JP2861328B2 - High efficiency coding device - Google Patents

High efficiency coding device

Info

Publication number
JP2861328B2
JP2861328B2 JP22091090A JP22091090A JP2861328B2 JP 2861328 B2 JP2861328 B2 JP 2861328B2 JP 22091090 A JP22091090 A JP 22091090A JP 22091090 A JP22091090 A JP 22091090A JP 2861328 B2 JP2861328 B2 JP 2861328B2
Authority
JP
Japan
Prior art keywords
orthogonal
encoder
transformer
field
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22091090A
Other languages
Japanese (ja)
Other versions
JPH04103283A (en
Inventor
眞也 角野
達郎 重里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22091090A priority Critical patent/JP2861328B2/en
Priority to US07/731,311 priority patent/US5196930A/en
Priority to EP91306625A priority patent/EP0467718B1/en
Priority to DE69121995T priority patent/DE69121995T2/en
Publication of JPH04103283A publication Critical patent/JPH04103283A/en
Priority to HK98101195A priority patent/HK1002135A1/en
Application granted granted Critical
Publication of JP2861328B2 publication Critical patent/JP2861328B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Color Television Systems (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Image Processing (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は画像信号等を低レート伝送または長時間記録
するために必要な高能率符号化装置に関するものであ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-efficiency encoding device necessary for transmitting an image signal or the like at a low rate or recording for a long time.

従来の技術 従来の高能率符号で複数の直交変換を行なうために
は、各直交変換器に符号化器が必要である。第3図に従
来の高能率符号化装置のブロック図を示す。同図におい
て、1は入力信号、2a,2bは直交変換器、3a,3bは直交変
換成分、4a,4bは符号化器、5a,5bは符号化信号、6はセ
レクタ、7は制御情報、8は符号化信号である。
2. Description of the Related Art In order to perform a plurality of orthogonal transforms using a conventional high-efficiency code, each orthogonal transformer requires an encoder. FIG. 3 shows a block diagram of a conventional high efficiency coding apparatus. In the figure, 1 is an input signal, 2a and 2b are orthogonal transformers, 3a and 3b are orthogonal transform components, 4a and 4b are encoders, 5a and 5b are encoded signals, 6 is a selector, 7 is control information, 8 is a coded signal.

以上の様に構成された従来の高能率符号化装置におい
て、以下その動作を説明する。入力信号1は各直交変換
器2a,2b直交変換され、直交変換成分3a,3bが生成され
る。次に直交変換成分3a,3bは符号化器4a,4bで各々符号
化され、セレクタ6で一方が選択されて、符号化信号8
となる。セレクタ6の選択制御情報7で行なわれるが、
この制御情報7は外部から与えられる。例えば、直交変
換器2aがフィールド内直交変換であり、直交変換器2bが
フィールド間直交変換の場合には、動画ブロックでは符
号化信号5aを選択し、静止ブロックでは符号化信号5bを
選択するように制御情報7が決定される。
The operation of the conventional high-efficiency coding apparatus configured as described above will be described below. The input signal 1 is orthogonally transformed by each of the orthogonal transformers 2a and 2b, and orthogonal transform components 3a and 3b are generated. Next, the orthogonal transform components 3a and 3b are respectively encoded by encoders 4a and 4b, and one of them is selected by a selector 6, and an encoded signal 8
Becomes This is performed by the selection control information 7 of the selector 6,
The control information 7 is provided from outside. For example, when the orthogonal transformer 2a is an intra-field orthogonal transform and the orthogonal transformer 2b is an inter-field orthogonal transform, the coded signal 5a is selected for a moving image block, and the coded signal 5b is selected for a still block. The control information 7 is determined.

発明が解決しようとする課題 しかしながら、上記のような構成では、符号化器が複
数個必要であり、符号化器のハードウェア規模が大きい
ことにより、高能率符号化装置のハードウェア規模もか
なり大きくなる。
However, in the above-described configuration, a plurality of encoders are required, and the hardware scale of the encoder is large, so that the hardware scale of the high-efficiency encoding device is considerably large. Become.

