JP2861823B2 - Deep underground drainage facility - Google Patents

Deep underground drainage facility

Info

Publication number
JP2861823B2
JP2861823B2 JP6234931A JP23493194A JP2861823B2 JP 2861823 B2 JP2861823 B2 JP 2861823B2 JP 6234931 A JP6234931 A JP 6234931A JP 23493194 A JP23493194 A JP 23493194A JP 2861823 B2 JP2861823 B2 JP 2861823B2
Authority
JP
Japan
Prior art keywords
underground
shaft
resistor
drainage facility
waterway
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6234931A
Other languages
Japanese (ja)
Other versions
JPH0893040A (en
Inventor
誠二 三浦
定司 田中
国雄 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6234931A priority Critical patent/JP2861823B2/en
Publication of JPH0893040A publication Critical patent/JPH0893040A/en
Application granted granted Critical
Publication of JP2861823B2 publication Critical patent/JP2861823B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、雨水等の流入水を立坑
を介して地下に設けた地下水路に集め、ポンプにて揚水
し、河川等に放流する大深度地下排水施設に係り、特
に、立坑から地表への流入水の溢水防止に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deep underground drainage facility that collects inflow water such as rainwater into a groundwater channel provided underground through a shaft, pumps it up, and discharges it to rivers and the like. The prevention of inflow of inflow water from shafts to the ground surface.

【0002】[0002]

【従来の技術】近年、国民生活の質的向上のニーズの高
まりと共に、よりよい生活環境の整備が一層望まれてき
ている。よりよい居住空間の要求もこの一つであり、治
水安全性の向上もこの要求に含まれる。特に都市部では
道路の完全舗装化、空き地の減少等により、雨水の地下
浸透がほとんどなく、多量の雨水が短時間に地表に溢れ
る都市型洪水が増加しており、問題がクローズアップさ
れている。従って、社会的影響からみて人口や資産の集
中化が進んでいる都市部の洪水問題は非常に大きい。
2. Description of the Related Art In recent years, with the growing need for quality improvement of people's lives, there is a growing demand for better living environments. This is one of the requirements for better living space, and the improvement of flood control safety is also included in this requirement. Especially in urban areas, due to the complete paving of roads and the decrease of vacant lots, there is almost no infiltration of rainwater underground, and urban floods where a large amount of rainwater overflows on the surface in a short time are increasing, and the problem is being highlighted. . Therefore, the flood problem in urban areas, where population and assets are becoming more concentrated in terms of social impact, is very large.

【0003】しかし、都市部においては地価が高騰しポ
ンプ機場などの用地確保が困難であるという問題があ
る。そこで、当然ながら建設費の低減から、都市部排水
施設の省スペース化が要求される。しかし、省スペース
化された分、規模が小さくなるだけでは排水容量不足と
なるので、省スペース化に伴う小形高速排水化の要望も
ある。このような背景により、地表より地下約10mあ
るいはそれ以上の大深度地下を利用し排水するという排
水システム構想が生まれた。尚、大深度地下とは都市部
の地下鉄、下水道、各種地下敷設抗等の下の部位を指し
ている。
[0003] However, there is a problem that land prices soar in urban areas and it is difficult to secure land for pump stations and the like. Therefore, space saving of urban drainage facilities is naturally required to reduce construction costs. However, since the space is saved, the drainage capacity is insufficient just by reducing the scale. Therefore, there is a demand for a small, high-speed drainage accompanying the space saving. Under such a background, a drainage system concept has been born in which drainage is performed using a deep underground about 10 m or more below the ground surface. The deep underground refers to an area under a subway, a sewer, various underground laying, etc. in an urban area.

【0004】上記構想は、大深度地下に大きな地下水路
を建設し、雨水の排水に役立てようとするものである。
大深度地下排水施設は地上排水施設と比較し、地上スペ
ースが少なくて済み都市部において地下を有効に活用で
きる長所があり、また、大深度にすることによって大容
量の排水施設を建設できるなどの長所がある。
[0004] The above-mentioned concept is to construct a large underground waterway under a large depth of underground to use for drainage of rainwater.
Deep underground drainage facilities have the advantage of using less underground space in urban areas, as compared to above-ground drainage facilities, and have the advantage of being able to use underground effectively in urban areas. There are advantages.

【0005】このような大深度地下排水施設に関する従
来技術としては、例えば、文献「大深度地下放水路排水
ポンプシステム ターボ機械 第21巻第10号 23ペ
ージから29ページ」が挙げられる。
[0005] As a prior art relating to such a deep underground drainage facility, for example, there is a document "Deep underground drainage drainage pump system turbomachinery, Vol. 21, No. 10, pages 23 to 29".

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来技術には、ポンプの急停止や止水弁の急閉鎖による立
坑内の水位上昇への配慮が乏しく、流入水が立坑を逆流
し、立坑から溢れ出る場合があるという問題が残ってい
る。また、大深度地下排水施設の小形高速排水化に伴う
課題にも未だ応えられていないという問題がある。
However, in the above prior art, there is little consideration for a rise in the water level in the shaft due to a sudden stop of the pump or a sudden closure of the water shutoff valve, and the inflow water flows back through the shaft, and The problem remains that it may overflow. In addition, there is a problem that it has not yet been able to respond to the problems associated with the miniaturization and high-speed drainage of large depth underground drainage facilities.

【0007】従って、本発明の目的は、立坑などの構造
を適正化することにより、立坑内の水位上昇を抑制し、
立坑からの流入水の溢水を防止する大深度地下排水施設
を提供することにある。また、小形高速排水化の課題に
も応えられる大深度地下排水施設を提供する。
Accordingly, an object of the present invention is to suppress the rise in water level in a shaft by optimizing the structure of the shaft, etc.
It is an object of the present invention to provide a deep underground drainage facility for preventing inflow of inflow water from a shaft. It also provides a deep underground drainage facility that can meet the challenges of small, high-speed drainage.

【0008】[0008]

【課題を解決するための手段】上記目的は、大深度地下
に埋設された地下水路と、該地下水路と連通し地下水路
に雨水等の流入水を流下させる立坑と、地下水路に流下
し集合した流入水をポンプにより揚水し河川等に排水す
るポンプ機場とから構成された大深度地下排水施設にお
いて、立坑に、立坑を流入水が流下する順流時の通過抵
抗は小であり、上昇する逆流時の通過抵抗が大である抵
抗体を設けることにより達成される。
The object of the present invention is to provide an underground waterway buried deep underground, a shaft that communicates with the underground waterway and allows inflow water such as rainwater to flow down into the underground waterway, In a deep underground drainage facility consisting of a pumping station that pumps up inflow water and discharges it to rivers, etc. This is achieved by providing a resistor having a large passage resistance at the time.

【0009】また、立坑が複数ある場合は、複数の立坑
のうち、ポンプ機場に最寄りの立坑である最寄立坑と、
該最寄立坑に隣接する隣接立坑とを連通し、最寄立坑内
の流入水を隣接立坑に流し込ませる連通部材を埋設する
ことによっても達成される。
In the case where there are a plurality of shafts, a plurality of shafts are provided, one of which is the closest shaft to the pumping station.
This can also be achieved by burying a communication member that communicates with an adjacent shaft adjacent to the nearest shaft and allows inflow water in the nearest shaft to flow into the adjacent shaft.

【0010】[0010]

【作用】上記構成とすれば、立坑を通過する水の速度
は、抵抗の平方根に反比例するので、抵抗が大きいほど
水の速度は低下する。例えば、順流に比べ逆流の場合の
通過抵抗が6倍になったとき、逆流の通過速度は(1/
√6)倍=0.41倍になる。 流入水が流下する順流
の場合にはなんら支障はなく、流入水が逆流する場合に
は、流入水のエネルギーを減衰させることになり、立坑
内の水位上昇が緩和され、立坑からの溢水が防止され
る。
According to the above construction, the velocity of water passing through the shaft is inversely proportional to the square root of the resistance. Therefore, the velocity of the water decreases as the resistance increases. For example, when the passage resistance in the case of the reverse flow is six times that in the case of the forward flow, the passage speed of the reverse flow becomes (1 /
(6) Double = 0.41 times. There is no problem in the case of a forward flow in which the inflow water flows down.If the inflow water flows backward, the energy of the inflow water is attenuated, the rise in the water level in the shaft is mitigated, and overflow from the shaft is prevented. Is done.

【0011】また、ポンプの急停止や止水弁の急閉鎖に
よる圧力上昇は、ポンプ機場に近いほど大きい。従っ
て、立坑からの溢水の危険性は、ポンプ機場の最寄り位
置にある立坑である最寄立坑ほど大きい。本発明では最
寄立坑と最寄立坑に隣接する隣接立坑を連通させている
ので、流入水が最寄立坑内を上昇したとき、流入水が隣
接立坑にも流れ込み、最寄立坑の水位上昇が抑制され
る。これによって、立坑からの溢水が防止される。
[0011] The pressure rise due to the sudden stop of the pump or the sudden closing of the water stop valve increases as the position is closer to the pump station. Therefore, the risk of flooding from the shaft is greater for the nearest shaft, which is the shaft closest to the pump station. In the present invention, since the nearest shaft and the adjacent shaft adjacent to the nearest shaft are communicated with each other, when the inflow water rises in the nearest shaft, the inflow water also flows into the adjacent shaft, and the rise in the water level of the nearest shaft is reduced. Is suppressed. This prevents flooding from the shaft.

【0012】[0012]

【実施例】以下、本発明による実施例について図面を参
照し説明する。図1は、本発明による一実施例の大深度
地下排水施設を示す断面図である。大深度地下排水施設
の構成は、次の通りである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing a deep underground drainage facility according to one embodiment of the present invention. The structure of the deep underground drainage facility is as follows.

【0013】図のように、地下の深いところに地下水路
1が埋設されている。この地下水路1と連通している複
数の立坑2を介して、道路や放水路3、管渠4などから
流れてきた雨水等の流入水が、地下水路1に流下する。
地下水路1の下流端は、ポンプ機場9に通じている。流
入水はポンプ機場9に集められる。集められた流入水
は、ポンプ7により揚水され吐出管路8を経て放流先の
河川5等に排水される。河川5以外に海や別系統の放水
路もある。
As shown in the figure, a groundwater channel 1 is buried deep underground. Through a plurality of shafts 2 communicating with the underground waterway 1, inflow water such as rainwater flowing from a road, a water discharge channel 3, a sewer 4 or the like flows down to the underground waterway 1.
The downstream end of the underground waterway 1 leads to a pumping station 9. The inflow water is collected in a pump station 9. The collected inflow water is pumped by a pump 7 and discharged to a discharge destination river 5 or the like via a discharge pipe 8. In addition to the river 5, there is also a sea or another system of drainage channels.

【0014】そして立坑2に、立坑2を流入水が流下す
る順流時の場合に通過抵抗が小であって、流入水が逆に
上昇する逆流時の場合に通過抵抗が大である、溢水防止
部材としての抵抗体10が設けられている。
In the vertical shaft 2, overflow resistance is small when passing water flowing down the vertical shaft 2 is small, and passing resistance is large when flowing backward when the inflow water rises. A resistor 10 is provided as a member.

【0015】このような大深度地下排水施設において、
停電などによりポンプが急停止したり、ポンプの直後に
配設された止水弁が急閉鎖されたとき、それまで地下水
路1をポンプ機場9の方向に流れていた流入水が急に堰
き止められるので、大きな流速の変化が発生する。そし
て、地下水路1内の圧力が急変する。これは水の慣性力
に原因があり、水撃とも呼ばれ、過渡的に圧力が上昇す
る現象である。
In such a deep underground drainage facility,
When the pump suddenly stops due to a power failure, or when the water stop valve provided immediately after the pump is suddenly closed, the inflowing water that had been flowing in the direction of the pumping station 9 through the underground waterway 1 was suddenly blocked. Therefore, a large change in flow velocity occurs. Then, the pressure in the underground waterway 1 changes suddenly. This is caused by the inertia of water, also called water hammer, and is a phenomenon in which the pressure rises transiently.

【0016】この圧力変化は、流速や場所により異な
り、次式で表わされる。
This pressure change differs depending on the flow velocity and location, and is expressed by the following equation.

【0017】 ΔH=(−L/g)×ΔV (数1) ここで、ΔHは圧力の変化量、Lは管路の長さ、gは重
力加速度、ΔVは流速の変化値である。ΔHは、流れを
堰き止める速さが速いほど、また、流速が速いほど大き
い。そして、流れが堰き止められた場合の圧力変化は、
減速流れとなるのでΔVは負、ΔHは正となり、圧力上
昇となる。圧力上昇が起きると水は盛り上がろうとし、
近くに立坑があれば立坑内の水位が上昇し、立坑から地
表に水が溢れる場合がある。これを防止するために抵抗
体10が立坑2に設けられる。
ΔH = (− L / g) × ΔV (Equation 1) Here, ΔH is the amount of change in pressure, L is the length of the pipeline, g is the gravitational acceleration, and ΔV is the change in the flow velocity. ΔH increases as the speed of blocking the flow increases and as the flow velocity increases. And the pressure change when the flow is blocked
Since the flow is decelerated, ΔV is negative, ΔH is positive, and the pressure increases. When the pressure rises, the water tries to rise,
If there is a shaft nearby, the water level in the shaft rises, and water may overflow from the shaft to the ground surface. In order to prevent this, a resistor 10 is provided in the shaft 2.

【0018】抵抗体10は、水撃による流入水の水位上
昇のエネルギーを消散させるものである。立坑内を逆流
してきた流入水のエネルギーが減衰するので、流入水の
水位上昇が緩和され、立坑からの流入水の溢水が防止さ
れる。これについて、次図に示す本実施例における抵抗
体10を参照し説明する。図2は、抵抗体の一実施例を
示す斜視図である。図3は、図2に示す抵抗体の抵抗体
要素を示す図である。抵抗体要素10aは、抵抗体10
の構成要素の1つである。抵抗体要素10aは、漏斗状
の部材であり、中央は水が通過可能となっている。図2
に示すように、抵抗体10は、このような漏斗状の部材
である抵抗体要素10aが、同一方向に複数個、重ね合
わされた構造体である。
The resistor 10 serves to dissipate the energy of the rise in the level of the inflow water due to the water hammer. Since the energy of the inflow water flowing backward in the shaft is attenuated, the rise in the level of the inflow water is reduced, and the overflow of the inflow water from the shaft is prevented. This will be described with reference to the resistor 10 in the present embodiment shown in the next figure. FIG. 2 is a perspective view showing one embodiment of the resistor. FIG. 3 is a diagram showing a resistor element of the resistor shown in FIG. The resistor element 10a includes the resistor 10
Is one of the components. The resistor element 10a is a funnel-shaped member, and water can pass through the center. FIG.
As shown in (1), the resistor 10 is a structure in which a plurality of resistor elements 10a, which are such funnel-shaped members, are overlapped in the same direction.

【0019】また図2には、流入水が立坑2を流下する
順流の流れ、即ち、抵抗体10を流下する流れが、 順
流時の流れ12として示されている。さらに、流入水が
立坑2を逆に上昇する逆流の流れ、即ち、水位上昇の流
れが、逆流時の流れ11として示されている。
FIG. 2 shows a forward flow in which the inflow water flows down the shaft 2, that is, a flow flowing down the resistor 10 as a forward flow 12. Further, a reverse flow in which inflow water rises up the shaft 2 reversely, that is, a flow of rising water level is shown as a flow 11 at the time of reverse flow.

【0020】図2に示すような抵抗体10においては、
順流時の流れ12の通過抵抗は小であり、逆流時の流れ
11の通過抵抗は大である。具体的にそれらの違いを抵
抗係数の比で計算してみると、逆流時の抵抗係数と順流
時の抵抗係数の比、即ち、抵抗比は約6となった。そし
て、抵抗体10があるときとないときの抵抗の違いをみ
ると、抵抗体がないときの抵抗係数を1とし、逆流時の
抵抗係数もほぼ1と仮定すれば、抵抗体10があるとき
の抵抗係数はないときの6倍となるので、その抵抗の違
いも約6倍といえる。
In the resistor 10 as shown in FIG.
The flow resistance of the flow 12 at the time of forward flow is small, and the flow resistance of the flow 11 at the time of reverse flow is large. Specifically, when the difference was calculated by the ratio of the resistance coefficients, the ratio between the resistance coefficient at the time of reverse flow and the resistance coefficient at the time of forward flow, that is, the resistance ratio was about 6. Looking at the difference in resistance between the case where the resistor 10 is present and the case where the resistor 10 is not present, assuming that the resistance coefficient when there is no resistor is 1 and the resistance coefficient when the backflow is almost 1 Is six times that when there is no resistance coefficient, and the difference in the resistance can be said to be about six times.

【0021】このような抵抗体10を立坑2に設ける
と、作用の項で説明したように、流入水が立坑2を逆に
上昇する上昇速度は0.41倍になり、ゆっくり上昇す
ることになる。そして、ポンプの急停止や止水弁の急閉
鎖時に発生する圧力上昇は、長時間続くものではなく、
短時間に終了し、すなわち、水位上昇は短時間発生する
ので、この時間内に流入水が立坑を昇りきることがなけ
れば、流入水が立坑から溢れることはない。抵抗体10
がある場合、上昇速度が少ない分、抵抗体10がない場
合に比較して2.4倍の余裕時間を得たことになり、溢
水防止の効果が得られることになる。
When such a resistor 10 is provided in the shaft 2, as described in the section of the operation, the rising speed of the inflow water on the contrary in the shaft 2 becomes 0.41 times, and the rising speed is increased. Become. The pressure rise that occurs when the pump suddenly stops or the water shutoff valve closes suddenly does not last for a long time,
Since the water level rise is completed in a short time, that is, the water level rise occurs for a short time, the inflow water does not overflow from the shaft if the inflow water does not rise up the shaft during this time. Resistor 10
In the case where there is, since the rising speed is small, a margin time 2.4 times as long as the case where the resistor 10 is not provided is obtained, and the effect of preventing flooding can be obtained.

【0022】従って、抵抗体10は、立坑2と地下水路
1の連通部近傍、すなわち、立坑2の大深度地下部位に
設置されることが望ましい。何故ならば、抵抗体10が
地表近くにあった場合、流入水はあっと言う間に地表近
くまで到達し、余裕時間に関係なく、すぐに流入水は地
表に溢れ出る。抵抗体10が地下深い連通部近傍にある
からこそ、流入水が立坑2を満杯にしつつゆっくり上昇
し溢れるまでの時間が稼げて、溢水が防止される。
Therefore, it is desirable that the resistor 10 is installed near the communicating portion between the shaft 2 and the underground waterway 1, that is, at a deep underground portion of the shaft 2. Because if the resistor 10 is near the surface, the influent will quickly reach near the surface, and the influent will quickly flood the surface, regardless of time. Only because the resistor 10 is near the deep underground communication portion, the time for the inflow water to slowly rise and overflow while filling the shaft 2 can be gained, and overflow is prevented.

【0023】また、図2に示すような漏斗状の部材であ
る抵抗体要素10aが重ね合わされた構造体からなる抵
抗体10は、抵抗になると同時に流入水が溜る部分も確
保されている形状であるので、幸便な構造体である。
The resistor 10 having a structure in which the resistor elements 10a, which are funnel-shaped members, as shown in FIG. This is a convenient structure.

【0024】一方、圧力変化ΔHは、場所と減衰時間に
より異なるが、(数1)式の管路の長さL、すなわち、
ポンプ機場9までの地下水路1の長さに左右されるもの
である。従って、ポンプ機場9に近いほど圧力変化ΔH
は大きい。すなわち、ポンプ機場9に最寄りの立坑内の
圧力上昇が最も大きくなり、最も水位が上昇し易い。
On the other hand, the pressure change ΔH varies depending on the location and the decay time, but the length L of the pipeline in the equation (1), that is,
It depends on the length of the underground waterway 1 up to the pump station 9. Therefore, the pressure change ΔH becomes closer to the pump station 9.
Is big. That is, the pressure rise in the shaft near the pumping station 9 is the largest, and the water level is most likely to rise.

【0025】この事実より、立坑2が複数あり、それぞ
れの立坑2に抵抗体10が設けられる場合、設置される
抵抗体10の逆流時の抵抗(抵抗比、抵抗係数も含む)
は、立坑2がポンプ機場9に近いほど大きくすることが
合理的である。
According to this fact, when there are a plurality of shafts 2 and each of the shafts 2 is provided with the resistor 10, the resistance (including the resistance ratio and the resistance coefficient) of the installed resistor 10 when flowing backward is included.
It is reasonable to make the shaft 2 larger as the shaft 2 is closer to the pumping station 9.

【0026】換言すれば、地下水路1に複数の立坑2が
連通している場合は、逆流時の通過抵抗を、立坑1とポ
ンプ機場9間の地下水路1の長さに反比例して大きくし
た抵抗体10を立坑1に設置することになる。これが効
率の良い溢水防止に繋がる。例えば、少し判り難いが図
1に示したように、ポンプ機場9に近い立坑2の抵抗体
要素10aは、3個とし、ポンプ機場9から離れた立坑
2の抵抗体要素10aは、2個とする。
In other words, when a plurality of shafts 2 communicate with the groundwater channel 1, the passage resistance at the time of backflow is increased in inverse proportion to the length of the groundwater channel 1 between the shaft 1 and the pumping station 9. The resistor 10 is installed in the shaft 1. This leads to efficient flood prevention. For example, as shown in FIG. 1, although it is a little difficult to understand, the number of resistor elements 10 a of the shaft 2 near the pumping station 9 is three, and the number of resistor elements 10 a of the shaft 2 away from the pumping station 9 is two. I do.

【0027】このように全ての抵抗体10は、必ずしも
同一寸法、同一抵抗のものでなくてもよく、ポンプ機場
9から離れた立坑2の抵抗体10は、抵抗を小さくし価
格的に安価に作られたものでよい。場合によっては、抵
抗体10を設置しなくてもよい。
As described above, all the resistors 10 do not necessarily have to have the same dimensions and the same resistance, and the resistors 10 of the shaft 2 remote from the pumping station 9 have low resistance and are inexpensive. It may be made. In some cases, the resistor 10 need not be provided.

【0028】ところで、本実施例のように、立坑2と抵
抗体10とを別体のものとし、抵抗体10を工場にて製
作し、それを現地に持ち込んで立坑2の本体に組み込む
ことが考えられる。抵抗体10は、大深度地下排水施設
の一構成部品として予め別場所にて製作され、それを立
坑に組み込む方式を採用することにより、排水施設の建
設現場での施工費の節減、工期の短縮を図ることが可能
となり、全体の工事費の低減が可能である。別体であれ
ば、抵抗体10の標準化が行え、コスト低減に結び付
く。換言すれば、安価な溢水防止付の大深度地下排水施
設を提供することが可能となる。しかし、小規模の排水
施設では、立坑2と抵抗体10とが一体であっても可で
ある。
By the way, as in the present embodiment, the shaft 2 and the resistor 10 are separated from each other, the resistor 10 is manufactured at a factory, and the resistor 10 is brought to the site and incorporated into the main body of the shaft 2. Conceivable. The resistor 10 is manufactured in advance at another location as a component of a deep underground drainage facility, and by adopting a method of incorporating the same into a shaft, the construction cost of the drainage facility can be reduced and the construction period can be shortened. It is possible to reduce the total construction cost. If separate, the resistor 10 can be standardized, leading to cost reduction. In other words, it is possible to provide an inexpensive deep underground drainage facility with flood prevention. However, in a small-scale drainage facility, the shaft 2 and the resistor 10 may be integrated.

【0029】図4と図5は、抵抗体の他の実施例を示す
断面図である。図4は、図5のX−X矢視図であり、図
5は、図4のY−Y矢視図である。図4と図5におい
て、抵抗体18、順流時の流れ12、逆流時の流れ11
として示している。
FIGS. 4 and 5 are sectional views showing another embodiment of the resistor. FIG. 4 is a view taken along the line XX of FIG. 5, and FIG. 5 is a view taken along the line YY of FIG. 4 and 5, a resistor 18, a flow 12 at the time of forward flow, and a flow 11 at the time of reverse flow
As shown.

【0030】溢水防止部材としての抵抗体18は、流入
水が逆流時のときのみ旋回して流れる逆流旋回流が発生
し、順流時より逆流時の通過抵抗が大である作動特性を
示す複雑な流路を有する逆流旋回流方式の構造体からで
きている。即ち、流入水が抵抗体18を流下する順流時
の流れ12は、多少流路が複雑であっても、重力にした
がった整然とした自然な流れである。逆に、流入水が抵
抗体18を上昇する逆流時の流れ11は、旋回室28の
側壁に案内されて旋回させられる。従って、流入水は旋
回室28における滞留時間が長く、容易に旋回室28か
ら流れ出ない。即ち、逆流時は流れ難く、通過抵抗が大
となる。
The resistor 18 serving as a flood prevention member generates a backward swirling flow that swirls and flows only when the inflow water is backflowing, and has a complicated operating characteristic in which the passage resistance at the time of backflow is greater than at the time of backflow. It is made of a backflow swirling structure having a flow path. That is, the flow 12 at the time of the forward flow in which the inflow water flows down the resistor 18 is an orderly natural flow according to gravity even if the flow path is somewhat complicated. Conversely, the flow 11 at the time of reverse flow in which the inflow water rises up the resistor 18 is guided by the side wall of the swirl chamber 28 and swirled. Therefore, the inflow water stays in the swirl chamber 28 for a long time, and does not easily flow out of the swirl chamber 28. That is, it is difficult to flow at the time of reverse flow, and the passage resistance becomes large.

【0031】この抵抗体18の抵抗比は約10である。
本実施例では、前述の抵抗体10より構造は複雑である
が、抵抗比は大きく、溢水防止の目的がさらに効率的に
発揮されるという効果がある。
The resistance ratio of the resistor 18 is about 10.
In this embodiment, although the structure is more complicated than that of the above-described resistor 10, the resistance ratio is large, and there is an effect that the purpose of preventing overflow is more efficiently exhibited.

【0032】なお、図4と図5に示すような、重力をう
まく利用した、旋回室28が縦置タイプの逆流旋回流方
式の構造体からなる抵抗体18は、高さ方向に寸法を占
めるので、丁度、大深度地下に埋設され深さ方向に長い
立坑2と連通するに好適である。換言すれば、縦置タイ
プの抵抗体18は、大深度地下排水施設に合った溢水防
止部材と言える。
As shown in FIG. 4 and FIG. 5, the resistor 18 made of a backflow swirling type structure in which the swirling chamber 28 is vertically installed and which makes good use of gravity occupies a dimension in the height direction. Therefore, it is suitable for communicating with the shaft 2 that is buried underground at a large depth and is long in the depth direction. In other words, the vertical type resistor 18 can be said to be a flood prevention member suitable for deep underground drainage facilities.

【0033】図6は、抵抗体のもう1つ別の実施例を示
す断面図である。抵抗体の構成は、その規模が大きくな
り、大深度地下排水施設の全体断面図で示されている。
図7は、図6のZ−Z矢視図である。
FIG. 6 is a sectional view showing another embodiment of the resistor. The configuration of the resistor has been increased in size and is shown in the overall sectional view of the deep underground drainage facility.
FIG. 7 is a view taken along the line ZZ in FIG.

【0034】図6において、立坑2に、制御流導入管2
5、制御流26、制御流調節弁27旋回室28等を有す
る溢水防止部材としての抵抗体24が設けられている構
成である。また、抵抗体24は前述した逆流旋回流方式
の構造体の別の種類であり、旋回室が横置タイプのもの
である。
In FIG. 6, a control flow introduction pipe 2
5, a resistor 24 as a flood prevention member having a control flow 26, a control flow control valve 27, a swirl chamber 28 and the like is provided. The resistor 24 is another type of the above-described structure of the backflow swirling type, and the swirling chamber is of a horizontal type.

【0035】図6と図7を同時に参照し作動について説
明する。地下水路1で発生した水撃の圧力を利用して、
制御流導入管25から制御流26を導入し、抵抗体24
の旋回室28に旋回流を発生させるものである。この
時、制御流26は、ポンプ機場9に近い側の地下水路1
と連通させた制御流導入管25から導入する。何故なら
ば、地下水路1ポンプ機場9に近い側の圧力変化ΔHが
大きく、強い噴流である制御流26が得られるからであ
る。換言すれば、逆流旋回流方式の構造体の旋回室が横
置タイプの場合は、地下水路内の圧力差で発生した噴流
を旋回室に導く導入管を設けたものである。
The operation will be described with reference to FIGS. 6 and 7. Using the pressure of the water hammer generated in the underground waterway 1,
The control flow 26 is introduced from the control flow introduction pipe 25 and the resistor 24
A swirling flow is generated in the swirling chamber 28 of the above. At this time, the control flow 26 is transmitted to the underground waterway 1 on the side near the pumping station 9.
Is introduced from the control flow introduction pipe 25 connected to the control flow. This is because the pressure change ΔH on the side close to the underground waterway 1 pumping station 9 is large, and the control flow 26 which is a strong jet is obtained. In other words, when the swirl chamber of the structure of the backflow swirl flow type is a horizontal type, an introduction pipe for guiding the jet generated by the pressure difference in the underground water channel to the swirl chamber is provided.

【0036】その結果、流入水が逆流時のときのみ旋回
して流れる逆流旋回流が得られ、順流時より逆流時の通
過抵抗が大きくなり、水位上昇速度が抑制される。尚、
旋回室28の上部開口部に絞り部を設け、逆流時の通過
抵抗を大きくしている。
As a result, a backflow swirling flow that swirls and flows only when the inflow water is backflow is obtained, the passage resistance at the time of backflow is larger than at the time of forward flow, and the rising speed of the water level is suppressed. still,
A throttle section is provided in the upper opening of the swirl chamber 28 to increase the passage resistance at the time of backflow.

【0037】本抵抗体24も構造は複雑であるが、制御
流導入管25の途中に設置する制御流調節弁27を制御
することによって、所望の抵抗比を得ることができ、排
水施設構造の変更なしに、水位上昇速度抑制の調節が可
能という効果を持っている。
Although the structure of the resistor 24 is also complicated, a desired resistance ratio can be obtained by controlling the control flow control valve 27 provided in the middle of the control flow introduction pipe 25, and the structure of the drainage facility can be obtained. This has the effect that the water level rising speed can be adjusted without any change.

【0038】図8は、本発明による他の実施例の大深度
地下排水施設を示す断面図である。ポンプ井を含む大深
度地下排水施設のポンプ井に抵抗体を設置した例であ
る。
FIG. 8 is a sectional view showing a deep underground drainage facility according to another embodiment of the present invention. This is an example of installing a resistor in a pump well of a deep underground drainage facility including a pump well.

【0039】本実施例は、地下水路1、立坑2、ポンプ
井30、吸込ゲート33、 止水弁34、吐出ゲート3
5、抵抗体36などから構成される。
In this embodiment, the underground waterway 1, the shaft 2, the pump well 30, the suction gate 33, the water stop valve 34, the discharge gate 3
5, a resistor 36 and the like.

【0040】本実施例における溢水防止部材は抵抗体3
6である。ポンプ井30に設置された抵抗体36が図1
と同様の効果を発揮することは、明らかであり作動の説
明は省略する。従って、ポンプ井30は立坑2の1種類
であると定義する。
In this embodiment, the overflow preventing member is a resistor 3
6. The resistor 36 installed in the pump well 30 is shown in FIG.
It is clear that the same effect as described above can be obtained, and the description of the operation is omitted. Therefore, the pump well 30 is defined as one type of the shaft 2.

【0041】尚、抵抗体36を含めた抵抗体10,1
8,24などの寸法形状、抵抗特性、設置位置等は、排
水施設毎の運転、環境条件に応じて最適値に選定される
べきものである。
The resistors 10, 1 including the resistor 36
The dimensional shape, resistance characteristics, installation position, and the like of 8, 24, etc. should be selected to optimal values according to the operation and environmental conditions of each drainage facility.

【0042】図9は、本発明によるもう1つ別の実施例
の大深度地下排水施設を示す断面図である。
FIG. 9 is a sectional view showing a deep underground drainage facility according to another embodiment of the present invention.

【0043】本実施例は、立坑同志を地下で連通させた
ものである。即ち、ポンプ機場9に最寄りの立坑である
最寄立坑2aと、それに隣接する立坑である隣接立坑2
bとを、連通部材としての連通管37で連通させたもの
である。連通させることによって、ポンプ機場9に最寄
りであって、圧力上昇の高い最寄立坑2aの水位が上昇
した場合、隣接立坑2bに流入水が流れ込むことにな
り、最寄立坑2aの水位上昇が緩和される。これによっ
て、立坑からの溢水は防止される。
In this embodiment, shafts are connected underground. That is, the nearest shaft 2a, which is the closest shaft to the pump station 9, and the adjacent shaft 2, which is the shaft adjacent thereto,
b is communicated with a communication pipe 37 as a communication member. When the water level in the nearest shaft 2a, which is closest to the pumping station 9 and has a high pressure rise, rises due to the communication, the inflow water flows into the adjacent shaft 2b, and the rise in the water level in the nearest shaft 2a is reduced. Is done. This prevents flooding from the shaft.

【0044】本実施例の場合、立坑内に複雑な構造物が
ないという長所を有し、維持管理が容易であるという効
果がある。そして、維持管理が容易であるからこそ、土
地が有効に活用できる大深度地下に埋設するに、連通管
は好適である。従って、複数の立坑同志に、複数の連通
管を列なって結ぶことも可である。
In this embodiment, there is an advantage that there is no complicated structure in the shaft, and there is an effect that the maintenance is easy. And because of the ease of maintenance, communication pipes are suitable for burying deep underground where land can be effectively used. Therefore, a plurality of communication pipes can be connected to a plurality of shafts in a row.

【0045】尚、他の連通部材としては、連通管以外に
暗渠、横坑などもある。これらの連通部材は、全て溢水
防止部材に含まれる。また、図示されているように、連
通管37が傾斜されて埋設されても良い。この場合、最
寄立坑2aから隣接立坑2bへ下がった傾斜とし、重力
をうまく利用するのが良い。
As other communication members, there are culverts, horizontal shafts and the like in addition to the communication pipes. These communication members are all included in the overflow prevention member. Further, as shown in the figure, the communication pipe 37 may be buried in an inclined state. In this case, it is preferable that the inclination is lowered from the nearest shaft 2a to the adjacent shaft 2b, and the gravity is used well.

【0046】さらに、連通管等の本数、設置位置、寸法
形状等は排水施設毎に、立坑毎に設計される。また、連
通管37等と抵抗体10等の併用は、場合によっては有
効な方法である。
Further, the number of communication pipes, installation positions, dimensions and shapes are designed for each drainage facility and for each shaft. In addition, the combined use of the communication pipe 37 or the like and the resistor 10 or the like is an effective method in some cases.

【0047】一方、上記実施例において、2種類の比較
的安価で施工が容易である溢水防止部材について記述し
たが、例えば、ポンプの急停止や止水弁の急閉鎖を検知
する検知手段と該検知手段に基づいて立坑を閉塞する閉
塞手段とから構成したものを溢水防止部材として用いる
ことも可である。閉塞手段としては閉塞弁、閉塞ゲー
ト、閉塞堰などがある。
On the other hand, in the above embodiment, two types of relatively inexpensive and easy-to-install overflow prevention members have been described. It is also possible to use, as the overflow preventing member, one configured of closing means for closing the shaft based on the detecting means. The closing means includes a closing valve, a closing gate, a closing weir and the like.

【0048】また、逆流してきた流入水を一時貯溜する
貯水室を立坑に連通する溢水防止方法も考えられる。断
面を描けば立坑の途中が膨らんでいる形となる。このよ
うな貯水室も、溢水防止部材の1例である。
Further, a method for preventing overflowing is also conceivable in which a water storage chamber for temporarily storing inflowing water flowing backward is connected to a shaft. If you draw a cross section, the middle of the shaft will be bulging. Such a water storage chamber is also an example of the overflow prevention member.

【0049】[0049]

【発明の効果】本発明によれば、大深度地下排水施設の
立坑内の水位上昇を抑制し、立坑からの溢水を防止する
という効果がある。また、小形高速排水化に伴う厳しい
水撃の課題にも応えられる効果がある。
According to the present invention, there is an effect that a rise in water level in a shaft of a deep underground drainage facility is suppressed, and overflow from the shaft is prevented. In addition, there is an effect that it is possible to respond to a severe water hammer problem associated with miniaturized high-speed drainage.

【0050】従って、都市部の土地有効活用と不安のな
い排水施設の実現が可能である。
Therefore, it is possible to effectively utilize the land in the urban area and realize a drainage facility free from anxiety.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による一実施例の大深度地下排水施設を
示す断面図である。
FIG. 1 is a sectional view showing a deep underground drainage facility according to an embodiment of the present invention.

【図2】抵抗体の一実施例を示す斜視図である。FIG. 2 is a perspective view showing one embodiment of a resistor.

【図3】図2に示す抵抗体の抵抗体要素を示す図であ
る。
FIG. 3 is a view showing a resistor element of the resistor shown in FIG. 2;

【図4】抵抗体の他の実施例を示す断面図である。FIG. 4 is a sectional view showing another embodiment of the resistor.

【図5】図4のY−Y矢視図である。FIG. 5 is a view as seen in the direction of arrows Y in FIG. 4;

【図6】抵抗体のもう1つ別の実施例を示す断面図であ
る。
FIG. 6 is a sectional view showing another embodiment of the resistor.

【図7】図6のZ−Z矢視図である。FIG. 7 is a view taken in the direction of arrows ZZ in FIG. 6;

【図8】本発明による他の実施例の大深度地下排水施設
を示す断面図である。
FIG. 8 is a sectional view showing a deep underground drainage facility according to another embodiment of the present invention.

【図9】本発明によるもう1つ別の実施例の大深度地下
排水施設を示す断面図である。
FIG. 9 is a sectional view showing a deep underground drainage facility according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…地下水路、2…立坑、3…放水路、4…管渠、5…
河川、7…ポンプ、8…吐出管路、9…ポンプ機場、1
0,18,24,36…抵抗体、10a…抵抗体要素、
11…逆流時の流れ、12…順流時の流れ、25…制御
流導入管、26…制御流、27…制御流調節弁、28…
旋回室、30…ポンプ井、33…吸込ゲート、34…止
水弁、35…吐出ゲート、37…連通管、2a…最寄立
坑、2b…隣接立坑。
1 ... groundwater channel, 2 ... shaft, 3 ... drainage channel, 4 ... sewer, 5 ...
River, 7 ... Pump, 8 ... Discharge line, 9 ... Pump station, 1
0, 18, 24, 36 ... resistor, 10a ... resistor element,
11: Flow at the time of reverse flow, 12: Flow at the time of forward flow, 25: Control flow introduction pipe, 26: Control flow, 27: Control flow control valve, 28 ...
Swirling chamber, 30 pump well, 33 suction gate, 34 shutoff valve, 35 discharge gate, 37 communication pipe, 2a nearest pit, 2b adjacent pit.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−363427(JP,A) 特開 平5−287791(JP,A) 特開 平5−214761(JP,A) 特開 平5−222760(JP,A) 実開 昭58−156732(JP,U) (58)調査した分野(Int.Cl.6,DB名) E03F 1/00 E03F 5/22──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-4-363427 (JP, A) JP-A-5-287779 (JP, A) JP-A-5-214761 (JP, A) 222760 (JP, A) Japanese Utility Model 1983-156732 (JP, U) (58) Fields investigated (Int. Cl. 6 , DB name) E03F 1/00 E03F 5/22

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】大深度地下に埋設された地下水路と、該地
下水路と連通し該地下水路に雨水等の流入水を流下させ
る立坑と、前記地下水路に流下し集合した前記流入水を
ポンプにより揚水し河川等に排水するポンプ機場とから
構成された大深度地下排水施設において、 前記立坑に、前記立坑を前記流入水が流下する順流時の
通過抵抗は小であり、上昇する逆流時の通過抵抗が大で
ある抵抗体を設けたことを特徴とする大深度地下排水施
設。
An underground waterway buried underground at a large depth, a shaft that communicates with the underground waterway and allows inflow water such as rainwater to flow down into the underground waterway, and a pump that pumps the inflow water flowing down and assembled into the underground waterway. In a deep underground drainage facility composed of a pumping station that pumps up and drains water into rivers, etc., in the vertical shaft, the passing resistance of the inflow water flowing down the vertical shaft is small, A deep underground drainage facility characterized by the installation of a resistor with a high passage resistance.
【請求項2】請求項1において、前記地下水路に複数の
前記立坑が連通している場合は、前記逆流時の通過抵抗
を、前記立坑と前記ポンプ機場間の前記地下水路の長さ
に反比例して大きくした前記抵抗体を前記立坑に設置す
ることを特徴とする大深度地下排水施設。
2. The underground waterway according to claim 1, wherein when the plurality of shafts communicate with the underground waterway, the passage resistance at the time of the backflow is inversely proportional to the length of the underground waterway between the shaft and the pumping station. A deep underground drainage facility, wherein the enlarged resistor is installed in the shaft.
【請求項3】請求項1において、前記抵抗体は、前記立
坑と前記地下水路の連通部近傍に設置されることを特徴
とする大深度地下排水施設。
3. The deep underground drainage facility according to claim 1, wherein the resistor is installed near a communication portion between the shaft and the underground waterway.
【請求項4】請求項1において、前記抵抗体は、漏斗状
の部材が重ね合わされた構造体であることを特徴とする
大深度地下排水施設。
4. The deep underground drainage facility according to claim 1, wherein the resistor has a structure in which funnel-shaped members are overlapped.
【請求項5】請求項1において、前記抵抗体は、前記流
入水が逆流時のときのみ旋回して流れる逆流旋回流方式
の構造体であることを特徴とする大深度地下排水施設。
5. The deep underground drainage facility according to claim 1, wherein the resistor is a backflow swirling type structure that swirls and flows only when the inflow water is backflowing.
【請求項6】請求項5において、前記逆流旋回流方式の
構造体の旋回室が横置タイプの場合は、前記地下水路内
の圧力差で発生した噴流を前記旋回室に導く導入管を設
けたことを特徴とする大深度地下排水施設。
6. An inlet pipe for guiding a jet generated by a pressure difference in the underground water channel to the swirl chamber, wherein the swirl chamber of the backflow swirl type structure is a horizontal type. A deep underground drainage facility characterized by:
【請求項7】大深度地下に埋設された地下水路と、該地
下水路と連通し該地下水路に雨水等の流入水を流下させ
る複数の立坑と、前記地下水路に流下し集合した前記流
入水をポンプにより揚水し河川等に排水するポンプ機場
とから構成された大深度地下排水施設において、 前記複数の立坑のうち、 前記ポンプ機場に最寄りの前
記立坑である最寄立坑と、該最寄立坑に隣接する隣接立
坑とを連通し、前記最寄立坑内の前記流入水を前記隣接
立坑に流し込ませる連通部材を埋設したことを特徴とす
る大深度地下排水施設。
7. An underground waterway buried deep underground, a plurality of shafts communicating with the underground waterway and flowing down inflow water such as rainwater into the underground waterway, and the inflow water flowing down and gathering into the underground waterway. Deep underground drainage facility comprising a pumping station that pumps water and drains it to a river or the like, among the plurality of shafts, a nearest shaft that is the shaft closest to the pumping station, and the nearest shaft. A deep underground drainage facility characterized by burying a communication member that communicates with an adjacent vertical shaft adjacent to a vertical shaft and allows the inflow water in the nearest vertical shaft to flow into the adjacent vertical shaft.
【請求項8】請求項1記載の大深度地下排水施設に用い
られることを特徴とする抵抗体。
8. A resistor used in the deep underground drainage facility according to claim 1.
【請求項9】請求項7記載の大深度地下排水施設に用い
られることを特徴とする連通部材。
9. A communication member used for the deep underground drainage facility according to claim 7.
【請求項10】ポンプ機場に据付けられたポンプの急停
止等により、大深度地下に埋設された地下水路内にて発
生する水撃が原因で、立坑を介し前記地下水路に流下さ
せられた雨水等の流入水が前記立坑を逆流し地表に溢れ
る溢水現象を、前記立坑の大深度地下部位に溢水防止部
材を埋設することにより、防止するようにしたことを特
徴とする大深度地下排水施設の溢水防止方法。
10. A rainwater which is caused to flow down into the underground waterway through a shaft due to a water hammer generated in an underground waterway buried deep underground due to a sudden stop of a pump installed at a pump station. A deep underground drainage facility characterized in that the inflow of inflow water, etc., flows backward through the shaft and overflows to the surface by burying a flood prevention member at a deep underground portion of the shaft, and Overflow prevention method.
JP6234931A 1994-09-29 1994-09-29 Deep underground drainage facility Expired - Fee Related JP2861823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6234931A JP2861823B2 (en) 1994-09-29 1994-09-29 Deep underground drainage facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6234931A JP2861823B2 (en) 1994-09-29 1994-09-29 Deep underground drainage facility

Publications (2)

Publication Number Publication Date
JPH0893040A JPH0893040A (en) 1996-04-09
JP2861823B2 true JP2861823B2 (en) 1999-02-24

Family

ID=16978526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6234931A Expired - Fee Related JP2861823B2 (en) 1994-09-29 1994-09-29 Deep underground drainage facility

Country Status (1)

Country Link
JP (1) JP2861823B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915121B (en) * 2010-08-04 2012-05-23 煤炭科学研究总院重庆研究院 Mine water disaster emergency rescue set drainage facility
CN102535625A (en) * 2012-01-05 2012-07-04 天津市赛英工程建设咨询管理有限公司 Method for designing rainwater drainage system
JP6101574B2 (en) * 2013-06-04 2017-03-22 株式会社荏原製作所 Underground drainage station and operation method thereof
JP6397206B2 (en) * 2014-04-02 2018-09-26 大成建設株式会社 Structure to reduce the amount of overflow from the shaft
CN114934584A (en) * 2022-06-24 2022-08-23 张云逢 Roadside deep flood regulation well

Also Published As

Publication number Publication date
JPH0893040A (en) 1996-04-09

Similar Documents

Publication Publication Date Title
JP2992776B2 (en) Underground drainage facility and its operation method
CN213773198U (en) Self-water-retaining device for sloping field of ground reservoir
JP2861823B2 (en) Deep underground drainage facility
WO2010058336A2 (en) System for preventing overflows 2
RU2346106C1 (en) System of engineering protection against flooding of territories located on both banks of river section
JP4560232B2 (en) Catchment block
JP3663493B2 (en) Drainage pump station
KR20200115062A (en) Suction cover, horizontal shaft pump, pump gate, and pump gate operating method
JP3550000B2 (en) Flood control device
KR100497818B1 (en) Overflow prevention dam construction for rainwater storage dam
CN220469088U (en) Road drainage seat
CN217460471U (en) Energy storage tidal barrage
CN214939882U (en) Gate with function of making an uproar is fallen
SE526791C2 (en) Swirl chamber with variable backrest and air injector for preventing sedimentation in day and waste water wells
CN214460987U (en) Adjustable overflow arrangement suitable for river course
CN219646781U (en) W-shaped automatic sand setting and slag blocking structure
CN218911317U (en) Energy dissipation type water collecting pond at outlet of tailing pond drainage system
CN212452450U (en) Siphon type overflow structure
JP3515029B2 (en) Water flow duct and water collection tank with this
JPH11323884A (en) Discharge pump system
KR20070033097A (en) Outflow device connected to drain pipe of river bank
JP2860736B2 (en) Pump station
KR200297691Y1 (en) Overflow prevention dam construction for rainwater storage dam
JP3319029B2 (en) Rainwater drainage pump system
CN116401858A (en) Design method of storm ponding treatment system in airport flat area

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071211

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees