as in Preparation Example 3 was carried out except that octylaniline 100 mg was used instead of hexadecylaniline 156 mg in Preparation Example 3, to obtain the following compound. The compound represented by was obtained.

【0051】[0051]

【化12】 1H-NMR(CDCl3,30℃)δ8.2(s,1H,ArCH=N), 7.5(s,2H,Ar
H), 7.0(q,4H,AniH),4.1(b,2H,ArCH2Ar), 3.5(s,3H,ArO
CH3), 2.6(t,2H,ArCH 2CH2), 1.6(b,2H,ArCH2CH 2), 1.3
(s,10H,C5H10), 0.9(t,3H,CH3);HPLC(CHCl3,silica,0.5
ml/min.,254nm)5.5min.;DSC(1℃/min.)67℃(吸熱ピー
クトップ),1mj/mg以下
Embedded image 1 H-NMR (CDCl 3 , 30 ° C.) δ 8.2 (s, 1 H, ArCH = N), 7.5 (s, 2 H, Ar
H), 7.0 (q, 4H , AniH), 4.1 (b, 2H, ArCH 2 Ar), 3.5 (s, 3H, ArO
CH 3), 2.6 (t, 2H, ArC H 2 CH 2), 1.6 (b, 2H, ArCH 2 C H 2), 1.3
(s, 10H, C 5 H 10), 0.9 (t, 3H, CH 3); HPLC (CHCl 3, silica, 0.5
ml / min., 254 nm) 5.5 min .; DSC (1 ° C / min.) 67 ° C (top of endothermic peak), 1 mj / mg or less

【0052】製造例5:化合物〔化13〕の製造 製造例3におけるヘキサデシルアニリン156mgのか
わりにドデシルアニリン132mgを用いた他は、製造
例3と同様な操作を行い、下記式〔化13〕で表される
化合物を得た。
Preparation Example 5 Preparation of Compound [Chemical Formula 13] The same procedure as in Preparation Example 3 was carried out except that 132 mg of dodecylaniline was used instead of 156 mg of hexadecylaniline in Preparation Example 3, to obtain a compound of the following formula. The compound represented by was obtained.

【0053】[0053]

【化13】 1H-NMR(CDCl3,30℃)δ8.2(s,1H,ArCH=N), 7.5(s,2H,Ar
H), 7.0(s,4H,AniH),4.1(b,2H,ArCH2Ar), 3.5(s,3H,ArO
CH3), 2.6(t,2H,ArCH 2CH2), 1.6(s,2H,ArCH2CH 2), 1.3
(s,18H,C9H18), 0.9(t,3H,CH3);HPLC(CHCl3,silica,0.5
ml/min.,254nm)5.3min.;DSC(1℃/min.)54℃,1mj/mg以下
Embedded image 1 H-NMR (CDCl 3 , 30 ° C.) δ 8.2 (s, 1 H, ArCH = N), 7.5 (s, 2 H, Ar
H), 7.0 (s, 4H , AniH), 4.1 (b, 2H, ArCH 2 Ar), 3.5 (s, 3H, ArO
CH 3), 2.6 (t, 2H, ArC H 2 CH 2), 1.6 (s, 2H, ArCH 2 C H 2), 1.3
(s, 18H, C 9 H 18), 0.9 (t, 3H, CH 3); HPLC (CHCl 3, silica, 0.5
ml / min., 254 nm) 5.3 min .; DSC (1 ° C / min.) 54 ° C, 1 mj / mg or less

【0054】製造例6:化合物〔化14〕の製造 製造例3におけるヘキサデシルアニリン156mgのか
わりにテトラデシルアニリン150mgを用いた他は、
製造例3と同様な操作を行い、下記式〔化14〕で表さ
れる化合物を得た。
Production Example 6 Production of Compound [Chemical Formula 14] Except that 150 mg of tetradecylaniline was used instead of 156 mg of hexadecylaniline in Production Example 3,
By performing the same operation as in Production Example 3, a compound represented by the following formula [Formula 14] was obtained.

【0055】[0055]

【化14】 1H-NMR(CDCl3,30℃)δ8.1(s,1H,ArCH=N), 7.5(s,2H,Ar
H), 7.0(q,4H,AniH),4.0(b,2H,ArCH2Ar), 3.5(s,3H,ArO
CH3), 2.5(t,2H,ArCH 2CH2), 1.5(m,2H,ArCH2CH 2), 1.3
(s,22H,C11H22), 0.9(t,3H,CH3);HPLC(CHCl3,silica,0.
5ml/min.,254nm)5.1min.;DSC(1℃/min.)47℃,1mj/mg以
Embedded image 1 H-NMR (CDCl 3 , 30 ° C.) δ 8.1 (s, 1 H, ArCH = N), 7.5 (s, 2 H, Ar
H), 7.0 (q, 4H , AniH), 4.0 (b, 2H, ArCH 2 Ar), 3.5 (s, 3H, ArO
CH 3), 2.5 (t, 2H, ArC H 2 CH 2), 1.5 (m, 2H, ArCH 2 C H 2), 1.3
(s, 22H, C 11 H 22), 0.9 (t, 3H, CH 3); HPLC (CHCl 3, silica, 0.
5ml / min., 254nm) 5.1min.; DSC (1 ℃ / min.) 47 ℃, 1mj / mg or less

【0056】製造例7:中間体〔化15〕o−メチルカ
リックス[6]アレーンの製造 製造例1におけるカリックス[8]アレーンのかわりに
カリックス[6]アレーンを用いた他は、製造例1とほ
ぼ同様な操作を行い、o−メチルカリックス[6]アレ
ーン〔化15〕を得た。
Production Example 7 Production of Intermediate [Formula 15] o-Methylcalix [6] arene Preparation Example 7 was repeated except that calix [6] arene was used in place of calix [8] arene in Production Example 1. By performing substantially the same operation, o-methylcalix [6] arene [formula 15] was obtained.

【0057】[0057]

【化15】 1H-NMR(CDCl3,30℃)δ6.95(m,3H,ArH), 3.95(s,2H,ArCH
2Ar), 3.19(s,3H,ArOCH3); HPLC(CHCl3,silica,1.0ml/m
in.,254nm)3.6min.
Embedded image 1 H-NMR (CDCl 3 , 30 ° C.) δ 6.95 (m, 3H, ArH), 3.95 (s, 2H, ArCH
2 Ar), 3.19 (s, 3H, ArOCH 3); HPLC (CHCl 3, silica, 1.0ml / m
in., 254nm) 3.6min.

【0058】製造例8:中間体〔化16〕p−ホルミル
−o−メチルカリックス[6]アレーンの製造 製造例2におけるオクタメトキシカリックス[8]アレ
ーンのかわりにヘキサメトキシカリックス[6]アレー
ンを用いた他は、製造例2とほぼ同様な操作を行い、p
−ホルミル−o−メチルカリックス[6]アレーン〔化
16〕を得た(収率32%)。
Production Example 8 Preparation of Intermediate [Chemical Formula 16] p-Formyl-o-methylcalix [6] arene Hexamethoxycalix [6] arene was used in place of octamethoxycalix [8] arene in Production Example 2. Otherwise, the same operation as in Production Example 2 was performed, and p
-Formyl-o-methylcalix [6] arene [Formula 16] was obtained (yield 32%).

【0059】[0059]

【化16】 1H-NMR(CDCl3,30℃)δ9.70(s,1H,ArCHO), 7.45(s,2H,Ar
H), 4.06(s,2H,ArCH2Ar), 3.49(s,3H,ArOCH3); HPLC(CH
Cl3,silica,1.5ml/min.,254nm)8.7min.
Embedded image 1 H-NMR (CDCl 3 , 30 ° C.) δ 9.70 (s, 1 H, ArCHO), 7.45 (s, 2 H, Ar
H), 4.06 (s, 2H , ArCH 2 Ar), 3.49 (s, 3H, ArOCH 3); HPLC (CH
(Cl 3 , silica, 1.5ml / min., 254nm) 8.7min.

【0060】製造例9:化合物〔化17〕の製造 p−ホルミル−o−メチルカリックス[6]アレーン1
48mg(0.17ミリモル)、ヘキサデシルアニリン
317mg(1ミリモル)およびモレキュラシーブス4
A1/16 1.5gを15gのクロロホルム中に添加し、
この溶液を窒素気流下、11時間加熱還流した。反応混
合物を濾過後、溶媒を減圧下に留去し、黄色粘性物を得
た。これをさらにクロロホルム−メタノールの混合溶媒
より再沈澱して純粋な化合物〔化17〕を得た。
Production Example 9 : Production of Compound [Chemical Formula 17] p-formyl-o-methylcalix [6] arene 1
48 mg (0.17 mmol), 317 mg (1 mmol) of hexadecylaniline and molecular sieves 4
Add 1.5 g of A1 / 16 into 15 g of chloroform,
This solution was heated and refluxed for 11 hours under a nitrogen stream. After filtering the reaction mixture, the solvent was distilled off under reduced pressure to obtain a yellow viscous substance. This was further reprecipitated from a mixed solvent of chloroform-methanol to obtain a pure compound [formula 17].

【0061】[0061]

【化17】 1H-NMR(CDCl3,30℃)δ8.23(s,1H,ArCH=N), 7.55(s,2H,A
rH), 7.09(s,4H,AniH), 4.05(b,2H,ArCH2Ar), 3.40(s,3
H,ArOCH3), 2.59(t,2H,ArCH 2CH2), 1.57(b,2H,ArCH2C
H 2), 1.26(s,26H,C13H26), 0.88(t,3H,CH3); HPLC(CHCl
3,silica,0.5ml/min.,254nm)5.6min.;DSC(1℃/min.) 40
℃, 8.4mj/mg
Embedded image 1 H-NMR (CDCl 3 , 30 ° C.) δ 8.23 (s, 1 H, ArCH = N), 7.55 (s, 2 H, A
rH), 7.09 (s, 4H , AniH), 4.05 (b, 2H, ArCH 2 Ar), 3.40 (s, 3
H, ArOCH 3 ), 2.59 (t, 2H, ArC H 2 CH 2 ), 1.57 (b, 2H, ArCH 2 C
H 2), 1.26 (s, 26H, C 13 H 26), 0.88 (t, 3H, CH 3); HPLC (CHCl
3 , silica, 0.5ml / min., 254nm) 5.6min.; DSC (1 ℃ / min.) 40
℃, 8.4mj / mg

【0062】製造例10:化合物〔化18〕の製造 製造例9におけるヘキサデシルアニリン317mgのか
わりにテトラデシルアニリン289mgを用いた他は、
製造例9と同様な操作を行い下記式〔化18〕で表され
る化合物を得た。
Production Example 10 : Production of Compound [Chemical Formula 18] Except that 289 mg of tetradecylaniline was used instead of 317 mg of hexadecylaniline in Production Example 9,
The same operation as in Production Example 9 was performed to obtain a compound represented by the following formula [Formula 18].