本発明はかかる点に鑑み、ハードウェア規模を殆ど増
加させることなく、従来例と同程度の小さな符号化歪と
なる高能率符号化装置を提供することを目的とする。
In view of the foregoing, an object of the present invention is to provide a high-efficiency coding apparatus that has almost the same coding distortion as the conventional example without substantially increasing the hardware scale.

課題を解決するための手段 本発明の高能率符号化装置は、ブロック化されたデジ
タル画像入力信号を入力信号とし、前記入力信号に異な
る直交変換を行う少なくとも2つの直交変換器と、前記
直交変換器の出力成分に対して和と差とデータ位置の置
換のみを行う1次変換器と、前記1次変換器で1次変換
された信号または前記直交変換器の出力成分のいずれか
1つを選択して1種類の符号化手法で符号化する符号化
器を備えたことを特徴とするものである。
Means for Solving the Problems A high-efficiency encoding apparatus according to the present invention comprises: a block of a digital image input signal as an input signal; and at least two orthogonal transformers for performing different orthogonal transforms on the input signal; A primary converter that performs only the permutation of the sum, difference, and data position with respect to the output component of the transformer; An encoder for selecting and encoding by one kind of encoding method is provided.

作用 本発明は前記した構成により、1次変換である規則に
従って直交変換成分を1次変換することにより、各1次
変換器の出力をある一定の分布をする確率変数に変換す
ることができる。従って、異なる直交変換に対して同じ
符号化器を用いても、符号化器の性能の低下が僅かであ
り、各直交変換毎に最適化した符号化器と比較しても符
号化歪の増加が僅かである。
Operation According to the present invention, the output of each primary transformer can be converted into a random variable having a certain distribution by performing a linear transformation on the orthogonal transformation components according to a rule that is a primary transformation. Therefore, even if the same encoder is used for different orthogonal transforms, the performance of the encoder is slightly reduced, and the encoding distortion increases even when compared with an encoder optimized for each orthogonal transform. Is slight.

実施例 第1図は本発明の実施例における高能率符号化装置ブ
ロック図である。同図において、1は入力信号、2a,2b
は直交変換器、3a,3bは直交変換成分、10a,10bは1次変
換器、11a,11b直交変換成分、12はセレクタ、13は制御
情報、14は直交変換成分、4は符号化器、8は符号化信
号である。
Embodiment FIG. 1 is a block diagram of a high efficiency coding apparatus according to an embodiment of the present invention. In the figure, 1 is an input signal, 2a, 2b
Is an orthogonal transformer, 3a and 3b are orthogonal transform components, 10a and 10b are primary converters, 11a and 11b orthogonal transform components, 12 is a selector, 13 is control information, 14 is an orthogonal transform component, 4 is an encoder, 8 is a coded signal.

以上の様に構成された本実施例の高能率符号化装置に
ついて、以下その動作を説明する。入力信号1は各直交
変換器2a,2bで直交変換され、直交変換成分3a,3bが生成
される。次に直交変換成分2a,2bは1次変換器10a,10bで
各々直交変換成分の1次変換が行なわれ、セレクタ12で
直交変換成分11a,11bの一方が選択されて、直交変換成
分14となる。制御情報13は第3図の実施例の制御情報7
と同様のものであり、外部から与えられてセレクタ12を
切り換える。直交変換成分14は符号化器4で符号化さ
れ、符号化信号8となる。一般に、直交変換に成分の1
次変換を施した変換ははり直交変換であるが、本発明の
直交変換器2a,2bはハードウェアが簡単(すなわち、高
速アルゴリズム等が存在する組織的な構成)に構成でき
る種類のものとする。その一例を第2図を用いて説明す
る。同図は8×8点の直交変換を行なった成分であり、
同図(a)はフィールド間すなわちフレーム内で水垂直
方向にMPEGの8×8点離散コサイン変換(DCT)と同様
に8点直交変換を行い、垂直方向に低周波数に対応する
成分から周波数の商工の高さの順番に並べたものであ
る。静止画ではフレーム内の水平方向及び垂直方向の相
関が大きいので水平周波数及び垂直周波数の低い成分
(ブロックの左上の成分)にエネルギーが集中する。ま
た、同図(b)は各フィールド毎に水平8点垂直4点の
直交変換を行い、各フィールド毎に低周波数に対応する
成分から周波数の順番に並べたものである。以上の様に
MPEG等で使用されているDCTの直交変換を行なうと同図
(a)及び同図(b)の出力が得られる。しかしなが
ら、フィールド内でも水平方向及び垂直方向の相関が大
きいので、同図(b)は偶数フィールド第0ラインと奇
数フィールド第0ラインにエネルギーが集中する。同図
(a)と同図(b)は以上のようにエネルギー分布が異
なっているので共通の符号化器で符号化すると入力のミ
スマッチが発生して符号化効率が低下するが、同図
(b)を同図(c)の様に垂直方向に周波数の順番に並
べ変えると符号変器の入力の分布が同図(a)と類似と
なり、同図(a)と同図(c)の符号化器を共用するこ
とができる。また、動きが比較的少なくフィールド間の
差を取ってフィールド間の画素相関を除去して符号化し
た方が符号化効率が向上する場合には、同図(d)や同
図(e)の様に和や差をとってもよい。ここで同図で第
iラインフィールド和(iは整数)は奇数フィールド第
iライン偶数フィールド第iラインの和を表し、第iラ
インフィールド差は奇数フィールド第iラインと偶数フ
ィールド第iラインの差とする。動きが小さい場合には
フィールド間の相関が非常に大きくなるのでフィールド
差のエネルギーがフィールド和のエネルギーより大幅に
小さくなるので同図(d)のエネルギー分布が同図
(a)のエネルギー分布に近くなる。逆に、、動きが大
きい場合はフィールド差のエネルギーとフィールド和の
エネルギーの値がほぼ等しくなるので、同図(e)のエ
ネルギー分布が同図(d)のエネルギーよりも同図
(a)のエネルギー分布に近くなる。従って、動きの大
きさによって同図(d)と同図(e)の並べ方を切り替
えて使用することも可能である。以上のように置換、
和、差、の簡単な1次変換を直交変換の後で行なうこと
により、符号化器との整合をよくし、符号化器を共用化
した場合の符号化歪の増加を少なくすることができる。
The operation of the high-efficiency coding apparatus according to the present embodiment configured as described above will be described below. The input signal 1 is orthogonally transformed by each of the orthogonal transformers 2a and 2b, and orthogonal transform components 3a and 3b are generated. Next, the orthogonal transform components 2a and 2b are subjected to the primary transform of the orthogonal transform components by primary converters 10a and 10b, respectively, and one of the orthogonal transform components 11a and 11b is selected by the selector 12, and the orthogonal transform components 14 and Become. The control information 13 is the control information 7 of the embodiment of FIG.
And switches the selector 12 provided externally. The orthogonal transform component 14 is encoded by the encoder 4 and becomes an encoded signal 8. In general, one of the components
The transform subjected to the next transform is a beam orthogonal transform, but the orthogonal transformers 2a and 2b of the present invention are of a type that can be configured with simple hardware (that is, an organized configuration in which a high-speed algorithm or the like exists). . One example will be described with reference to FIG. The figure shows components obtained by performing orthogonal transformation of 8 × 8 points.
FIG. 3A shows an 8-point orthogonal transform similar to the MPEG 8 × 8-point discrete cosine transform (DCT) performed between fields, that is, within a frame, in the vertical direction of water, and the frequency of a component corresponding to a low frequency is calculated in the vertical direction. They are arranged in the order of the height of the business and industry. In a still image, since the correlation in the horizontal and vertical directions in a frame is large, energy is concentrated on components having low horizontal and vertical frequencies (the upper left component of the block). In FIG. 2B, orthogonal transformation of eight horizontal points and four vertical points is performed for each field, and components corresponding to low frequencies are arranged in order of frequency for each field. As above
When the orthogonal transform of DCT used in MPEG or the like is performed, the outputs shown in FIGS. 3A and 3B are obtained. However, since the correlation between the horizontal direction and the vertical direction is large even in the field, the energy is concentrated on the 0th line of the even field and the 0th line of the odd field in FIG. FIGS. 7A and 7B have different energy distributions as described above. Therefore, when encoding is performed by a common encoder, an input mismatch occurs and coding efficiency is reduced. If b) is rearranged in the order of frequency in the vertical direction as shown in FIG. 13C, the distribution of the input of the code transformer becomes similar to that of FIG. Encoders can be shared. In the case where the coding efficiency is improved when the motion is relatively small and the difference between the fields is taken to remove the pixel correlation between the fields to improve the coding efficiency, FIG. The sums and differences may be calculated as described above. In this figure, the i-th line field sum (i is an integer) represents the sum of the odd field i-th line and the even field i-th line, and the i-th line field difference is the difference between the odd field i-th line and the even field i-th line. And When the motion is small, the correlation between the fields becomes very large, and the energy of the field difference becomes much smaller than the energy of the field sum. Therefore, the energy distribution of FIG. 3D is close to the energy distribution of FIG. Become. Conversely, when the motion is large, the energy of the field difference and the value of the energy of the field sum are substantially equal, and therefore the energy distribution of FIG. It approaches the energy distribution. Therefore, it is also possible to switch between the arrangements shown in FIGS. 11D and 11E depending on the magnitude of the movement. Replace as above,
By performing a simple primary transformation of sum and difference after orthogonal transformation, it is possible to improve matching with an encoder and reduce an increase in encoding distortion when the encoder is shared. .

以上説明したように、本実施例によれば、1次変換器
10a,10bを符号化器2a,2bの後に設置して符号化器4との
整合をよくすることにより、符号化器を共用化した場合
の符号化歪の増加を低減することができる。
As described above, according to the present embodiment, the primary converter
By installing the encoders 10a and 10b after the encoders 2a and 2b to improve the matching with the encoder 4, it is possible to reduce an increase in encoding distortion when the encoder is shared.

なお、本発明の実施例において直交変換器は2つとし
たが、3つ以上でも同様に構成できる。また、第1図の
実施例において、制御情報7は外部から与えるものとし
たが、直交変換成分3a,3bbから制御情報生成器等を用い
て制御情報7を生成してもよい。
Although two orthogonal transformers are used in the embodiment of the present invention, three or more orthogonal transformers can be similarly configured. In the embodiment of FIG. 1, the control information 7 is provided from the outside, but the control information 7 may be generated from the orthogonal transform components 3a and 3bb by using a control information generator or the like.

発明の効果 以上説明したように、本発明によれば符号化歪を殆ど
増加させることなくハードウェア規模を大幅に低減する
ことができその実用滴効果は大きい。
Effect of the Invention As described above, according to the present invention, the hardware scale can be significantly reduced without substantially increasing the coding distortion, and the practical drop effect is large.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明における実施例の高能率符号化装置のブ
ロック図、第2図は本発明の高能率符号化装置の効果の
説明図、第3図は従来の高能率符号化装置のブロック図
である。 2……直交変換器、4……符号化器、10……1次変換
器。
FIG. 1 is a block diagram of a high-efficiency coding apparatus according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of the effect of the high-efficiency coding apparatus of the present invention, and FIG. 3 is a block diagram of a conventional high-efficiency coding apparatus. FIG. 2 ... orthogonal transformer, 4 ... encoder, 10 ... primary converter.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H04N 7/24 - 7/68 H04N 1/41 - 1/419──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H04N 7/24-7/68 H04N 1/41-1/419

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ブロック化されたデジタル画像入力信号を
入力信号とし、前記入力信号に異なる直交変換を行う少
なくとも2つの直交変換器と、前記直交変換器の出力成
分に対して和と差とデータ位置の置換のみを行う1次変
換器と、前記1次変換器で1次変換された信号または前
記直交変換器の出力成分のいずれか1つを選択して1種
類の符号化手法で符号化する符号化器を備えたことを特
徴とする高能率符号化装置。
1. An image processing apparatus comprising: a block of digital image input signals; an input signal; and at least two orthogonal transformers for performing different orthogonal transformations on the input signal; and a sum, difference, and data for output components of the orthogonal transformer. A primary transformer that performs only permutation of a position, and one of a signal that is primary-transformed by the primary transformer and an output component of the orthogonal transformer is selected and encoded by one type of encoding method. A high-efficiency encoding device comprising an encoder that performs the encoding.
JP22091090A 1990-07-20 1990-08-21 High efficiency coding device Expired - Lifetime JP2861328B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP22091090A JP2861328B2 (en) 1990-08-21 1990-08-21 High efficiency coding device
US07/731,311 US5196930A (en) 1990-07-20 1991-07-17 High efficienccy coding and decoding apparatus for lowering transmission or recording rate of transmitted or recorded video signal without reducing picture quality
EP91306625A EP0467718B1 (en) 1990-07-20 1991-07-19 Image coding apparatus and image decoding apparatus
DE69121995T DE69121995T2 (en) 1990-07-20 1991-07-19 Image coding device and image decoding device
HK98101195A HK1002135A1 (en) 1990-07-20 1998-02-16 Image coding apparatus and image decoding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22091090A JP2861328B2 (en) 1990-08-21 1990-08-21 High efficiency coding device

Publications (2)

Publication Number Publication Date
JPH04103283A JPH04103283A (en) 1992-04-06
JP2861328B2 true JP2861328B2 (en) 1999-02-24

Family

ID=16758452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22091090A Expired - Lifetime JP2861328B2 (en) 1990-07-20 1990-08-21 High efficiency coding device

Country Status (1)

Country Link
JP (1) JP2861328B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998054841A1 (en) * 1997-05-30 1998-12-03 Kubota Systems Inc. Data compressing device by permutation encoding and decompressing device
JP2010528555A (en) * 2007-05-29 2010-08-19 エルジー エレクトロニクス インコーポレイティド Video signal processing method and apparatus
JP2010028218A (en) * 2008-07-15 2010-02-04 Fujitsu Ltd Image encoder, image decoder, image band decomposition device, and image band composition device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8700565A (en) * 1987-03-10 1988-10-03 Philips Nv TV SYSTEM IN WHICH TRANSFORMED CODING TRANSFERS DIGITIZED IMAGES FROM A CODING STATION TO A DECODING STATION.
JP2624718B2 (en) * 1987-10-28 1997-06-25 株式会社日立製作所 Image coding device

Also Published As

Publication number Publication date
JPH04103283A (en) 1992-04-06

Similar Documents

Publication Publication Date Title
JP2933457B2 (en) Wavelet transform coding method
JP2586260B2 (en) Adaptive blocking image coding device
US5506621A (en) Image processing method and apparatus
KR960006762B1 (en) 2-dimensional data scanning selecting circuit for image coding
JPH06205388A (en) Picture coder
JPH0491587A (en) Orthogonal transformation encoder
EP0467718B1 (en) Image coding apparatus and image decoding apparatus
US5351086A (en) Low-bit rate interframe video encoder with adaptive transformation block selection
JPH08256266A (en) Image coding system
US6181831B1 (en) Spatial frequency-domain video signal processing
JP2861328B2 (en) High efficiency coding device
JPS622721A (en) Coding and decoding device for picture signal
JPH0662389A (en) Video signal encoder
GB2308765A (en) Motion picture encoding
JPH07143488A (en) Method and device for decoding image data
US6473207B1 (en) Image size transformation method for orthogonal transformation coded image
US6038345A (en) Apparatus for encoding/decoding image data
JPH02122767A (en) Encoding/decoding system for picture signal
JPH04189092A (en) Orthogonal transformation coding device and decoding device
JP2003309848A (en) Image encoding apparatus and control method thereof
JP2570922B2 (en) Transform encoder
JP2662451B2 (en) Image data encoding device
JPH03179975A (en) Encoder
JPH05114866A (en) High-efficiency encoding method
JPH05161017A (en) Orthogonal transformation device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071211

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091211

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091211

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101211

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101211

Year of fee payment: 12