JP2862502B2 - Substrate for superconductor crystal thin film growth - Google Patents

Substrate for superconductor crystal thin film growth

Info

Publication number
JP2862502B2
JP2862502B2 JP8017246A JP1724696A JP2862502B2 JP 2862502 B2 JP2862502 B2 JP 2862502B2 JP 8017246 A JP8017246 A JP 8017246A JP 1724696 A JP1724696 A JP 1724696A JP 2862502 B2 JP2862502 B2 JP 2862502B2
Authority
JP
Japan
Prior art keywords
edge
substrate
crystal
thin film
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8017246A
Other languages
Japanese (ja)
Other versions
JPH09208392A (en
Inventor
伸義 榊原
博紀 星崎
正信 鈴木
祥樹 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IDOTAI TSUSHIN SENTAN GIJUTSU KENKYUSHO KK
Original Assignee
IDOTAI TSUSHIN SENTAN GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IDOTAI TSUSHIN SENTAN GIJUTSU KENKYUSHO KK filed Critical IDOTAI TSUSHIN SENTAN GIJUTSU KENKYUSHO KK
Priority to JP8017246A priority Critical patent/JP2862502B2/en
Publication of JPH09208392A publication Critical patent/JPH09208392A/en
Application granted granted Critical
Publication of JP2862502B2 publication Critical patent/JP2862502B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、結晶欠陥のない良
好な超伝導体結晶薄膜を成長させることができ、例え
ば、マイクロ波回路の超伝導マイクロストリップ線路な
どに用いて好適な基板に関する。マイクロ波回路では、
誘電体基板上に形成したマイクロストリップ線路を利用
して方向性結合器や整合回路あるいは周波数フィルタな
どを構成しており、マイクロストリップ線路の材料に
は、電気抵抗の小さな金属、典型的には金(Cu)を用
いるが、金の体積抵抗率は 2.05×10-8 ρ/Ω・
m(0℃)であり、より一層の低損失化を図るために
は、金属に比べてはるかに電気抵抗の小さい超伝導体結
晶薄膜の使用が望まれる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate suitable for use in, for example, a superconducting microstrip line of a microwave circuit capable of growing a superconducting crystal thin film having no crystal defects. In microwave circuits,
A directional coupler, a matching circuit, a frequency filter, and the like are configured using a microstrip line formed on a dielectric substrate. The material of the microstrip line is a metal having a small electric resistance, typically, gold. (Cu) is used, but the volume resistivity of gold is 2.05 × 10 −8 ρ / Ω ·
m (0 ° C.), in order to further reduce the loss, it is desired to use a superconductor crystal thin film having much lower electric resistance than metal.

【0002】[0002]

【従来の技術】通常、超伝導体結晶薄膜は、ヘテロエピ
タキシャル成長技術を用いて形成される。この技術は、
エピタキシャル成長(結晶方位をもった基板上に同一方
位の結晶を成長させるという意味)の一手法であり、基
板と結晶構造の異なる物質を当該基板上に成長させると
いう結晶成長技術である。
2. Description of the Related Art Usually, a superconductor crystal thin film is formed by using a heteroepitaxial growth technique. This technology is
This is one method of epitaxial growth (meaning that crystals having the same orientation are grown on a substrate having a crystal orientation), and is a crystal growth technique of growing a substance having a different crystal structure from the substrate on the substrate.

【0003】図4において、1は超伝導体結晶薄膜成長
用基板(以下「基板」と略す)、2は超伝導体結晶薄膜
(以下「薄膜」と略す)である。基板1には、例えば、
MgOやLAOなどの誘電体単結晶基板が用いられる。
基板1の特定の結晶面〔ミラー指数で(001)面〕に
薄膜2、例えば、Y−B−C−O系の超伝導体結晶薄膜
を成長させている。
In FIG. 4, reference numeral 1 denotes a substrate for growing a superconductor crystal thin film (hereinafter abbreviated as “substrate”), and reference numeral 2 denotes a superconductor crystal thin film (hereinafter abbreviated as “thin film”). The substrate 1 includes, for example,
A dielectric single crystal substrate such as MgO or LAO is used.
A thin film 2, for example, a YBCO-based superconductor crystal thin film is grown on a specific crystal plane (a (001) plane with a Miller index) of the substrate 1.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、かかる
従来の超伝導体結晶薄膜成長用基板にあっては、図5に
示すように基板1の結晶単位胞のa稜の長さとb稜の長
さが等しい(a=b=0.42nm;但し値はMgO)
ため、言い換えれば(001)面が正方形のため、その
(001)面を利用して成長する超伝導体結晶薄膜2の
結晶単位胞の各側面〔(100)面、(010)面及び
これらの裏面〕の向きが一意に定まらず、結晶欠陥を生
じやすいという問題点があった。
However, in such a conventional substrate for growing a superconducting crystal thin film, as shown in FIG. Are equal (a = b = 0.42 nm; however, the value is MgO)
Therefore, in other words, since the (001) plane is a square, each side surface of the crystal unit cell of the superconductor crystal thin film 2 grown using the (001) plane [(100) plane, (010) plane and these planes] [Back surface] is not uniquely determined, and crystal defects are likely to occur.

【0005】そこで、本発明は、基板の成長面形状に工
夫を凝らすことにより、該基板上に形成される超伝導体
結晶薄膜の結晶欠陥をなくすことを目的とする。
Accordingly, an object of the present invention is to eliminate crystal defects in a superconductor crystal thin film formed on a substrate by devising a growth surface shape of the substrate.

【0006】[0006]

【課題を解決するための手段】本発明は、超伝導体結晶
薄膜を成長させるための基板において、前記基板を構成
する結晶構造は、a稜とb稜の長さが等しく、c稜の長
さがa稜及びb稜よりも長く、かつ、前記超伝導体結晶
薄膜のc稜の長さに相当する正方晶であり、前記基板の
成長面に階段部を形成し、該階段部の踏みしろ長を、該
基板a稜又はb稜の長さの整数倍に相当させ、かつ、
該階段部の蹴上げ高を、c稜の長さの整数倍に相当させ
たことを特徴とする。
Means for Solving the Problems The present invention provides a substrate for growing a superconductor crystal thin film, forming the substrate
In the crystal structure, the lengths of the a-edge and the b-edge are equal, and the length of the c-edge is
Is longer than the a-edge and the b-edge, and the superconductor crystal
It is a tetragonal crystal corresponding to the length of the c-edge of the thin film, forms a step on the growth surface of the substrate, and sets the step length of the step to an integral multiple of the length of the a-edge or b-edge of the substrate. , And
The rise height of the step portion is set to be an integral multiple of the length of the c-edge .

【0007】前記基板は、好ましくはYBa2 Cu3 O
y で、yの値が6.0≦y≦6.3であるあるいは、
本発明は、超伝導体結晶薄膜を成長させるための基板に
おいて、前記基板を構成する結晶構造が、a稜とb稜と
c稜の長さが等しい立方晶であるとともに、該基板の成
長面側に単結晶誘電体薄膜が形成されており、該単結晶
誘電体薄膜の結晶構造は、a稜とb稜の長さが等しく、
c稜の長さがa稜及びb稜よりも長く、かつ、前記超伝
導体結晶薄膜のc稜の長さに相当する正方晶であり、
単結晶誘電体薄膜の表面に階段部を形成し、該階段部の
踏みしろ長を、該単結晶誘電体薄膜のa稜又はb稜の長
さの整数倍に相当させ、かつ、該階段部の蹴上げ高を、
c稜の長さの整数倍に相当させたことを特徴とするもの
である。本発明では、超伝導体結晶薄膜の結晶成長は、
階段部の踏みしろ面と蹴上げ面の交わる部分から始まる
ため、初期段階の結晶成長が、階段部の蹴上げ面によっ
て律則される。したがって、超伝導体結晶のa、b稜の
うち、蹴上げ面の結晶軸長に近い値をもつ特定の稜が同
蹴上げ面に接するから、超伝導体結晶の各側面の向きが
一意に定まり、結晶欠陥のない良好な超伝導体結晶薄膜
が得られる。
The substrate is preferably YBa 2 Cu 3 O.
y, the value of y is 6.0 ≦ y ≦ 6.3 . Or,
The present invention relates to a substrate for growing a superconductor crystal thin film.
In this case, the crystal structure constituting the substrate has an a-edge and a b-edge.
It is cubic with the same c-edge length, and
A single-crystal dielectric thin film is formed on the long side,
The crystal structure of the dielectric thin film has the same length of the a-edge and the b-edge,
The c-edge is longer than the a-edge and the b-edge, and
Tetragonal corresponds to the length of the c edges of the conductive crystal film, the
A step is formed on the surface of the single crystal dielectric thin film, and the step
The step length is the length of the a-edge or b-edge of the single-crystal dielectric thin film.
Height of the stairs,
The length of the c-edge is set to an integral multiple of the length of the c-edge . In the present invention, the crystal growth of the superconductor crystal thin film
The crystal growth in the initial stage is governed by the rise surface of the step because it starts from the intersection of the stepping surface and the rise surface of the step. Therefore, among the a and b edges of the superconductor crystal, a specific edge having a value close to the crystal axis length of the rising surface is in contact with the rising surface, so that the direction of each side surface of the superconductor crystal is uniquely determined, A good superconductor crystal thin film without crystal defects can be obtained.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施例を図面に基
づいて説明する。図1〜図3は本発明に係る超伝導体結
晶薄膜成長用基板の一実施例を示す図である。図1にお
いて、10はMgOからなる超伝導体結晶薄膜成長用基
板(以下「基板」と略す)であり、基板10の表面に
は、蹴上げ11、12及び踏みしろ13、14を有する
階段部15が形成されている。なお、図中の( )付3
桁の数字は結晶面を示すミラー指数である。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 are views showing one embodiment of a substrate for growing a superconductor crystal thin film according to the present invention. In FIG. 1, reference numeral 10 denotes a substrate for growing a superconducting crystal thin film made of MgO (hereinafter abbreviated as “substrate”). On the surface of the substrate 10, a step portion 15 having risers 11, 12 and steps 13, 14 is provided. Are formed. (3) attached in the figure
Digits are Miller indices indicating crystal planes.

【0009】本実施例のポイントは、基板10の表面に
階段部15を形成した点にあるが、さらに、その階段部
15の蹴上げ11、12の高さHと、踏みしろ13、1
4の長さDを、以下のとおり設定した点もポイントであ
る。 (1) 蹴上げ11、12の高さHを、基板10の上に
成長させる超伝導体結晶薄膜の結晶単位胞のc稜の長さ
の整数倍に相当させる。例えば、Y−B−C−O系超伝
導体結晶(典型的には YBa2Cu37-x)のc稜の長
さは、図2に示すように、1.17nmであるから、蹴
上げ11、12の高さHは、次式で与えられる。
The point of this embodiment lies in that a step 15 is formed on the surface of the substrate 10. Further, the height H of the risers 11 and 12 of the step 15 and the steps 13 and 1
The point where the length D is set as follows is also a point. (1) The height H of the rises 11 and 12 is made to correspond to an integral multiple of the length of the c-edge of the crystal unit cell of the superconductor crystal thin film grown on the substrate 10. For example, as shown in FIG. 2, the length of the c-edge of the Y—B—C—O-based superconductor crystal (typically, YBa 2 Cu 3 O 7-x ) is 1.17 nm. The height H of the rises 11 and 12 is given by the following equation.

【0010】H=1.17nm×N ……… 但し、Nは整数である。 (2) 踏みしろ13、14の長さDを、基板10の結
晶単位胞のa稜又はb稜の長さの整数倍に相当させる。
例えば、MgO結晶のa稜とb稜の長さは共に0.42
nm(図5参照)であるから、踏みしろ13、14の長
さDは、次式で与えられる。
H = 1.17 nm × N where N is an integer. (2) The length D of the steps 13 and 14 is set to an integral multiple of the length of the a-edge or b-edge of the crystal unit cell of the substrate 10.
For example, the lengths of the a-edge and the b-edge of the MgO crystal are both 0.42.
nm (see FIG. 5), the length D of the steps 13, 14 is given by the following equation.

【0011】D=0.42nm×M ……… 但し、Mは整数である。図3は基板10及び超伝導体結
晶薄膜16(以下「薄膜」と略す)の結晶構造模式図で
ある。サイコロ状の立方体は基板10の結晶単位胞を示
し、また、基板10の結晶単位胞のほぼ3個分に相当す
る立方体は、薄膜16の結晶単位胞を示している。
D = 0.42 nm × M where M is an integer. FIG. 3 is a schematic diagram of the crystal structure of the substrate 10 and the superconductor crystal thin film 16 (hereinafter, abbreviated as “thin film”). A dice-shaped cube indicates a crystal unit cell of the substrate 10, and a cube corresponding to approximately three crystal unit cells of the substrate 10 indicates a crystal unit cell of the thin film 16.

【0012】図3の構造例では、蹴上げの高さHが薄膜
16の結晶単位胞1個分に相当し(N=1)、踏みしろ
の長さDが薄膜16の結晶単位胞9個分に相当している
(M=9)が、これに限定されない。N及びMは任意の
整数であればよい。このような構造において、薄膜16
の結晶成長は、階段部の踏みしろ面と蹴上げ面の交わる
部分、すなわち、図1において、基板10の(001)
面と(010)面の交わる部分10a、10bから始ま
る。具体的には、図3に示す薄膜16の各結晶単位胞の
うち、蹴上げ面に接する結晶単位胞(例えば、16a〜
16d)から成長が始まる。
In the structural example of FIG. 3, the height H of the rise is equivalent to one crystal unit cell of the thin film 16 (N = 1), and the stepping length D is nine crystal unit cells of the thin film 16. (M = 9), but is not limited to this. N and M may be any integers. In such a structure, the thin film 16
The crystal growth of the substrate 10 is performed at the intersection of the stepping surface of the step portion and the rising surface, that is, in FIG.
It starts from the intersections 10a and 10b of the plane and the (010) plane. Specifically, of the crystal unit cells of the thin film 16 shown in FIG.
The growth starts from 16d).

【0013】したがって、薄膜16の初期成長が、階段
部の蹴上げ面〔(010)面〕によって律則されるた
め、図2に示す超伝導体結晶のa、b稜のうちの特定の
稜、すなわち、蹴上げ面の結晶軸の長さ(0.42n
m)に近い値をもつb稜(b=0.39nm)が蹴上げ
面に沿って配向する結果、超伝導体結晶単位胞の各側面
の向きが一意に定まり、結晶欠陥のない良好な超伝導体
結晶薄膜を得ることができる、という従来技術にない格
別有利な効果がもたらされる。
Therefore, since the initial growth of the thin film 16 is governed by the rising surface [(010) plane] of the step portion, a specific one of the a and b ridges of the superconductor crystal shown in FIG. That is, the length of the crystal axis of the rising surface (0.42 n
As a result, the b ridge (b = 0.39 nm) having a value close to m) is oriented along the rise surface, so that the direction of each side of the superconductor crystal unit cell is uniquely determined, and good superconductivity without crystal defects is obtained. A particularly advantageous effect that a body crystal thin film can be obtained, which is not available in the prior art, is provided.

【0014】なお、以上の実施例では、基板材料にMg
OやLAOなどの誘電体単結晶を用いているが、これに
限らない。酸素量yを(超伝導現象を呈さなくなる程度
まで)少なくしたY−B−C−O系単結晶層を表面に有
する任意の基板を使用できる。酸素量yの好ましい値
は、例えば、YBa2Cu3y の場合で、およそ6.3
〜6.0程度である。この配合組成のYBa2Cu3y
は、MgOやLAOと同様にa稜とb稜の長さが等し
く、かつ、c稜の長さが超伝導体結晶のc稜の長さに相
当するため、上述の誘電体単結晶基板の代わりに用いる
ことができる。
In the above embodiment, the substrate material is Mg.
Although a dielectric single crystal such as O or LAO is used, it is not limited to this. Any substrate having a Y—B—C—O-based single crystal layer with a reduced oxygen amount y (to the extent that superconductivity is not exhibited) on the surface can be used. A preferable value of the oxygen amount y is, for example, about 6.3 in the case of YBa 2 Cu 3 O y.
It is about 6.0. YBa 2 Cu 3 O y of this composition
Since the lengths of the a-edge and the b-edge are equal to each other and the length of the c-edge corresponds to the length of the c-edge of the superconductor crystal as in the case of MgO or LAO, It can be used instead.

【0015】[0015]

【発明の効果】本発明によれば、基板上の超伝導体結晶
の各側面の向きを一意に定めることができ、結晶欠陥の
ない良好な超伝導体結晶薄膜を得ることができる。
According to the present invention, the direction of each side surface of a superconductor crystal on a substrate can be uniquely determined, and a good superconductor crystal thin film free from crystal defects can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一実施例の基板の概略表面形状図である。FIG. 1 is a schematic surface shape diagram of a substrate according to one embodiment.

【図2】超伝導体結晶薄膜の結晶単位胞模式図である。FIG. 2 is a schematic diagram of a crystal unit cell of a superconductor crystal thin film.

【図3】一実施例の基板及び超伝導体結晶薄膜の結晶構
造模式図である。
FIG. 3 is a schematic diagram of a crystal structure of a substrate and a superconductor crystal thin film of an example.

【図4】従来例の構造図である。FIG. 4 is a structural view of a conventional example.

【図5】図4の基板の結晶単位胞模式図である。FIG. 5 is a schematic diagram of a crystal unit cell of the substrate of FIG. 4;

【符号の説明】[Explanation of symbols]

10:超伝導体結晶薄膜成長用基板 11、12:蹴上げ 13、14:踏みしろ 15:階段部 16:超伝導体結晶薄膜 10: Superconductor crystal thin film growth substrate 11, 12: Lift-up 13, 14: Stepping-off 15: Step portion 16: Superconductor crystal thin film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上野 祥樹 愛知県日進市米野木町南山500番地1 株式会社移動体通信先端技術研究所内 (56)参考文献 特開 平1−167912(JP,A) 特開 平4−271183(JP,A) (58)調査した分野(Int.Cl.6,DB名) C01G 1/00 - 57/00 C30B 1/00 - 35/00 H01L 39/00 - 39/24──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yoshiki Ueno 500-1 Minamiyama, Yonegi-cho, Nisshin-shi, Aichi Pref. Mobile Communication Advanced Technology Laboratory Co., Ltd. (56) References JP-A-1-167912 (JP, A) Kaihei 4-271183 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C01G 1/00-57/00 C30B 1/00-35/00 H01L 39/00-39/24

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】超伝導体結晶薄膜を成長させるための基板
において、前記基板を構成する結晶構造は、a稜とb稜の長さが等
しく、c稜の長さがa稜及びb稜よりも長く、かつ、前
記超伝導体結晶薄膜のc稜の長さに相当する正方晶であ
り、 前記基板の成長面に階段部を形成し、該階段部の踏みし
ろ長を、該基板a稜又はb稜の長さの整数倍に相当さ
せ、かつ、該階段部の蹴上げ高を、c稜の長さの整数倍
に相当させたことを特徴とする超伝導体結晶薄膜成長用
基板。
1. A substrate for growing a superconducting crystal thin film, wherein the crystal structure constituting the substrate has the same length of a-edge and b-edge.
The length of c-edge is longer than that of a-edge and b-edge, and
A tetragonal crystal corresponding to the length of the c-edge of the superconductor crystal thin film.
Ri, a stair portion is formed on the growth surface of the substrate, the stepping white head of the stair portion, is equivalent to an integral multiple of the length of a ridge or b crest of the substrate, and the risers height of the stepped portion A substrate for growing a superconductor crystal thin film, wherein the substrate has an integer multiple of the length of the c-edge .
【請求項2】前記基板は、YBa2 Cu3 Oy で、yの
値が6.0≦y≦6.3であることを特徴とする請求項
1記載の超伝導体結晶薄膜成長用基板。
2. The substrate is made of YBa2 Cu3 Oy.
2. The substrate for growing a superconductor crystal thin film according to claim 1, wherein the value satisfies 6.0 ≦ y ≦ 6.3 .
【請求項3】超伝導体結晶薄膜を成長させるための基板
において、前記基板を構成する結晶構造が、a稜とb稜とc稜の長
さが等しい立方晶であるとともに、該基板の成長面側に
単結晶誘電体薄膜が形成されており、 該単結晶誘電体薄膜の結晶構造は、a稜とb稜の長さが
等しく、c稜の長さがa稜及びb稜よりも長く、かつ、
前記超伝導体結晶薄膜のc稜の長さに相当する正方晶で
あり、 該単結晶誘電体薄膜の表面に階段部を形成し、該階段部
の踏みしろ長を、該単結晶誘電体薄膜のa稜又はb稜の
長さの整数倍に相当させ、かつ、該階段部の蹴上げ高
を、c稜の長さの整数倍に相当させた ことを特徴とする
超伝導体結晶薄膜成長用基板。
3. A substrate for growing a superconductor crystal thin film, wherein the crystal structure constituting the substrate has a length of a, b, and c edges.
Are cubic and the growth surface side of the substrate
A single-crystal dielectric thin film is formed, and the crystal structure of the single-crystal dielectric thin film has a length of a-edge and a length of b-edge.
Equal, the length of c-edge is longer than a-edge and b-edge, and
A tetragonal crystal corresponding to the length of the c-edge of the superconductor crystal thin film
Forming a step on the surface of the single-crystal dielectric thin film;
The step length of the a-edge or b-edge of the single-crystal dielectric thin film.
Equal to an integral multiple of the length, and the rise height of the stairs
Is set to be an integral multiple of the length of the c-edge .
JP8017246A 1996-02-02 1996-02-02 Substrate for superconductor crystal thin film growth Expired - Lifetime JP2862502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8017246A JP2862502B2 (en) 1996-02-02 1996-02-02 Substrate for superconductor crystal thin film growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8017246A JP2862502B2 (en) 1996-02-02 1996-02-02 Substrate for superconductor crystal thin film growth

Publications (2)

Publication Number Publication Date
JPH09208392A JPH09208392A (en) 1997-08-12
JP2862502B2 true JP2862502B2 (en) 1999-03-03

Family

ID=11938602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8017246A Expired - Lifetime JP2862502B2 (en) 1996-02-02 1996-02-02 Substrate for superconductor crystal thin film growth

Country Status (1)

Country Link
JP (1) JP2862502B2 (en)

Also Published As

Publication number Publication date
JPH09208392A (en) 1997-08-12

Similar Documents

Publication Publication Date Title
US5750474A (en) Method for manufacturing a superconductor-insulator-superconductor Josephson tunnel junction
US5439875A (en) Process for preparing Josephson junction device having weak link of artificial grain boundary
EP0446146B1 (en) Stacked Josephson junction device composed of oxide superconductor material
JP2862502B2 (en) Substrate for superconductor crystal thin film growth
JP3027549B2 (en) Superconductor hetero-epitaxial Josephson junction
JP2871516B2 (en) Oxide superconducting thin film device
JP2523647B2 (en) Metal oxide superconducting thin film
JP3568547B2 (en) Josephson junction structure
JP3189403B2 (en) Element having superconducting junction and method of manufacturing the same
JPS6260831B2 (en)
EP0551033A1 (en) Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material and method for manufacturing the same
JP2831967B2 (en) Superconducting element
US6479139B1 (en) Superconducting substrate structure and a method of producing such structure
JPH0794790A (en) Superconducting device and its manufacture
JPH0272685A (en) Method for forming weakly coupled superconductor part
JP2976851B2 (en) Circuit manufacturing method using superconducting thin film
JP2861235B2 (en) Superconducting element
JPS59103390A (en) Tunnel junction type josephson element and manufacture thereof
JP2731513B2 (en) Superconducting element and method of manufacturing the same
JP2000299509A (en) Manufacture of josephson element and structure thereof
JPH0336771A (en) Weak coupling type josephson junction element
JPH05291632A (en) Superconductive junction structure
JPH09205232A (en) Superconducting planar circuit
JPH06196762A (en) Oxide superconductor junction and formation thereof
JPH04318984A (en) Josephson junction element and manufacture thereof