【0063】[0063]

【化18】 1H-NMR(CDCl3,30℃)δ8.24(s,1H,ArCH=N), 7.55(s,2H,A
rH), 7.08(s,4H,AniH), 4.05(b,2H,ArCH 2CH2), 3.40(b,
3H,ArOCH3), 2.50-2.65(t,2H,ArCH 2CH2), 1.58(s,2H,Ar
CH2CH 2), 1.26(s,22H,C11H22), 0.87(t,3H,CH3); HPLC
(CHCl3,silica,0.5ml/min.,254nm)5.3min.;DSC(1℃/mi
n.) 47℃, 3.8mj/mg
Embedded image 1 H-NMR (CDCl 3 , 30 ° C.) δ 8.24 (s, 1 H, ArCH = N), 7.55 (s, 2 H, A
rH), 7.08 (s, 4H , AniH), 4.05 (b, 2H, ArC H 2 CH 2), 3.40 (b,
3H, ArOCH 3 ), 2.50-2.65 (t, 2H, ArC H 2 CH 2 ), 1.58 (s, 2H, Ar
CH 2 C H 2), 1.26 (s, 22H, C 11 H 22), 0.87 (t, 3H, CH 3); HPLC
(CHCl 3 , silica, 0.5ml / min., 254nm) 5.3min .; DSC (1 ° C / mi
n.) 47 ℃, 3.8mj / mg

【0064】製造例11:化合物〔化19〕の製造 製造例9におけるヘキサデシルアニリン317mgのか
わりにドデシルアニリン262mgを用いた他は、製造
例9と同様な操作を行い下記式〔化19〕で表される化
合物を得た。
Production Example 11 : Production of Compound [Chemical Formula 19] The same procedure as in Production Example 9 was carried out, except that 262 mg of dodecylaniline was used instead of 317 mg of hexadecylaniline in Production Example 9, to obtain a compound of the following formula. The compound represented was obtained.

【0065】[0065]

【化19】 1H-NMR(CDCl3,30℃)δ8.23(s,1H,ArCH=N), 7.55(s,2H,A
rH), 7.09(s,4H,AniH), 4.05(s,2H,ArCH2Ar), 3.40(s,3
H,ArOCH3), 2.59(t,2H,ArCH 2CH2), 1.59(m,2H,ArCH2C
H 2), 1.26(s,18H,C9H18), 0.88(t,3H,CH3); HPLC(CHC
l3,silica,0.5ml/min.,254nm)5.4min.;DSC(1℃/min.) 4
2℃, 2.2mj/mg
Embedded image 1 H-NMR (CDCl 3 , 30 ° C.) δ 8.23 (s, 1 H, ArCH = N), 7.55 (s, 2 H, A
rH), 7.09 (s, 4H , AniH), 4.05 (s, 2H, ArCH 2 Ar), 3.40 (s, 3
H, ArOCH 3 ), 2.59 (t, 2H, ArC H 2 CH 2 ), 1.59 (m, 2H, ArCH 2 C
H 2), 1.26 (s, 18H, C 9 H 18), 0.88 (t, 3H, CH 3); HPLC (CHC
l 3 , silica, 0.5ml / min., 254nm) 5.4min.; DSC (1 ℃ / min.) 4
2 ℃, 2.2mj / mg

【0066】製造例12:化合物〔化20〕の製造 製造例9におけるヘキサデシルアニリン317mgのか
わりにオクチルアニリン205mgを用いた他は、製造
例9と同様な操作を行い、下記式〔化20〕で表される
化合物を得た。
Production Example 12 : Production of Compound [Chemical Formula 20] The same operation as in Production Example 9 was carried out except that 205 mg of octylaniline was used instead of 317 mg of hexadecylaniline in Production Example 9, and the following formula was used. The compound represented by was obtained.

【0067】[0067]

【化20】 1H-NMR(CDCl3,30℃)δ8.24(s,1H,ArCH=N), 7.55(s,2H,A
rH), 7.09(s,4H,AniH), 4.05(s,2H,ArCH 2CH2), 3.40(s,
3H,ArOCH3), 2.59(t,2H,ArCH2CH 2), 1.62(m,2H,ArCH2CH
2), 1.27(s,10H,C5H10), 0.87(t,3H,CH3); HPLC(CHCl3,
silica,1.5ml/min.,254nm)1.9min.;DSC(1℃/min.) 56
℃, 3.5mj/mg
Embedded image 1 H-NMR (CDCl 3 , 30 ° C.) δ 8.24 (s, 1 H, ArCH = N), 7.55 (s, 2 H, A
rH), 7.09 (s, 4H , AniH), 4.05 (s, 2H, ArC H 2 CH2), 3.40 (s,
3H, ArOCH 3 ), 2.59 (t, 2H, ArCH 2 C H 2 ), 1.62 (m, 2H, ArCH 2 C H
2), 1.27 (s, 10H , C 5 H 10), 0.87 (t, 3H, CH 3); HPLC (CHCl 3,
silica, 1.5 ml / min., 254 nm) 1.9 min .; DSC (1 ° C./min.) 56
℃, 3.5mj / mg

【0068】製造例13:中間体〔化21〕o−メチル
カリックス[4]アレーンの製造 カリックス[4]アレーン6.0g(14.2ミリモ
ル)、水素化ナトリウム5.4g(225ミリモル)、
およびヨウ化メチル82.1g(570ミリモル)を乾
燥させた270mlのテトラヒドロフラン、および同じ
く乾燥させたN,N−ジメチルホルムアミド30mlよ
りなる混合溶媒中に添加し、この溶液を窒素気流化、1
8時間加熱還流した。反応混合物より溶媒を減圧下に留
去し、残渣に500mlの水を注ぎ、500mlのクロ
ロホルムで抽出した。有機層を分離し、500mlの水
で4回洗浄した後、硫酸マグネシウムで乾燥した。クロ
ロホルムを留去し、メタノールで粗結晶を洗浄した後、
クロロホルム−メタノールの混合溶媒から再結晶して純
粋な中間体〔化21〕(白色結晶、5.73g、収率8
4%)を得た。
Production Example 13 Preparation of Intermediate [Chemical Formula 21] o-Methylcalix [4] arene 6.0 g (14.2 mmol) of calix [4] arene, 5.4 g (225 mmol) of sodium hydride,
And 82.1 g (570 mmol) of methyl iodide were added to a mixed solvent consisting of 270 ml of dried tetrahydrofuran and 30 ml of N, N-dimethylformamide, which had been dried.
The mixture was refluxed for 8 hours. The solvent was distilled off from the reaction mixture under reduced pressure, and the residue was poured with 500 ml of water and extracted with 500 ml of chloroform. The organic layer was separated, washed four times with 500 ml of water, and dried over magnesium sulfate. After distilling off chloroform and washing the crude crystals with methanol,
Recrystallization from a mixed solvent of chloroform-methanol gave a pure intermediate [formula 21] (white crystals, 5.73 g, yield 8).
4%).

【0069】[0069]

【化21】 1H-NMR(CDCl3,30℃)δ6.4〜7.2(b,3H,ArH), 3.0〜4.6
(b,5H,ArCH 2Ar,ArOCH3);HPLC(CHCl3,silica,0.5ml/mi
n.,254nm)6.24min.
Embedded image 1 H-NMR (CDCl 3, 30 ℃) δ6.4~7.2 (b, 3H, ArH), 3.0~4.6
(b, 5H, ArC H 2 Ar, ArOCH 3 ); HPLC (CHCl 3 , silica, 0.5 ml / mi
n., 254nm) 6.24min.

【0070】製造例14:中間体〔化22〕p−ホルミ
ル−o−メチルカリックス[4]アレーンの製造 テトラメトキシカリックス[4]アレーン4.0g
(8.3ミリモル)、ヘキサメチレンテトラミン42g
(300ミリモル)を200mlのトリフルオロ酢酸中
に添加し、この溶液を窒素気流下90℃〜100℃で2
4時間加熱還流した。反応混合物を氷水500ml中に
注ぎ、1時間攪拌を続け、200mlのクロロホルムで
3回抽出した。有機層を500mlの水で4回洗浄した
後、硫酸マグネシウムで乾燥した。溶媒を減圧下に留去
濃縮し、ここにn−ヘキサンを加え4.63gの固体を
得た。クロロホルム−n−ヘキサンより再結晶し3.5
2g(収率72%)の中間体〔化22〕の白色結晶を得
た。
Production Example 14 : Preparation of an intermediate [formula 22] p-formyl-o-methylcalix [4] arene 4.0 g of tetramethoxycalix [4] arene
(8.3 mmol), 42 g of hexamethylenetetramine
(300 mmol) in 200 ml of trifluoroacetic acid and the solution is added at 90 ° -100 ° C. under a stream of nitrogen.
The mixture was heated under reflux for 4 hours. The reaction mixture was poured into 500 ml of ice water, stirring was continued for 1 hour, and the mixture was extracted three times with 200 ml of chloroform. The organic layer was washed four times with 500 ml of water, and then dried over magnesium sulfate. The solvent was evaporated and concentrated under reduced pressure, and n-hexane was added thereto to obtain 4.63 g of a solid. Recrystallized from chloroform-n-hexane, 3.5
2 g (yield 72%) of white crystals of the intermediate [formula 22] were obtained.

【0071】[0071]

【化22】 Embedded image

【0072】製造例15:化合物〔化23〕の製造 p−ホルミル−o−メチルカリックス[4]アレーン1
48mg(0.25ミリモル)、ヘキサデシルアニリン
317mg(1ミリモル)、およびモレキュラシーブス
4A1/16 1.5gを16gのクロロホルム中に添加
し、この溶液を窒素気流下、約40時間加熱還流した。
反応混合物を濾過後、溶媒を減圧下に留去し、乳濁ガラ
ス状固体を得た。これをさらにクロロホルム−メタノー
ルの混合溶媒より再沈澱して純粋な化合物〔化23〕を
得た。
Production Example 15 : Production of Compound [Formula 23] p-Formyl-o-methylcalix [4] arene 1
48 mg (0.25 mmol), 317 mg (1 mmol) of hexadecylaniline, and 1.5 g of molecular sieves 4A1 / 16 were added to 16 g of chloroform, and this solution was heated to reflux under a nitrogen stream for about 40 hours.
After filtering the reaction mixture, the solvent was distilled off under reduced pressure to obtain an emulsion glassy solid. This was further reprecipitated from a mixed solvent of chloroform-methanol to obtain a pure compound [Formula 23].

【0073】[0073]

【化23】 1H-NMR(CDCl3,30℃)δ8.2(s,1H,ArCH=N), 7.3-7.8(b,2
H,ArH), 7.0(s,4H,AniH), 2.8-4.5(m,5H,ArCH2Ar/ArOCH
3), 2.6(t,2H,ArCH 2CH2), 1.6(b,2H,ArCH2CH 2),1.2(s,2
6H,C13H26), 0.9(t,3H,CH3); HPLC(CHCl3,silica,0.5ml
/min.,254nm)5.5min.;DSC(1℃/min.) 45℃, 44mj/mg
Embedded image 1 H-NMR (CDCl 3 , 30 ° C.) δ 8.2 (s, 1 H, ArCH = N), 7.3-7.8 (b, 2
H, ArH), 7.0 (s, 4H, AniH), 2.8-4.5 (m, 5H, ArCH 2 Ar / ArOCH
3), 2.6 (t, 2H , ArC H 2 CH 2), 1.6 (b, 2H, ArCH 2 C H 2), 1.2 (s, 2
6H, C 13 H 26), 0.9 (t, 3H, CH 3); HPLC (CHCl 3, silica, 0.5ml
/min.,254nm) 5.5min .; DSC (1 ℃ / min.) 45 ℃, 44mj / mg

【0074】製造例16:化合物〔化24〕の製造 製造例15におけるヘキサデシルアニリン317mgの
かわりにテトラデシルアニリン298mgを用いた他
は、製造例15と同様な操作を行い、下記式〔化24〕
で表される化合物を得た。
Production Example 16 : Production of Compound [Chemical Formula 24] The same operation as in Production Example 15 was carried out except that 298 mg of tetradecylaniline was used instead of 317 mg of hexadecylaniline in Production Example 15, and the following formula was used. ]
The compound represented by was obtained.

【0075】[0075]

【化24】 1H-NMR(CDCl3,30℃)δ8.2(s,1H,ArCH=N), 7.4-7.8(b,2
H,ArH), 7.0(s,4H,AniH), 3.0-4.4(m,5H,ArCH2Ar/ArOCH
3), 2.6(t,2H,ArCH 2CH2), 1.5(s,4H,ArCH2CH 2),1.3(s,2
0H,C10H20), 0.9(t,3H,CH3); HPLC(CHCl3,silica,0.5ml
/min.,254nm)5.5min.;DSC(1℃/min.) 28℃, 24.8mj/mg
Embedded image 1 H-NMR (CDCl 3 , 30 ° C.) δ 8.2 (s, 1 H, ArCH = N), 7.4-7.8 (b, 2
H, ArH), 7.0 (s, 4H, AniH), 3.0-4.4 (m, 5H, ArCH 2 Ar / ArOCH
3), 2.6 (t, 2H , ArC H 2 CH 2), 1.5 (s, 4H, ArCH 2 C H 2), 1.3 (s, 2
0H, C 10 H 20), 0.9 (t, 3H, CH 3); HPLC (CHCl 3, silica, 0.5ml
/min.,254nm) 5.5min .; DSC (1 ℃ / min.) 28 ℃, 24.8mj / mg

【0076】製造例17:化合物〔化25〕の製造 製造例15におけるヘキサデシルアニリン317mgの
かわりにドデシルアニリン262mgを用いた他は、製
造例15と同様な操作を行い、下記式〔化25〕で表さ
れる化合物を得た。
Production Example 17 : Production of Compound [Chemical Formula 25] The same operation as in Production Example 15 was carried out except that 262 mg of dodecylaniline was used instead of 317 mg of hexadecylaniline in Production Example 15, and the following formula was used. The compound represented by was obtained.

【0077】[0077]

【化25】 1H-NMR(CDCl3,30℃)δ8.2(s,1H,ArCH=N), 7.3-7.8(b,2
H,ArH), 7.0(s,4H,AniH), 3.0-4.6(m,5H,ArCH2Ar/ArOCH
3), 2.6(t,2H,ArCH2CH2), 1.6(s,2H,ArCH2CH 2),1.3(s,1
8H,C9H18), 0.9(t,3H,CH3); HPLC(CHCl3,silica,0.5ml/
min.,254nm)5.6min.;DSC(1℃/min.) 20℃, 2.7mj/mg
Embedded image 1 H-NMR (CDCl 3 , 30 ° C.) δ 8.2 (s, 1 H, ArCH = N), 7.3-7.8 (b, 2
H, ArH), 7.0 (s, 4H, AniH), 3.0-4.6 (m, 5H, ArCH 2 Ar / ArOCH
3), 2.6 (t, 2H , ArCH 2 CH 2), 1.6 (s, 2H, ArCH 2 C H 2), 1.3 (s, 1
8H, C 9 H 18), 0.9 (t, 3H, CH 3); HPLC (CHCl 3, silica, 0.5ml /
min., 254nm) 5.6min .; DSC (1 ℃ / min.) 20 ℃, 2.7mj / mg

【0078】製造例18:化合物〔化26〕の製造 製造例15におけるヘキサデシルアニリン317mgの
かわりにオクチルアニリン205mgを用いた他は、製
造例15と同様な操作を行い、下記式〔化26〕で表さ
れる化合物を得た。
Production Example 18 : Production of Compound [Chemical Formula 26] The same procedure as in Production Example 15 was carried out except that 205 mg of octylaniline was used instead of 317 mg of hexadecylaniline in Production Example 15, and the following formula was used. The compound represented by was obtained.

【0079】[0079]

【化26】 1H-NMR(CDCl3,30℃)δ8.2(s,1H,ArCH=N), 7.3-7.8(b,2
H,ArH), 6.8-7.2(s,4H,AniH), 3.0-4.6(m,5H,ArCH2Ar/A
rOCH3), 2.6(t,2H,ArCH 2CH2), 1.6(s,2H,ArCH2CH 2), 1.
3(s,10H,C5H10), 0.9(t,3H,CH3); HPLC(CHCl3,silica,
0.5ml/min.,254nm)5.9min.;DSC(1℃/min.) 27℃, 3.2mj
/mg
Embedded image 1 H-NMR (CDCl 3 , 30 ° C.) δ 8.2 (s, 1 H, ArCH = N), 7.3-7.8 (b, 2
H, ArH), 6.8-7.2 (s, 4H, AniH), 3.0-4.6 (m, 5H, ArCH 2 Ar / A
rOCH 3), 2.6 (t, 2H, ArC H 2 CH 2), 1.6 (s, 2H, ArCH 2 C H 2), 1.
3 (s, 10H, C 5 H 10), 0.9 (t, 3H, CH 3); HPLC (CHCl 3, silica,
0.5ml / min., 254nm) 5.9min .; DSC (1 ℃ / min.) 27 ℃, 3.2mj
/ mg

【0080】製造例19:中間体〔化27〕トリホルミ
ル−o−メチルカリックス[6]アレーン ヘキサメトキシカリックス[6]アレーン3.00g
(4.17ミリモル)、ヘキサメチレンテトラミン7.
30g(52ミリモル)を175mlのトリフルオロ酢
酸中に添加し、この溶液を窒素気流下70℃〜80℃で
3時間加熱還流した。反応混合物を氷水500ml中に
注ぎ、1時間攪拌を続け、200mlのクロロホルムで
3回抽出した。有機層を500mlの水で4回洗浄した
後、硫酸マグネシウムで乾燥した。クロロホルムを減圧
下留去し、約4.0gの淡黄色透明固体を得た。これを
わずかの量のクロロホルム−n−ヘキサン混合溶媒に溶
かし込み、クロロホルム:n−ヘキサン(7:3)の混
合溶媒を展開溶媒としてシリカゲル(ワコーゲルc−3
00:150g)を充填したカラムで分離・精製して純
粋な中間体〔化27〕(白色結晶、収率約25%)を得
た。
Production Example 19 : Intermediate [Formula 27] Triformyl-o-methylcalix [6] arene Hexamethoxycalix [6] arene 3.00 g
(4.17 mmol), hexamethylenetetramine7.
30 g (52 mmol) was added to 175 ml of trifluoroacetic acid, and the solution was heated to reflux at 70 ° C. to 80 ° C. for 3 hours under a nitrogen stream. The reaction mixture was poured into 500 ml of ice water, stirring was continued for 1 hour, and the mixture was extracted three times with 200 ml of chloroform. The organic layer was washed four times with 500 ml of water, and then dried over magnesium sulfate. Chloroform was distilled off under reduced pressure to obtain about 4.0 g of a pale yellow transparent solid. This was dissolved in a small amount of a mixed solvent of chloroform-n-hexane, and silica gel (Wakogel c-3) was used as a developing solvent with a mixed solvent of chloroform: n-hexane (7: 3).
(00: 150 g) to obtain a pure intermediate [Formula 27] (white crystals, yield: about 25%).

【0081】[0081]

【化27】 1H-NMR(CDCl3,30℃)δ9.80(s,1.5H,ArCHO), 9.70(s,1.5
H,ArCHO), 7.4-7.6(m,6H,H-ArCHO), 6.90(s,9H,ArH),
4.0(s,12H,ArCH2Ar), 3.30(d,18H,ArOCH3); HPLC(CHC
l3,silica,1.5ml/min.)5.9min.
Embedded image 1 H-NMR (CDCl 3 , 30 ° C.) δ 9.80 (s, 1.5 H, ArCHO), 9.70 (s, 1.5
H, ArCHO), 7.4-7.6 (m, 6H, H -ArCHO), 6.90 (s, 9H, ArH),
4.0 (s, 12H, ArCH 2 Ar), 3.30 (d, 18H, ArOCH 3); HPLC (CHC
l 3 , silica, 1.5ml / min.) 5.9min.

【0082】製造例20:化合物〔化28〕の製造 中間体〔化27〕67mg(0.083ミリモル)、ヘ
キサデシルアニリン82mg(0.25ミリモル)、お
よびモレキュラシーブス4A1/16 1.0gを8gのク
ロロホルム中に添加し、この溶液を窒素気流下、約40
時間加熱還流した。反応混合物を濾過後、溶媒を減圧下
に留去し、粘性淡黄色物質を得た。これをさらにクロロ
ホルム−メタノールの混合溶媒より再沈澱して化合物
〔化28〕を得た。
Production Example 20 : Preparation of Compound [Chemical Formula 28] 8 g of 67 mg (0.083 mmol) of an intermediate [Formula 27], 82 mg (0.25 mmol) of hexadecylaniline, and 1.0 g of molecular sieves 4A1 / 16 Of chloroform, and the solution was added under nitrogen stream for about 40 minutes.
Heated to reflux for an hour. After filtering the reaction mixture, the solvent was distilled off under reduced pressure to obtain a viscous pale yellow substance. This was further reprecipitated from a mixed solvent of chloroform-methanol to obtain a compound [formula 28].

【0083】[0083]

【化28】 1H-NMR(CDCl3,30℃)δ8.3(s,1H,ArCH=N), 7.6(b,2H,Ar
H), 7.1(s,4H,AniH), 6.9(b,3H,ArH), 4.0(s,4H,ArCH2A
r), 3.1-3.5(m,6H,ArOCH3), 2.6(t,2H,ArCH 2CH2), 1.6
(b,2H,ArCH2CH 2), 1.2(s,26H,C13H26), 0.9(t,3H,CH3);
HPLC(CHCl3,silica,0.5ml/min.,254nm)5.5min.;DSC(1
℃/min.) 27℃, 1mj/mg
Embedded image 1 H-NMR (CDCl 3 , 30 ° C.) δ 8.3 (s, 1 H, ArCH = N), 7.6 (b, 2 H, Ar
H), 7.1 (s, 4H, AniH), 6.9 (b, 3H, ArH), 4.0 (s, 4H, ArCH 2 A
r), 3.1-3.5 (m, 6H, ArOCH 3 ), 2.6 (t, 2H, ArC H 2 CH 2 ), 1.6
(b, 2H, ArCH 2 C H 2 ), 1.2 (s, 26H, C 13 H 26 ), 0.9 (t, 3H, CH 3 );
HPLC (CHCl 3 , silica, 0.5 ml / min., 254 nm) 5.5 min .; DSC (1
℃ / min.) 27 ℃, 1mj / mg

【0084】製造例21:中間体〔化29〕ペンタホル
ミル−o−メチルカリックス[6]アレーンの製造 ヘキサメトキシカリックス[6]アレーン2.00g
(2.78ミリモル)、ヘキサメチレンテトラミン7.
00g(50ミリモル)を35mlのトリフルオロ酢酸
中に添加し、この溶液を窒素気流下90℃〜100℃で
30時間加熱還流した。反応混合物を氷水500ml中
に注ぎ、1時間攪拌を続け、500mlのクロロホルム
で抽出した。有機層を500mlの水で3回洗浄した
後、硫酸マグネシウムで乾燥した。クロロホルムを留去
し、約2.5gの粗結晶を得た。これをわずかの量のク
ロロホルム−n−ヘキサンに溶かし込み、クロロホル
ム:n−ヘキサン(4:1)の混合溶液を展開溶媒とし
てシリカゲル(ワコーゲルc−300:150g)を充
填したカラムで分離・精製して純粋な中間体〔化29〕
(白色結晶、収率約20%)を得た。
Production Example 21 : Preparation of intermediate [formula 29] pentaformyl-o-methylcalix [6] arene 2.00 g of hexamethoxycalix [6] arene
(2.78 mmol), hexamethylenetetramine7.
00 g (50 mmol) was added to 35 ml of trifluoroacetic acid, and the solution was heated to reflux at 90 ° C. to 100 ° C. for 30 hours under a nitrogen stream. The reaction mixture was poured into 500 ml of ice water, stirring was continued for 1 hour and extracted with 500 ml of chloroform. The organic layer was washed three times with 500 ml of water, and then dried over magnesium sulfate. Chloroform was distilled off to obtain about 2.5 g of crude crystals. This was dissolved in a small amount of chloroform-n-hexane, and separated and purified on a column packed with silica gel (Wako gel c-300: 150 g) using a mixed solution of chloroform: n-hexane (4: 1) as a developing solvent. Pure intermediate
(White crystals, yield: about 20%).

【0085】[0085]

【化29】 1H-NMR(CDCl3,30℃)δ9.82,9.68(s,5H,ArCHO), 7.4-7.6
(d,10H,HArCHO), 6.90(s,3H,ArH), 4.05(d,12H,ArCH 2A
r), 3.40-3.50(q,18H,ArOCH3); HPLC(CHCl3,silica,1.5
ml/min.)5.9min.
Embedded image 1 H-NMR (CDCl 3 , 30 ° C) δ 9.82, 9.68 (s, 5H, ArCHO), 7.4-7.6
(d, 10H, H ArCHO), 6.90 (s, 3H, ArH), 4.05 (d, 12H, ArC H 2 A
r), 3.40-3.50 (q, 18H , ArOCH 3); HPLC (CHCl 3, silica, 1.5
ml / min.) 5.9min.

【0086】製造例22:化合物〔化30〕の製造 中間体〔化29〕87mg(0.10ミリモル)、ヘキ
サデシルアニリン166mg(0.5ミリモル)、およ
びモレキュラシーブス4A1/16 1.0gを10gのク
ロロホルム中に添加し、この溶液を窒素気流下、約48
時間加熱還流した。反応混合物を濾過後、溶媒を減圧下
に留去し、粘性淡黄色物質を得た。これをさらにクロロ
ホルム−メタノールの混合溶媒より再沈澱して化合物
〔化30〕を得た。
Preparation Example 22 : Preparation of Compound [Chemical Formula 30] 87 mg (0.10 mmol) of the intermediate [Chemical Formula 29], 166 mg (0.5 mmol) of hexadecylaniline, and 10 g of 1.0 g of molecular sieves 4A1 / 16 Of chloroform, and the solution was added under nitrogen stream for about 48 hours.
Heated to reflux for an hour. After filtering the reaction mixture, the solvent was distilled off under reduced pressure to obtain a viscous pale yellow substance. This was further reprecipitated from a mixed solvent of chloroform-methanol to obtain a compound [Chemical Formula 30].

【0087】[0087]

【化30】 1H-NMR(CDCl3,30℃)δ8.2(s,5H,ArCH=N), 7.6(s,10H,Ar
H), 7.1(s,20H,AniH),7.0(b,3H,ArH), 4.0(b,12H,ArCH2
Ar), 3.3-3.5(d,18H,ArOCH3), 2.6(t,10H,ArCH 2CH2),
1.6(m,10H,ArCH2CH 2), 1.3(s,130H,C13H26), 0.9(t,15
H,CH3); HPLC(CHCl3,silica,0.5ml/min.,254nm)5.3mi
n.;DSC(1.0℃/min.) 38℃, 1.1mj/mg
Embedded image 1 H-NMR (CDCl 3 , 30 ° C.) δ 8.2 (s, 5 H, ArCH = N), 7.6 (s, 10 H, Ar
H), 7.1 (s, 20H , AniH), 7.0 (b, 3H, ArH), 4.0 (b, 12H, ArCH 2
Ar), 3.3-3.5 (d, 18H, ArOCH 3 ), 2.6 (t, 10H, ArC H 2 CH 2 ),
1.6 (m, 10H, ArCH 2 C H 2 ), 1.3 (s, 130H, C 13 H 26 ), 0.9 (t, 15
H, CH 3);. HPLC (CHCl 3, silica, 0.5ml / min, 254nm) 5.3mi
n.; DSC (1.0 ℃ / min.) 38 ℃, 1.1mj / mg

【0088】製造例23:化合物〔化31〕の製造 p−ホルミル−o−メチルカリックス[4]アレーン1
48mg(0.25ミリモル)、ヘキサデシルアニリン
158mg(0.5ミリモル)、ドデシルアニリン13
1mg(0.5ミリモル)、およびモレキュラシーブス
4A1/16 1.5gを16gのクロロホルム中に添加
し、この溶液を窒素気流下、約40時間加熱還流した。
反応混合物を濾過後、溶媒を減圧下に留去し、乳濁ガラ
ス状固体を得た。これをさらにクロロホルム−メタノー
ルの混合溶媒より再沈澱して化合物〔化31〕を得た。
Production Example 23 : Production of Compound [Chemical Formula 31] p-Formyl-o-methylcalix [4] arene 1
48 mg (0.25 mmol), hexadecylaniline 158 mg (0.5 mmol), dodecylaniline 13
1 mg (0.5 mmol) and 1.5 g of Molecular Sieves 4A1 / 16 were added to 16 g of chloroform, and the solution was heated to reflux under a nitrogen stream for about 40 hours.
After filtering the reaction mixture, the solvent was distilled off under reduced pressure to obtain an emulsion glassy solid. This was further reprecipitated from a mixed solvent of chloroform-methanol to obtain a compound [formula 31].

【0089】[0089]

【化31】 1H-NMR(CDCl3,30℃)δ8.2(b,2H,ArCH=N), 7.3-8.0(b,4
H,ArH), 6.8-7.3(b,8H,AniH), 3.0-4.6(b,10H,ArCH2Ar/
ArOCH3), 2.6(t,4H,ArCH 2CH2), 1.6(b,4H,ArCH2CH 2),
1.3(s,44H,C13H26/C9H18), 0.9(t,6H,CH3); HPLC(CHC
l3,silica,0.5ml/min.,254nm)5.5min.;DSC(1℃/min.) 2
8.8℃, 26.1mj/mg
Embedded image 1 H-NMR (CDCl 3 , 30 ° C.) δ 8.2 (b, 2H, ArCH = N), 7.3-8.0 (b, 4
H, ArH), 6.8-7.3 (b, 8H, AniH), 3.0-4.6 (b, 10H, ArCH 2 Ar /
ArOCH 3), 2.6 (t, 4H, ArC H 2 CH 2), 1.6 (b, 4H, ArCH 2 C H 2),
1.3 (s, 44H, C 13 H 26 / C 9 H 18), 0.9 (t, 6H, CH 3); HPLC (CHC
l 3 , silica, 0.5ml / min., 254nm) 5.5min .; DSC (1 ℃ / min.) 2
8.8 ℃, 26.1mj / mg

【0090】製造例24:中間体〔化32〕p−アミノ
−o−メチルカリックス[6]アレーンの製造 p−ニトロ−o−メチルカリックス[6]アレーン1.
9gをメチルセロリルブ100mlに加え、これに活性
炭0.4gと塩化第二鉄6水和物0.065gを加え
て、80℃で30分間加熱攪拌した。次いで、ヒドラジ
ン1水和物12mlを滴下し、さらに5時間加熱攪拌し
た後、熱時活性炭を濾別した。濾液を冷却し、析出した
結晶を濾取して、エタノールから中間体〔化32〕を再
結晶した(収量1.5g)。
Preparation Example 24 : Preparation of intermediate [Formula 32] p-amino-o-methylcalix [6] arene p-nitro-o-methylcalix [6] arene
9 g was added to 100 ml of methylcellolylbu, and 0.4 g of activated carbon and 0.065 g of ferric chloride hexahydrate were added thereto, followed by heating and stirring at 80 ° C. for 30 minutes. Next, 12 ml of hydrazine monohydrate was added dropwise, and the mixture was further heated and stirred for 5 hours, and then the activated carbon was filtered off while hot. The filtrate was cooled, and the precipitated crystals were collected by filtration, and the intermediate [formula 32] was recrystallized from ethanol (yield 1.5 g).

【0091】[0091]

【化32】 Embedded image

【0092】製造例25:化合物〔化33〕の製造 p−アミノ−o−メチルカリックス[6]アレーン13
5mg(0.167ミリモル)、p−ホルミルフェニル
ヘキサデカン330mg(1ミリモル)、およびモレキ
ュラシーブス4A1/16 3gを16gのクロロホルム中
に添加し、この溶液を窒素気流下、20時間加熱還流し
た。反応混合物を濾過後、溶媒を減圧下に留去し、約4
00mgの黄色粘性物を得た。これをさらにクロロホル
ム−メタノールの混合溶媒より再結晶して純粋な化合物
〔化33〕を得た。
Production Example 25 : Production of Compound [Chemical Formula 33] p-Amino-o-methylcalix [6] arene 13
5 mg (0.167 mmol), 330 mg (1 mmol) of p-formylphenylhexadecane, and 3 g of molecular sieves 4A1 / 16 were added to 16 g of chloroform, and the solution was heated to reflux under a nitrogen stream for 20 hours. After the reaction mixture was filtered, the solvent was distilled off under reduced pressure to obtain about 4
00 mg of a yellow gum was obtained. This was further recrystallized from a mixed solvent of chloroform-methanol to obtain a pure compound [Formula 33].

【0093】[0093]

【化33】 1H-NMR(CDCl3,30℃)δ8.2(s,1H,-CH=N-), 7.6(s,4H,RAr
H), 7.0(s,2H,CH3OArH), 3.8(b,2H,ArCH2Ar), 3.7(s,3
H,ArOCH3), 2.4-2.6(b,2H,ArCH 2CH2), 1.6(b,2H,ArCH2C
H 2), 1.3(s,26H,C13H26), 0.8-1.0(t,3H,CH3)
Embedded image 1 H-NMR (CDCl 3, 30 ℃) δ8.2 (s, 1H, -CH = N-), 7.6 (s, 4H, RAr
H), 7.0 (s, 2H, CH 3 OArH), 3.8 (b, 2H, ArCH 2 Ar), 3.7 (s, 3
H, ArOCH 3 ), 2.4-2.6 (b, 2H, ArC H 2 CH 2 ), 1.6 (b, 2H, ArCH 2 C
H 2 ), 1.3 (s, 26H, C 13 H 26 ), 0.8-1.0 (t, 3H, CH 3 )

【0094】製造例26:化合物〔化34〕の製造 p−アミノ−o−メチルカリックス[6]アレーン13
5mg(0.167ミリモル)、p−ホルミルフェニル
オクタデカン218mg(1ミリモル)、およびモレキ
ュラシーブス4A1/16 3gを16gのクロロホルム中
に添加し、製造例25と同様にして純粋な化合物〔化3
4〕を得た。
Production Example 26 : Production of Compound [Chemical Formula 34] p-Amino-o-methylcalix [6] arene 13
5 mg (0.167 mmol), 218 mg (1 mmol) of p-formylphenyloctadecane, and 3 g of molecular sieves 4A1 / 16 were added to 16 g of chloroform.
4] was obtained.

【0095】[0095]

【化34】 1H-NMR(CDCl3,30℃)δ8.2(s,1H,-CH=N-), 7.6(s,4H,RAr
H), 7.0(s,2H,CH3OArH), 3.8(s,2H,ArCH2Ar), 3.7(s,3
H,ArOCH3), 2.4-2.6(t,2H,ArCH 2CH2), 1.6(b,2H,ArCH2C
H 2), 1.3(s,10H,C13H26), 0.8-1.0(t,3H,CH3)
Embedded image 1 H-NMR (CDCl 3, 30 ℃) δ8.2 (s, 1H, -CH = N-), 7.6 (s, 4H, RAr
H), 7.0 (s, 2H, CH 3 OArH), 3.8 (s, 2H, ArCH 2 Ar), 3.7 (s, 3
H, ArOCH 3 ), 2.4-2.6 (t, 2H, ArC H 2 CH 2 ), 1.6 (b, 2H, ArCH 2 C
H 2 ), 1.3 (s, 10H, C 13 H 26 ), 0.8-1.0 (t, 3H, CH 3 )

【0096】製造例27:化合物〔化35〕の製造 化合物〔化23〕50mgを10gの乾燥したクロロホ
ルムに溶解させ、N2気流下加熱した。還流が始まった
後、2mlのメタノールに溶解した50mgの水素化ホ
ウ素ナトリウムを上記溶液中に速やかに加えた。約10
分後、加熱を止め室温まで冷却した。反応液を50ml
の水で4回洗浄した後、硫酸マグネシウムで乾燥した。
乾燥した反応液を減圧下濃縮し、ここに約10mlのM
eOHを加えて目的化合物(35)を沈澱物として得
た。これをさらにクロロホルム−メタノールの混合溶媒
より再沈澱して純粋な下式〔化35〕の化合物を得た。
Production Example 27 : Production of Compound [Chemical Formula 35] 50 mg of Compound [Chemical Formula 23] was dissolved in 10 g of dried chloroform, and heated under a stream of N 2 . After reflux had begun, 50 mg of sodium borohydride dissolved in 2 ml of methanol was quickly added to the above solution. About 10
After one minute, the heating was stopped and the mixture was cooled to room temperature. 50 ml of the reaction solution
And washed with water four times, and dried over magnesium sulfate.
The dried reaction solution was concentrated under reduced pressure, and about 10 ml of M
MeOH was added to obtain the desired compound (35) as a precipitate. This was further reprecipitated from a mixed solvent of chloroform-methanol to obtain a pure compound of the following formula.

【0097】[0097]

【化35】 1H-NMR(CDCl3,30℃)δ6.8-7.2(d,4H,AniH),6.4-6.8(b,2
H,ArH),2.8-4.6(m,8H,ArCH2Ar/ArOCH3/ArCH2NH),2.3-2.
7(t,2H,ArCH 2CH),1.6(b,2H,ArCH2CH 2),1.2(s,26H,C13H
26),0.8-1.0(t,3H,CH3);HPLC(CHCl3:MeOH=9:1,silica,
0.5ml/min.,254nm)5.2min.
Embedded image 1 H-NMR (CDCl 3 , 30 ° C.) δ 6.8-7.2 (d, 4H, AniH), 6.4-6.8 (b, 2
H, ArH), 2.8-4.6 (m, 8H, ArCH 2 Ar / ArOCH 3 / ArCH 2 NH), 2.3-2.
7 (t, 2H, ArC H 2 CH), 1.6 (b, 2H, ArCH 2 C H 2), 1.2 (s, 26H, C 13 H
26), 0.8-1.0 (t, 3H , CH 3); HPLC (CHCl 3: MeOH = 9: 1, silica,
(0.5ml / min., 254nm) 5.2min.

【0098】製造例28:化合物〔化36〕の製造 製造例27における〔化23〕の化合物のかわりに〔化
24〕の化合物を用いた他は、製造例27と同様な操作
を行い、下記式〔化36〕で表される化合物を得た。
Production Example 28 : Production of Compound [Chemical Formula 36] The same operation as in Production Example 27 was carried out except that the compound of Chemical Formula 24 was used instead of the compound of Chemical Formula 23 in Production Example 27, A compound represented by the formula [Formula 36] was obtained.

【0099】[0099]

【化36】 1H-NMR(CDCl3,30℃)δ6.8-7.2(d,4H,AniH),6.3-6.8(b,2
H,ArH),2.8-4.6(m,8H,ArCH2Ar/ArOCH3/ArCH2NH),2.3-2.
6(t,2H,ArCH 2CH2),1.6(b,2H,ArCH2CH 2),1.2(s,22H,C11H
22),0.8-1.0(t,3H,CH3);HPLC(CHCl3:MeOH=9:1,silica,
0.5ml/min.,254nm)5.3min.
Embedded image 1 H-NMR (CDCl 3 , 30 ° C.) δ 6.8-7.2 (d, 4H, AniH), 6.3-6.8 (b, 2
H, ArH), 2.8-4.6 (m, 8H, ArCH 2 Ar / ArOCH 3 / ArCH 2 NH), 2.3-2.
6 (t, 2H, ArC H 2 CH 2), 1.6 (b, 2H, ArCH 2 C H 2), 1.2 (s, 22H, C 11 H
22), 0.8-1.0 (t, 3H , CH 3); HPLC (CHCl 3: MeOH = 9: 1, silica,
(0.5ml / min., 254nm) 5.3min.

【0100】製造例29:化合物〔化37〕の製造 製造例27における式〔化23〕化合物のかわりに〔化
25〕の化合物を用いた他は、製造例27と同様な操作
を行い、下記式〔化37〕で表される化合物を得た。
Production Example 29 : Production of Compound [Chemical Formula 37] The same procedures as in Production Example 27 were carried out except for using the compound of Chemical Formula 25 instead of the compound of Chemical Formula 23 in Production Example 27, A compound represented by the formula [Formula 37] was obtained.

【0101】[0101]

【化37】 1H-NMR(CDCl3,30℃)δ6.8-7.2(d,4H,AniH),6.3-6.8(b,2
H,ArH),2.8-4.6(m,8H,ArCH2Ar/ArOCH3/ArCH2NH),2.3-2.
7(t,2H,ArCH 2CH2),1.5-1.7(b,2H,ArCH2CH 2),1.2(s,18H,
C9H18),0.7-1.0(t,3H,CH3);HPLC(CHCl3:MeOH=9:1,silic
a,0.5ml/min.,254nm)5.4min.
Embedded image 1 H-NMR (CDCl 3 , 30 ° C.) δ 6.8-7.2 (d, 4H, AniH), 6.3-6.8 (b, 2
H, ArH), 2.8-4.6 (m, 8H, ArCH 2 Ar / ArOCH 3 / ArCH 2 NH), 2.3-2.
7 (t, 2H, ArC H 2 CH 2), 1.5-1.7 (b, 2H, ArCH 2 C H 2), 1.2 (s, 18H,
C 9 H 18 ), 0.7-1.0 (t, 3H, CH 3 ); HPLC (CHCl 3 : MeOH = 9: 1, silic
a, 0.5ml / min., 254nm) 5.4min.

【0102】製造例30:化合物〔化38〕の製造 製造例27における式〔化23〕化合物のかわりに〔化
26〕の化合物を用いた他は、製造例27と同様な操作
を行い、下記式〔化38〕で表される化合物を得た。
Production Example 30 : Production of Compound [Chemical Formula 38] The same operation as in Production Example 27 was carried out except for using the compound of Chemical Formula 26 instead of the compound of Chemical Formula 23 in Production Example 27, A compound represented by the formula [Formula 38] was obtained.

【0103】[0103]

【化38】 1H-NMR(CDCl3,30℃)δ6.8-7.4(d,4H,AniH),6.3-6.8(b,2
H,ArH),2.8-4.6(m,8H,ArCH2Ar/ArOCH3/ArCH2NH),2.3-2.
6(t,2H,ArCH 2CH2),1.5-1.7(b,2H,ArCH2CH 2),1.3(s,10H,
C5H10),0.7-1.0(t,3H,CH3);HPLC(CHCl3:MeOH=9:1,silic
a,0.5ml/min.,254nm)5.5min.
Embedded image 1 H-NMR (CDCl 3 , 30 ° C.) δ 6.8-7.4 (d, 4H, AniH), 6.3-6.8 (b, 2
H, ArH), 2.8-4.6 (m, 8H, ArCH 2 Ar / ArOCH 3 / ArCH 2 NH), 2.3-2.
6 (t, 2H, ArC H 2 CH 2), 1.5-1.7 (b, 2H, ArCH 2 C H 2), 1.3 (s, 10H,
C 5 H 10), 0.7-1.0 ( t, 3H, CH 3); HPLC (CHCl 3: MeOH = 9: 1, silic
a, 0.5ml / min., 254nm) 5.5min.

【0104】製造例31:化合物〔化39〕の製造 製造例27における化合物〔化23〕のかわりに化合物
〔化17〕を用いた他は、製造例27と同様な操作を行
い、下記式〔化39〕で表される化合物を得た。
Production Example 31 : Production of compound [Chemical formula 39] The same operation as in Production example 27 was carried out except that compound [Chemical formula 17] was used instead of compound [Chemical formula 23] in Production example 27, and the following formula [ 39] was obtained.

【0105】[0105]

【化39】 1H-NMR(CDCl3,30℃)δ6.7-7.1(t,4H,AniH),6.2-6.4(d,2
H,ArH),3.2-4.2(b,8H,ArCH2Ar/ArOCH3/ArCH2NH),2.3-2.
6(b,2H,ArCH 2CH2),1.6(s,2H,ArCH2CH 2),1.3(s,26H,C13H
26),0.8-1.0(t,3H,CH3);HPLC(CHCl3:MeOH=9:1,silica,
0.5ml/min.,254nm)4.9min.
Embedded image 1 H-NMR (CDCl 3 , 30 ° C) δ 6.7-7.1 (t, 4H, AniH), 6.2-6.4 (d, 2
H, ArH), 3.2-4.2 (b , 8H, ArCH 2 Ar / ArOCH 3 / ArCH 2 NH), 2.3-2.
6 (b, 2H, ArC H 2 CH 2), 1.6 (s, 2H, ArCH 2 C H 2), 1.3 (s, 26H, C 13 H
26), 0.8-1.0 (t, 3H , CH 3); HPLC (CHCl 3: MeOH = 9: 1, silica,
0.5ml / min., 254nm) 4.9min.

【0106】製造例32:化合物〔化40〕の製造 製造例27における〔化23〕の化合物のかわりに化合
物〔化18〕を用いた他は、製造例27と同様な操作を
行い、下記式〔化40〕で表される化合物を得た。
Production Example 32 : Production of Compound [Chemical Formula 40] The same procedures as in Production Example 27 were carried out except for using compound [Chemical Formula 18] in place of the compound of [Chemical Formula 23] in Production Example 27, to obtain a compound of the following formula A compound represented by the following formula was obtained.

【0107】[0107]

【化40】 1H-NMR(CDCl3,30℃)δ6.7-7.1(t,4H,AniH),6.2-6.5(d,2
H,ArH),3.3-4.2(b,8H,ArCH2Ar/ArOCH3/ArCH2NH),2.3-2.
6(b,2H,ArCH 2CH2),1.6(s,2H,ArCH2CH 2),1.3(s,22H,C11H
22),0.7-1.0(t,3H,CH3);HPLC(CHCl3:MeOH=9:1,silica,
0.5ml/min.,254nm)5.1min.
Embedded image 1 H-NMR (CDCl 3 , 30 ° C.) δ 6.7-7.1 (t, 4H, AniH), 6.2-6.5 (d, 2
H, ArH), 3.3-4.2 (b , 8H, ArCH 2 Ar / ArOCH 3 / ArCH 2 NH), 2.3-2.
6 (b, 2H, ArC H 2 CH 2), 1.6 (s, 2H, ArCH 2 C H 2), 1.3 (s, 22H, C 11 H
22), 0.7-1.0 (t, 3H , CH 3); HPLC (CHCl 3: MeOH = 9: 1, silica,
(0.5ml / min., 254nm) 5.1min.

【0108】製造例33:化合物〔化41〕の製造 製造例27における化合物〔化23〕のかわりに化合物
〔化19〕を用いた他は、製造例27と同様な操作を行
い、下記式〔化41〕で表される化合物を得た。
Production Example 33 : Production of Compound [Chemical Formula 41] The same procedure as in Production Example 27 was carried out except for using Compound [Chemical Formula 19] instead of Compound [Chemical Formula 23] in Production Example 27, to obtain the following formula [ Compound 41] was obtained.

【0109】[0109]

【化41】 1H-NMR(CDCl3,30℃)δ6.7-7.0(t,4H,AniH),6.2-6.5(d,2
H,ArH),3.3-4.1(b,8H,ArCH2Ar/ArOCH3/ArCH2NH),2.3-2.
6(b,2H,ArCH 2CH2),1.6(s,2H,ArCH2CH 2),1.2(s,18H,C9H
18),0.7-1.0(t,3H,CH3);HPLC(CHCl3:MeOH=9:1,silica,
0.5ml/min.,254nm)5.2min.
Embedded image 1 H-NMR (CDCl 3 , 30 ° C) δ 6.7-7.0 (t, 4H, AniH), 6.2-6.5 (d, 2
H, ArH), 3.3-4.1 (b, 8H, ArCH 2 Ar / ArOCH 3 / ArCH 2 NH), 2.3-2.
6 (b, 2H, ArC H 2 CH 2), 1.6 (s, 2H, ArCH 2 C H 2), 1.2 (s, 18H, C 9 H
18), 0.7-1.0 (t, 3H , CH 3); HPLC (CHCl 3: MeOH = 9: 1, silica,
(0.5ml / min., 254nm) 5.2min.

【0110】製造例34:化合物〔化42〕の製造 製造例27における化合物〔化23〕のかわりに化合物
〔化20〕を用いた他は、製造例27と同様な操作を行
い、下記式〔化42〕で表される化合物を得た。
Production Example 34 : Production of compound [Chemical formula 42] The same operation as in Production example 27 was carried out except that compound [Chemical formula 20] was used instead of compound [Chemical formula 23] in Production example 27, to obtain the following formula [ Compound 42] was obtained.

【0111】[0111]

【化42】 1H-NMR(CDCl3,30℃)δ6.6-7.0(t,4H,AniH),6.2-6.5(d,2
H,ArH),3.3-4.2(b,8H,ArCH2Ar/ArOCH3/ArCH2NH),2.3-2.
6(t,2H,ArCH 2CH2),1.5-1.7(b,2H,ArCH2CH 2),1.3(s,10H,
C5H10),0.7-1.0(t,3H,CH3);HPLC(CHCl3:MeOH=9:1,silic
a,0.5ml/min.,254nm)5.4min.
Embedded image 1 H-NMR (CDCl 3 , 30 ° C) δ 6.6-7.0 (t, 4H, AniH), 6.2-6.5 (d, 2
H, ArH), 3.3-4.2 (b , 8H, ArCH 2 Ar / ArOCH 3 / ArCH 2 NH), 2.3-2.
6 (t, 2H, ArC H 2 CH 2), 1.5-1.7 (b, 2H, ArCH 2 C H 2), 1.3 (s, 10H,
C 5 H 10), 0.7-1.0 ( t, 3H, CH 3); HPLC (CHCl 3: MeOH = 9: 1, silic
a, 0.5ml / min., 254nm) 5.4min.

【0112】製造例35:化合物〔化43〕の製造 1.52g(15mmol)のジイソプロピルアミンを
含む10mlの乾燥テトラヒドロフラン中に、10mm
olのBuLiを含む6.25mlのヘキサン溶液を氷
冷下にゆっくりと加える。この反応溶液中に3.9g
(15mmol)のp−ドデシルトルエンを含む10m
lの乾燥テトラヒドロフラン溶液を加え、氷冷下約1時
間攪拌を続けた。これを、中間体化合物(22)p−ホ
ルミル−O−メチルカリックス〔4〕アレーン1g
(1.75mmol)を含む10mlの乾燥テトラヒド
ロフラン溶液中に氷冷下ゆっくりと加える。約10時間
後、本反応液を100mlの水中に投入し30分間攪拌
する。400mlのクロロホルムにて化合物を抽出し、
700mlの水で5回洗浄後硫酸マグネシウムで乾燥し
た。減圧下反応液を濃縮しクロロホルム−n−ヘキサン
混合溶媒より再沈澱することによって、中間体1.35
gを得た。この中間体1.35gを135mlのトリフ
ルオロ酢酸に溶解させ15時間還流した。反応溶液を4
00mlの氷水中に投入し、炭酸ナトリウムにてpH
8.0とした。約250mlのクロロホルムにて抽出
し、300mlの水で4回洗浄後硫酸マグネシウムで乾
燥した。減圧下反応液を濃縮し、クロロホルム−n−ヘ
キサン混合溶媒より再沈澱することによって次式〔化4
3〕の純粋な化合物750mgを得た。
Preparation Example 35 Preparation of Compound [Chemical Formula 43] 10 mm of dry tetrahydrofuran containing 1.52 g (15 mmol) of diisopropylamine was added.
ol of BuLi in 6.25 ml of a hexane solution are slowly added under ice-cooling. 3.9 g in this reaction solution
10 m containing (15 mmol) p-dodecyltoluene
l of dry tetrahydrofuran solution was added, and stirring was continued for about 1 hour under ice cooling. This was mixed with the intermediate compound (22) p-formyl-O-methylcalix [4] arene (1 g).
(1.75 mmol) is slowly added to 10 ml of a solution of dry tetrahydrofuran under ice-cooling. After about 10 hours, the reaction solution is poured into 100 ml of water and stirred for 30 minutes. The compound was extracted with 400 ml of chloroform,
After washing five times with 700 ml of water, the resultant was dried with magnesium sulfate. The reaction solution was concentrated under reduced pressure, and re-precipitated from a mixed solvent of chloroform-n-hexane to obtain an intermediate 1.35.
g was obtained. 1.35 g of this intermediate was dissolved in 135 ml of trifluoroacetic acid and refluxed for 15 hours. Reaction solution 4
Put into 00 ml of ice water and adjust pH with sodium carbonate
8.0. The mixture was extracted with about 250 ml of chloroform, washed four times with 300 ml of water, and dried over magnesium sulfate. The reaction solution was concentrated under reduced pressure, and reprecipitated from a mixed solvent of chloroform and n-hexane to obtain the following formula [Chemical Formula 4]
750 mg of the pure compound of 3] was obtained.

【0113】[0113]

【化43】 Embedded image

【0114】製造例36:化合物〔化44〕の製造 製造例35におけるp−ドデシルトルエンのかわりにp
−ヘキサデシルトルエンを用いた他は、製造例35と同
様な操作を行い、下記式〔化44〕で表される化合物8
00mgを得た。
Preparation Example 36 : Preparation of Compound [Chemical Formula 44] In place of p-dodecyltoluene in Preparation Example 35, p
-The same operation as in Production Example 35 was performed except that hexadecyltoluene was used, and a compound 8 represented by the following formula [Formula 44]
00 mg was obtained.

【0115】[0115]

【化44】 Embedded image

【0116】製造例37:化合物〔化45〕の製造 5.5mmolのp−ドデシルベンゼンジアゾニウムの
テトラフルオロホウ酸塩と1.1mmolのカリックス
〔4〕アレーンを20mlのテトラヒドロフランおよび
10mlのピリジン混合溶媒中で反応させアゾカリック
ス〔4〕アレーンを得た。本アゾカリックス〔4〕アレ
ーン1.0gをテトラヒドロフラン100mlに溶解さ
せ、ここへ2gの水素化ナトリウムを加え約30分間攪
拌を続けた。さらに、6mlのヨウ化メチルを加え5時
間還流した。溶媒を減圧下留去し、500mlの水を加
えてサスペンジョンとした。ここより、クロロホルム4
00mlにて抽出を行い、500mlの水で4回洗浄後
硫酸マグネシウムで乾燥した。減圧下溶媒を留去し粗結
晶を得た。クロロホルム−n−ヘキサンより再沈澱する
ことによって下式〔化45〕で示される純粋な化合物9
50mgを得ることができた。
Preparation Example 37 Preparation of Compound [Chemical Formula 45] 5.5 mmol of p-dodecylbenzenediazonium tetrafluoroborate and 1.1 mmol of calix [4] arene in a mixed solvent of 20 ml of tetrahydrofuran and 10 ml of pyridine. To obtain azocalix [4] arene. 1.0 g of the present azocalix [4] arene was dissolved in 100 ml of tetrahydrofuran, 2 g of sodium hydride was added thereto, and the mixture was stirred for about 30 minutes. Further, 6 ml of methyl iodide was added, and the mixture was refluxed for 5 hours. The solvent was distilled off under reduced pressure, and 500 ml of water was added to obtain a suspension. From here, chloroform 4
Extraction was performed with 00 ml, washed four times with 500 ml of water, and dried over magnesium sulfate. The solvent was distilled off under reduced pressure to obtain a crude crystal. By reprecipitating from chloroform-n-hexane, the pure compound 9 represented by the following formula [Formula 45] was obtained.
50 mg could be obtained.

【0117】[0117]

【化45】 Embedded image

【0118】物性測定例2 上に述べた製造例で得た多くの化合物について物性を測
定した。高感度示差走査熱量計(SEIKO DSC 120型)を
用いて融点mpを測定した。このために、Agセル(1
5μl)に試料を約5〜10mg封入し、1℃/mi
n.の速度で昇温・降温(−30℃〜90℃)を1度行
った後の昇温過程(1℃/min.)のDSCピークの
ピークトップの温度をmpとした。さらに流動複屈折性
の観察は、光学顕微鏡により偏光下で確認した。
Physical Property Measurement Example 2 The physical properties of many compounds obtained in the above Production Examples were measured. The melting point mp was measured using a high sensitivity differential scanning calorimeter (SEIKO DSC 120 type). For this purpose, the Ag cell (1
5 .mu.l), enclose about 5 to 10 mg of the sample, and 1 DEG C./mi
n. The temperature at the peak top of the DSC peak in the temperature raising process (1 ° C./min.) After the temperature was raised / lowered (−30 ° C. to 90 ° C.) once at a speed of mp was defined as mp. Furthermore, observation of the flow birefringence was confirmed under polarized light by an optical microscope.

【0119】下記の表1に示すように本発明に従う化合
物〔化11〕〜〔化14〕、〔化17〕〜〔化20〕、
〔化23〕〜〔化26〕、〔化28〕、〔化30〕、
〔化31〕、〔化35〕〜〔化45〕のすべてにおい
て、その置換基の導入による低融点化効果が極めて顕著
に現れている。
As shown in Table 1 below, compounds according to the present invention [Chemical Formulas 11 to 14], [Chemical Formulas 17 to 20],
[Formula 23] to [Formula 26], [Formula 28], [Formula 30],
In all of [Chemical Formula 31], [Chemical Formulas 35] to [Chemical Formula 45], the effect of lowering the melting point due to the introduction of the substituent is very remarkably exhibited.

【0120】[0120]

【表1】 [Table 1]

【0121】上の表に示すように、本発明化合物はその
親化合物であるo−メチルカリックス[n]アレーンに
比較して、約200〜300℃も融点が低下しているこ
とが判る。また、これにともなって溶解度も飛躍的に増
大した。さらに、これらすべての化合物は融点付近の等
方相において流動複屈折性を示すことが判った。
As shown in the above table, it can be seen that the melting point of the compound of the present invention is lower by about 200 to 300 ° C. than that of the parent compound o-methylcalix [n] arene. In addition, the solubility also increased dramatically. Further, it was found that all of these compounds exhibited fluid birefringence in an isotropic phase near the melting point.

【0122】物性測定例3 本発明のカリックスアレーンの特徴である等方相におけ
る流動複屈折性についてさらに明らかにするため実験を
行った。本発明のカリックスアレーン誘導体は細長い分
子構造のために、外部応力の負荷等によって生じた流れ
に沿って分子配向が生じ、複屈折現象が現われる。この
流動複屈折は、光学顕微鏡により直交偏光下で容易に観
察することができる。また、流動による複屈折は外部応
力の負荷を中止すると時間とともに解消するが、これは
カリックスアレーン誘導体の分子運動によるため温度依
存性である。そこで、以下のように、幾つかの温度条件
下での流動複屈折性の解消挙動を観察した。
Experimental Example 3 An experiment was conducted to further clarify the flow birefringence in the isotropic phase, which is a feature of the calixarene of the present invention. Since the calixarene derivative of the present invention has a slender molecular structure, a molecular orientation occurs along a flow generated by an external stress or the like, and a birefringence phenomenon appears. This flow birefringence can be easily observed under orthogonal polarization by an optical microscope. Further, the birefringence due to the flow disappears with time when the application of the external stress is stopped, but it depends on the temperature due to the molecular motion of the calixarene derivative. Therefore, the behavior of eliminating the flow birefringence under some temperature conditions was observed as follows.

【0123】2枚のガラス板間に試料を挟み、一定の力
でガラス板をずらすと流動複屈折が観察できる。この
時、顕微鏡の二枚の偏光板の振動面を直交させておく
と、試料が等方性の場合には暗視野であり、試料に異方
性が生じてくると視野が明るくなる。この視野の明るさ
の変化を露光計によって測定した。
When a sample is sandwiched between two glass plates and the glass plates are shifted with a constant force, flow birefringence can be observed. At this time, if the vibrating surfaces of the two polarizing plates of the microscope are orthogonal to each other, the field is dark when the sample is isotropic, and the field becomes bright when the sample becomes anisotropic. The change in the brightness of the visual field was measured by an exposure meter.

【0124】[0124]

【表2】 [Table 2]

【0125】偏光解消時間の逆数を偏光解消の速度定数
k(sec-1)とすると
When the reciprocal of the depolarization time is a depolarization rate constant k (sec −1 ),

【表3】 [Table 3]

【0126】アレニウス式よりFrom the Arrhenius equation

【数1】 (Equation 1)

【0127】グラフより logA=27.0854 A=1.22×1027 ΔH/2.303R=8296 ΔH=37.960(cal.mol-1) 以上の結果を図6に示す。From the graph, logA = 27.0854 A = 1.22 × 10 27 ΔH / 2.303R = 8296 ΔH = 37.960 (cal.mol −1 ) The above results are shown in FIG.

【0128】以上のデータにより、本発明化合物〔化2
5〕は応答性が速くなる30℃(約2秒)以上において
は圧力センサー等として、また応答時間が長くなる15
℃(約1分)以下においては、一時的記憶素子等として
利用できることが示された。
From the above data, the compound of the present invention [Chemical Formula 2]
5] is a pressure sensor or the like at 30 ° C. (about 2 seconds) or higher at which the response is fast, and the response time is long.
It was shown that it can be used as a temporary storage element or the like at a temperature of less than about 1 ° C. (about 1 minute).

【0129】物性測定例4 本発明のカリックスアレーン誘導体が、前に述べたよう
に、最高温度計等の温度応答性素子として用いることが
できることを確認するため以下の測定を行った。
Physical property measurement example 4 As described above, the following measurements were performed to confirm that the calixarene derivative of the present invention can be used as a temperature-responsive element such as a maximum thermometer.

【0130】化合物〔化23〕を約50℃に保ち(等方
性液体)ガラス板に挟み込む。冷却しながら分子が平行
に配向するよう直線的に応力を加える。光学顕微鏡によ
って直交ニコル下この試料を観察すると全面的に光を透
過して明るく見える。この状態を透過率100%とし、
試料を取り除いた暗視野の状態を透過率0%と設定し、
サーモステージで温度を制御しながら露光計によって光
透過率を測定するとともに、高感度示差走査熱量計(SEI
KO DSC 120型)を用いてDSCの測定を行った。結果を
図7に示す。
The compound [Formula 23] is kept at about 50 ° C. (isotropic liquid) and sandwiched between glass plates. While cooling, a linear stress is applied so that the molecules are oriented in parallel. When this sample is observed under a crossed Nicols with an optical microscope, light is transmitted through the entire surface and looks bright. This state is defined as a transmittance of 100%,
The state of the dark field with the sample removed is set as 0% transmittance,
While measuring the light transmittance with an exposure meter while controlling the temperature with a thermo stage, a high sensitivity differential scanning calorimeter (SEI
DSC measurement was performed using KO DSC 120). FIG. 7 shows the results.

【0131】DSCカーブはAgセル(15μl)に試
料を約5mg封入し、1℃/min.の速度で昇温・降
温(−30℃〜90℃)を1度行った後、昇温過程(1
℃/min.)を経たものである。これによると吸熱が
始まる温度までは透過率がほぼ100%であるのに対
し、吸熱が終了する温度以上では暗視に戻っていること
が判る。以上のデータにより、本発明のカリックスアレ
ーン誘導体が前述した最高温度計等の温度応答性素子と
して利用できることが確認された。
The DSC curve was obtained by enclosing about 5 mg of a sample in an Ag cell (15 μl), adding 1 ° C./min. The temperature is raised and lowered (-30 ° C. to 90 ° C.) once at a rate of
° C / min. ). According to this, it is understood that the transmittance is almost 100% up to the temperature at which the endotherm starts, whereas it returns to night vision at the temperature at which the endotherm ends. From the above data, it was confirmed that the calixarene derivative of the present invention can be used as a temperature-responsive element such as the above-described maximum thermometer.

【0132】物性測定例5 本発明のカリックスアレーン誘導体の特性を知るため、
光学顕微鏡とサーモステージを用いて、露光計により光
の透過率を測定した。化合物〔化24〕を均一に塗布し
たガラス板を、サーモステージによって40℃に保った
時の視野明度を100%とした。次にサーモステージ温
度を10℃まで急冷すると、化合物〔化24〕の塗膜は
乳白濁を起こし光量が約70%にまで低下した。これは
何度繰り返しても再現可能であった。その結果を図8に
示す。
Physical property measurement example 5 In order to know the properties of the calixarene derivative of the present invention,
The light transmittance was measured with an exposure meter using an optical microscope and a thermostage. The glass plate on which the compound [Chemical Formula 24] was uniformly applied was set to have a visual field brightness of 100% when kept at 40 ° C. by a thermo stage. Next, when the temperature of the thermostage was rapidly cooled to 10 ° C., the coating film of the compound [Chemical Formula 24] became milky turbid, and the amount of light decreased to about 70%. This was reproducible over and over again. FIG. 8 shows the result.

【0133】本実験データによって、本発明のカリック
スアレーン誘導体が前述したような、偏光板のいらない
温度応答性ディスプレイ、あるいは温度センサーとして
利用可能であることが確認された。
The experimental data confirmed that the calixarene derivative of the present invention can be used as a temperature-responsive display or a temperature sensor without using a polarizing plate as described above.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のカリックスアレーン誘導体の合成ルー
トを示すものである。
FIG. 1 shows a synthesis route of a calixarene derivative of the present invention.

【図2】本発明のカリックスアレーン誘導体に属する別
の化合物の合成ルートを示すものである。
FIG. 2 shows a synthesis route of another compound belonging to the calixarene derivative of the present invention.

【図3】本発明のカリックスアレーン誘導体のうちアゾ
メチン基を有する化合物の合成ルートを示すものであ
る。
FIG. 3 shows a synthesis route of a compound having an azomethine group among the calixarene derivatives of the present invention.

【図4】本発明のカリックスアレーン誘導体の実施例の
合成ルートを示すフローチャートである。
FIG. 4 is a flowchart showing a synthesis route of an example of a calixarene derivative of the present invention.

【図5】本発明のカリックスアレーン誘導体を熱分析し
たときのDSCチャートの例である。
FIG. 5 is an example of a DSC chart when a calixarene derivative of the present invention is thermally analyzed.

【図6】本発明のカリックスアレーン誘導体の偏光解消
速度特性を知るためのアレニウスプロットのグラフであ
る。
FIG. 6 is a graph of an Arrhenius plot for determining the depolarization rate characteristics of the calixarene derivative of the present invention.

【図7】本発明のカリックスアレーン誘導体の温度応答
特性を光の透過率とDSCのデータで示す図である。
FIG. 7 is a diagram showing the temperature response characteristics of the calixarene derivative of the present invention using light transmittance and DSC data.

【図8】本発明のカリックスアレーン誘導体の光学的性
質と温度応答性の関係を示す図である。
FIG. 8 is a graph showing the relationship between optical properties and temperature responsiveness of the calixarene derivative of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C07C 215/76 C07C 215/76 217/58 217/58 217/84 217/84 217/92 217/92 245/08 245/08 291/08 291/08 C09K 3/00 C09K 3/00 Z 9/00 9/00 Z // C07C 47/575 C07C 47/575 (56)参考文献 Tetrahedron,(1983)39 (3)p.409−426 Tetrahedron,(1986)42 (6)p.1633−1640 J.Inclusion Pheno m.,(1986)4(3)p.247−253 J.Inclusion Pheno m.,(1987)5(5)p.581−590 Tetrahedron,(1989)45 (7)p.2177−2182 J.Chem.Soc.,Perki n Trans.1,(1992)(15)p 1885−1887 Chem.Lett.,(1991)P. 2147−2150 (58)調査した分野(Int.Cl.6,DB名) C07C 251/24 C07C 43/21 C07C 69/84 C07C 69/92 C07C 69/94 C07C 215/76 C07C 217/58 C07C 217/84 C07C 217/92 C07C 245/08 C07C 291/08 C09K 3/00 C09K 9/00 C07C 47/575 CAOLD(STN) CAPLUS(STN) REGISTRY(STN)──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C07C 215/76 C07C 215/76 217/58 217/58 217/84 217/84 217/92 217/92 245/08 245/08 291/08 291/08 C09K 3/00 C09K 3/00 Z 9/00 9/00 Z // C07C 47/575 C07C 47/575 (56) References Tetrahedron, (1983) 39 (3) p. 409-426 Tetrahedron, (1986) 42 (6) p. 1633-1640 J.P. Inclusion Phenom. , (1986) 4 (3) p. 247-253J. Inclusion Phenom. , (1987) 5 (5) p. 581-590 Tetrahedron, (1989) 45 (7) p. 2177-2182 J.P. Chem. Soc. , Perkin Trans. 1, (1992) (15) p 1885-1887 Chem. Lett. , (1991) P. 2147-2150 (58) Fields investigated (Int. Cl. 6 , DB name) C07C 251/24 C07C 43/21 C07C 69/84 C07C 69/92 C07C 69/94 C07C 215/76 C07C 217/58 C07C 217/84 C07C 217/92 C07C 245/08 C07C 291/08 C09K 3/00 C09K 9/00 C07C 47/575 CAOLD (STN) CAPLUS (STN) REGISTRY (STN)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 次の一般式〔化1〕で表されるカリック
スアレーン誘導体。 【化1】 [式中、l、mおよびnは、それぞれ、0から7の整数
であり、l+m+n=3〜7であり、X1およびX2は、
互いに同一または別異の−Rまたは−ORで表される原
子団であり(但し、Rは、炭素数6〜22の直鎖または
分岐のアルキル基、アルケニル基、アルキニル基、また
はヒドロキシアルキル基を示す)、Y1およびY2は、互
いに同一または別異の原子団であり、−CH=N−、−
CH2−NH−、−CH=CH−、−N=N−、−CO
−O−および−NO=N−から選ばれ、Z1、Z2および
3は、互いに同一または別異の原子団であり、−OH
またはその置換基を示す。]
1. A calixarene derivative represented by the following general formula [1]. Embedded image [Wherein, l, m and n are each an integer from 0 to 7, 1 + m + n = 3 to 7, and X 1 and X 2 are
Are the same or different atomic groups represented by -R or -OR (provided that R is a linear or branched alkyl, alkenyl, alkynyl, or hydroxyalkyl group having 6 to 22 carbon atoms) ), Y 1 and Y 2 are the same or different atomic groups from each other, and —CH = N—, —
CH 2 -NH -, - CH = CH -, - N = N -, - CO
—O— and —NO = N—, wherein Z 1 , Z 2 and Z 3 are the same or different atomic groups from each other;
Or a substituent thereof. ]
JP2985693A 1992-01-27 1993-01-26 Calixarene derivatives exhibiting flow birefringence Expired - Fee Related JP2863883B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4-37132 1992-01-27
JP3713292 1992-01-27

Publications (2)

Publication Number Publication Date
JPH05271175A JPH05271175A (en) 1993-10-19
JP2863883B2 true JP2863883B2 (en) 1999-03-03

Family

ID=12489090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2985693A Expired - Fee Related JP2863883B2 (en) 1992-01-27 1993-01-26 Calixarene derivatives exhibiting flow birefringence

Country Status (1)

Country Link
JP (1) JP2863883B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100698763B1 (en) * 2000-10-23 2007-03-26 (주)바이오메트릭스 테크놀로지 Novel aminocalixarene derivatives, method of preparation thereof, self-assembledmonolayer prepared by using them and fixing method of oligo-dna by using the same and dna chip prepared by the method
US6773856B2 (en) 2001-11-09 2004-08-10 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
KR20050065662A (en) * 2002-10-30 2005-06-29 아지노모토 가부시키가이샤 Dispersing agent or solubilizing agent containing calixarene compound
JP4360885B2 (en) 2003-11-28 2009-11-11 富士フイルム株式会社 Method for producing aromatic amine compound having alkylthio group
JP5111382B2 (en) * 2005-10-13 2013-01-09 バイオメトリックス テクノロジー インコーポレイテッド Novel imine calixarene derivative and aminocalixarene derivative, method for producing the same, self-assembled monolayer produced by the production method, method for immobilizing an oligo gene using the self-assembled monolayer and produced thereby Oligo gene chip
KR100748082B1 (en) * 2005-10-13 2007-08-09 (주)바이오메트릭스 테크놀로지 Novel iminecalixarene derivatives method of preparation thereof and self-assembled monolayer prepared by the method fixing method of oligo-dna by using the self-assembled monolayer and oligo-dna chip prepared by the method
US20080194798A1 (en) * 2005-11-01 2008-08-14 Tae Sun Kim Novel Iminecalixarene Derivatives, Method for Preparing the Same, Self-Assembled Monolayer Prepared by Using the Iminecalixarene Derivatives or Aminocalixarene, and Protein Chip Using the Self-Assembled Monolayer
KR100883763B1 (en) * 2007-11-15 2009-02-25 (주)바이오메트릭스 테크놀로지 Modified glass fibers with monolayers of aminocalixarene derivatives and iminecalixarene derivatives, and oligo-dna modified glass fibers by fixing oligo-dna's to the monolayers, and the preparation method of genotyping strips using the oligo-dna modified glass fibers

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Chem.Lett.,(1991)P.2147−2150
J.Chem.Soc.,Perkin Trans.1,(1992)(15)p1885−1887
J.Inclusion Phenom.,(1986)4(3)p.247−253
J.Inclusion Phenom.,(1987)5(5)p.581−590
Tetrahedron,(1983)39(3)p.409−426
Tetrahedron,(1986)42(6)p.1633−1640
Tetrahedron,(1989)45(7)p.2177−2182

Also Published As

Publication number Publication date
JPH05271175A (en) 1993-10-19

Similar Documents

Publication Publication Date Title
JP2863883B2 (en) Calixarene derivatives exhibiting flow birefringence
Ruslim et al. Z-Isomers of 3, 3′-disubstituted azobenzenes highly compatible with liquid crystals
Dunmur The azulene ring as a structural element in liquid crystals
US7037444B2 (en) Photo-responsive liquid crystal composition
Aiello et al. Synthesis, Mesomorphism, and Spectroscopic Characterization of Bis [4‐(n‐alkoxy)‐5‐(p‐n‐tetradecylphenylazo)]‐Substituted (N, N′‐Salicylidenediaminato) nickel (II) Complexes
Grolik et al. A new liquid crystalline derivative of dibenzotetraaza [14] annulene: synthesis, characterization and the preliminary evaluation of mesomorphic properties
Suzuki et al. Synthesis of ester-substituted dihydroacridine derivatives and their spectroscopic properties
US6660868B2 (en) Photo-induced phase transition organic material
JPS62111939A (en) Optically active beta-fluorohydrin compound
JPS61215375A (en) Benzoic acid pyrimidinylphenyl ester derivative
JPH01221351A (en) Tolan compound and liquid crystal composition
JP3882948B2 (en) Asymmetric azines
JP3106664B2 (en) New metal complex liquid crystal
JP3851992B2 (en) Method for producing asymmetric azines
JP2877662B2 (en) Calixarene derivatives exhibiting liquid crystal phase
JPH09510227A (en) Chiral compound
JPH0680612A (en) Optically inactive liquid crystal compound
US5366656A (en) Optically active alcohol and derivatives thereof, liquid crystal composition containing same and liquid crystal device
EP0352054B1 (en) Liquid crystal compound
JP2821725B2 (en) Calixarene derivative / carboxylic acid complex
JPH02153A (en) Liquid crystal device
CN116622083A (en) Eutectic material based on tetraaryladamantane crystallization partner, preparation method thereof and application thereof in molecular eutectic and structure identification
JPH0948760A (en) Pyrimidine compound
JPS6197293A (en) 2-(4&#39;-substituted phenyul)-5-(4&#39;-substituted phenyl)-1,3,2-dioxaborinane compound, its production, and liquid crystal compound containing same
JP3676840B2 (en) Triphenylene derivative

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees