JP2860995B2 - One-component contact development method - Google Patents

One-component contact development method

Info

Publication number
JP2860995B2
JP2860995B2 JP63211899A JP21189988A JP2860995B2 JP 2860995 B2 JP2860995 B2 JP 2860995B2 JP 63211899 A JP63211899 A JP 63211899A JP 21189988 A JP21189988 A JP 21189988A JP 2860995 B2 JP2860995 B2 JP 2860995B2
Authority
JP
Japan
Prior art keywords
toner
developing method
image
insulating layer
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63211899A
Other languages
Japanese (ja)
Other versions
JPH0261652A (en
Inventor
欣郎 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16613486&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2860995(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP63211899A priority Critical patent/JP2860995B2/en
Publication of JPH0261652A publication Critical patent/JPH0261652A/en
Application granted granted Critical
Publication of JP2860995B2 publication Critical patent/JP2860995B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、現像方法に関し、更に詳しくは接触式の現
像方法に関する。
Description: TECHNICAL FIELD The present invention relates to a developing method, and more particularly to a contact-type developing method.

[従来の技術] 従来の接触式の現像方法は、USP−2895847に開示され
るようなコンタクト現像法やUSP−3152012に開示される
ようなインプレッション現像法や特開昭57−114163に開
示されるようなフィード現像法等が考案されている。
[Prior Art] Conventional contact-type developing methods are disclosed in US Pat. No. 2,895,847, a contact developing method, an impression developing method as disclosed in US Pat. No. 3152012, and JP-A-57-114163. Such a feed developing method has been devised.

[発明が解決しようとする課題] しかし、前述の従来技術では、感光体上の非画像部に
トナーがファンデルワールス力,鏡像力により付着し不
要に廃棄されるトナーが多く装置のランニングコストが
高くなるだけでなく、環境変化特に低温状態で接触状態
が変化して単位重量当りの帯電量の大きい微小粒径のト
ナーが非画像部に付着ししかも画像部のトナーの極性と
同じ極性のため記録紙に転写されてしまい画像を著しく
劣化させていわゆる地汚れを発生させていた。
[Problems to be Solved by the Invention] However, in the above-described conventional technology, toner is attached to a non-image portion on a photoreceptor by van der Waals force and mirror image force, and a large amount of toner is discarded. Not only does it become high, but the contact state changes, especially in low temperature conditions due to environmental changes, causing the toner with a large amount of charge per unit weight to adhere to the non-image area and to have the same polarity as the toner in the image area. The image was transferred to the recording paper and the image was significantly deteriorated, so that a so-called background stain was generated.

そこで本発明はこのような問題点を解決するもので、
その目的とするところは、不要廃棄トナーを低減し低ラ
ンニングコストの現像方法を提供するところにある。更
に他の目的は、環境変化に伴う画像の劣化を低減した現
像方法を提供するところにある。更に他の目的は、良好
な画像の得られる接触式の現像方法を提供するところに
ある。
Therefore, the present invention solves such a problem,
An object of the present invention is to provide a developing method which reduces unnecessary waste toner and has a low running cost. Still another object is to provide a developing method in which deterioration of an image due to environmental change is reduced. Still another object is to provide a contact-type developing method capable of obtaining a good image.

[課題を解決するための手段] 上記目的を達成するために、請求項1記載の一成分接
触現像方法は、静電潜像を形成する潜像担持体に隣接し
て配置され、像形成体である一成分トナーを搬送するト
ナー搬送体を有し、トナー搬送体を潜像担持体に押圧し
てトナー搬送体上の前記トナーを静電的に前記潜像担持
体に付着させて前記静電潜像を顕像化する一成分接触現
像方法において、前記トナーの個数平均粒子径が5〜10
μmであって、さらに5μm以下の粒子数が全体の粒子
数の10%以下であることを特徴とする。
[Means for Solving the Problems] To achieve the above object, the one-component contact developing method according to claim 1 is arranged adjacent to a latent image carrier for forming an electrostatic latent image, and comprises an image forming body. A toner conveying member that conveys the one-component toner, and presses the toner conveying member against the latent image carrier to electrostatically adhere the toner on the toner conveying member to the latent image carrier to form the static toner. In a one-component contact developing method for visualizing an electrostatic latent image, the number average particle diameter of the toner is 5 to 10
μm, and the number of particles of 5 μm or less is 10% or less of the total number of particles.

請求項2記載の一成分接触現像方法は、前記トナーの
個数平均粒子径の2倍以上の粒子径の粒子数が全体の粒
子数の10%以下であることを特徴とする。
The one-component contact developing method according to claim 2 is characterized in that the number of particles having a particle diameter twice or more the number average particle diameter of the toner is 10% or less of the total number of particles.

請求項3記載の一成分接触現像方法は、前記トナー搬
送体は、少なくとも導電性支持体と絶縁層とを含み、前
記導電性支持体上に前記絶縁層を形成したことを特徴と
する。
The one-component contact developing method according to claim 3, wherein the toner carrier includes at least a conductive support and an insulating layer, and the insulating layer is formed on the conductive support.

請求項4記載の一成分接触現像方法は、前記トナー搬
送体が、少なくとも導電性支持体と絶縁層と導体粉を含
み、前記導電性支持体上に前記絶縁層が形成され、前記
絶縁層の内部または表面に少なくとも1個の前記導体粉
を含むことを特徴とする。
5. The one-component contact developing method according to claim 4, wherein the toner carrier includes at least a conductive support, an insulating layer, and conductive powder, wherein the insulating layer is formed on the conductive support, It is characterized by including at least one of the conductor powders inside or on the surface.

[作用] 本発明の上記構成によれば、個数平均粒子径を5〜10
μmにして300DPI以上の高解像度の画像が得られ、画像
部へ静電力により付着するトナーと同極性であって、フ
ァンデルワールスカ(粒径の3〜4乗に反比例する
力)、鏡像力(粒径の2乗に反比例する力)により感光
体の非画像部に付着する5μm以下の微小粒径のトナー
を減らすことにより、感光体へのトナーの不要な付着を
低減することができ、そのため、感光体の非画像部へ付
着したトナーが記録紙へ転写されて画像を劣化させる地
汚れの発生が少なくなる。特に、トナー搬送体を潜像担
持体に押圧してトナー搬送体上のトナーを静電的に潜像
担持体に付着させる本発明のような一成分接触現像方法
では、環境変化、特に低温環境下において絶対湿度が低
下し、トナー搬送体の電気的特性や機械的特性が変化し
て、トナーが過大に帯電し、微小粒径のトナーが相対的
により大きく同極性に帯電して(トナーの単位重量当た
りの帯電量は粒径の約2乗に反比例する)より多くトナ
ー搬送体へ搬送され、鏡像力により感光体の非画像部に
その微小粒径のトナーが付着して上記のような地汚れを
発生させるが、本発明においては、5μm以下の微小粒
径のトナーを全体の粒子数の10%以下にすることにより
その問題が解決できる。また、粗大粒径のトナー数も規
制することにより、出力画像濃度を安定化させることが
できる。
[Action] According to the above configuration of the present invention, the number average particle diameter is 5 to 10
A high-resolution image of 300 DPI or more can be obtained in μm, and has the same polarity as the toner adhered to the image portion by electrostatic force, van der Waalska (force inversely proportional to the 3rd to 4th power of the particle size), mirror image power ( Unnecessary adhesion of the toner to the photoconductor can be reduced by reducing the toner having a small particle size of 5 μm or less adhering to the non-image portion of the photoconductor by a force inversely proportional to the square of the particle size). In addition, the occurrence of background smear that deteriorates an image by transferring toner adhered to a non-image portion of the photoreceptor to recording paper is reduced. In particular, in the one-component contact developing method as in the present invention in which the toner carrier is pressed against the latent image carrier to electrostatically adhere the toner on the toner carrier to the latent image carrier, environmental changes, particularly in a low-temperature environment, Under this condition, the absolute humidity decreases, the electrical and mechanical properties of the toner carrier change, the toner is excessively charged, and the toner having a small particle diameter is relatively more charged to the same polarity (toner of the toner). The amount of charge per unit weight is inversely proportional to the square of the particle size), and the toner is conveyed to the toner carrier. In the present invention, this problem can be solved by making the toner having a fine particle diameter of 5 μm or less to be 10% or less of the total number of particles. In addition, by regulating the number of toners having a coarse particle diameter, the output image density can be stabilized.

以下、実施例により本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to examples.

[実施例] 第1図は本発明の実施例における現像方法の環境温度
と背景部光学濃度値との関係を示す図であって、環境温
度を10〜40℃(相対湿度30〜80%RHのほぼ任意の値)ま
で変化させたときの背景部(本来トナーが現像されるべ
きでない非画像部)光学濃度値を示し、粒径5μm以下
のトナーの個数占有率を約8%にした本発明の現像方法
Aでは環境温度が変化しても背景部にトナーの付着がな
く画像の劣化が無いのに対し、粒径5μm以下のトナー
の個数占有率を約15%にした現像方法Bでは環境温度が
変化すると特に低温部で背景部にトナーの付着が生じ背
景部がトナーで汚され画像の劣化が発生し、さらに粒径
5μm以下のトナーの個数占有率を約40%にした現像方
法Cでは低温での背景部のトナー付着による画像の劣化
の傾向は著しい。そこで、環境温度10℃相対湿度40%RH
で粒径5μm以下のトナーの個数占有率と光学濃度値の
関係を第2図に示すようにベタ画像部(トナーがベタに
現像転写されベタの画像を形成する部分)と背景部(ト
ナーが現像転写されるべきでない非画像部)について調
べたところ、粒径5μm以下の微小粒径のトナーが増加
するにしたがって画像のコントラストが低下し、特に粒
径5μm以下のトナーの個数占有率が10%を越えると背
景部光学濃度が0.1以上になり目で見て明らかな地汚れ
を発生していることが判明した。従って、粒径5μm以
下のトナーの個数占有率を10%以下に抑えることにより
地汚れの無いコントラストの高い画像が得られる。ま
た、第3図は第1図の各現像方法で用いたトナーの粒径
分布を示す図であって、各トナーに付した記号A、B、
Cは各現像方法に対応しておりかつ同一成分のトナーで
あって、トナーAは個数平均粒径が9μmで粒径5μm
以下のトナーの個数占有率が8%で粒径18μm以上のト
ナーの個数占有率が2%、トナーBは個数平均粒径が8
μmで粒径5μm以下のトナーの個数占有率が15%で粒
径16μm以上のトナーの個数占有率が2%、トナーCは
個数平均粒径が6μmで粒径5μm以下のトナーの個数
占有率が40%で粒径12μm以上のトナーの個数占有率が
20%であり、微小粒径のトナーが多い粒径分布になるほ
ど背景部の地汚れが著しいことが判る。5μm以下の微
小粒径のトナーの個数占有率を減らすには精度の高い分
級や多数回の分級により得られる。さらに、第4図はト
ナーの粒径と帯電量の関係を示す図であって、トナーの
単位重量当りの帯電量は粒径の2乗に反比例しており、
5μm以下の微小トナーが増加するとトナー同士の静電
凝集力が増大するだけでなくトナーの感光対等への付着
力である鏡像力も増大する。従って、トナーの粒径分布
は狭いほど安定した画像濃度が得られる。なお、光学濃
度値の測定にはマクベス濃度計(マクベス社製)を使用
し、粒径分布の測定にはコールターカウンター(日科機
社製)を使用し、画像形成に当たっては、潜像担持体は
導電性の支持部の上に光導電性を有する感光層を塗膜し
た有機感光体を使用し、感光層を帯電器により所定の電
位になるように帯電させた後にレーザー等の光源から出
射した光を回転多面鏡等を用いて走査し結像光学系によ
り感光層に結像させて電位コントラストを得て潜像担持
体上に静電潜像を形成し、一方現像器は後述するトナー
搬送体を用いて像形成体であるトナーを帯電させかつ搬
送し、感光体の支持部と導電性支持体との間に現像バイ
アスを印加して感光体上の静電潜像の電位コントラスト
に応じてトナーを付着させて潜像を顕像化し、さらに転
写器により感光体上に付着したトナーを静電的に記録紙
に転写し加圧や加熱等の手段によりトナーを記録紙に定
着し所望の画像を得る構成とした。
FIG. 1 is a diagram showing the relationship between the ambient temperature and the background optical density value of a developing method in an embodiment of the present invention, wherein the ambient temperature is 10 to 40 ° C. (relative humidity 30 to 80% RH). This value indicates the optical density value of the background portion (non-image portion where the toner should not be originally developed) when the density is changed to almost any value, and the number occupancy of the toner having a particle size of 5 μm or less is about 8%. In the developing method A of the present invention, even when the environmental temperature changes, the toner does not adhere to the background and the image is not deteriorated. On the other hand, in the developing method B in which the number occupancy of the toner having a particle diameter of 5 μm or less is about 15%. When the environmental temperature changes, the toner adheres to the background in the low-temperature part, and the background is stained with the toner to deteriorate the image. Further, the number occupancy of the toner having a particle diameter of 5 μm or less is reduced to about 40%. In the case of C, the tendency of image deterioration due to toner adhesion on the background at a low temperature is remarkable. Therefore, the ambient temperature is 10 ° C and the relative humidity is 40% RH.
As shown in FIG. 2, the relationship between the number occupancy of the toner having a particle diameter of 5 μm or less and the optical density value is shown in FIG. When the non-image portion which should not be developed and transferred was examined, the contrast of the image was reduced as the number of toner particles having a small particle size of 5 μm or less increased. %, The optical density in the background became 0.1 or more, and it was found that obvious background soiling occurred. Accordingly, by suppressing the number occupation ratio of the toner having a particle diameter of 5 μm or less to 10% or less, an image having a high contrast without background contamination can be obtained. FIG. 3 is a view showing the particle size distribution of the toner used in each of the developing methods shown in FIG. 1, and the symbols A, B, and
C is a toner corresponding to each developing method and having the same component. Toner A has a number average particle diameter of 9 μm and a particle diameter of 5 μm.
The number occupancy of the following toner is 8%, the number occupancy of the toner having a particle diameter of 18 μm or more is 2%, and the number average particle diameter of the toner B is 8%.
The number occupancy of toner having a particle diameter of 5 μm or less is 15%, the number occupancy of toner having a particle diameter of 16 μm or more is 2%, and the number occupancy of toner having a number average particle diameter of 6 μm and a particle diameter of 5 μm or less is 15%. Is 40% and the number occupancy of toner with a particle size of 12μm or more is
It is 20%, and it can be seen that the background stain becomes more remarkable as the particle size distribution becomes larger with toner having a fine particle size. In order to reduce the number occupancy of the toner having a fine particle diameter of 5 μm or less, it is possible to perform the classification with high accuracy or a large number of classifications. FIG. 4 is a graph showing the relationship between the particle size of the toner and the charge amount. The charge amount per unit weight of the toner is inversely proportional to the square of the particle size.
When the amount of fine toner of 5 μm or less increases, not only does the electrostatic cohesion of the toners increase, but also the mirror image force, which is the adhesion of the toner to the photosensitive member, increases. Therefore, the narrower the particle size distribution of the toner, the more stable the image density can be obtained. The optical density value was measured using a Macbeth densitometer (manufactured by Macbeth), and the particle size distribution was measured using a Coulter counter (manufactured by Nikkaki Co., Ltd.). Uses an organic photoreceptor coated with a photoconductive photosensitive layer on a conductive support, charges the photosensitive layer to a predetermined potential with a charger, and then emits it from a light source such as a laser. The resulting light is scanned using a rotating polygon mirror or the like, and is imaged on a photosensitive layer by an imaging optical system to obtain a potential contrast to form an electrostatic latent image on a latent image carrier. The toner, which is an image forming body, is charged and conveyed using a carrier, and a developing bias is applied between a support portion of the photoreceptor and the conductive support to reduce a potential contrast of an electrostatic latent image on the photoreceptor. The latent image is visualized by attaching toner according to the And configured to obtain a desired image to fix the toner to the recording sheet by the transfer by pressure and means, such as heating, the toner more deposited on the photosensitive member to electrostatically recording paper.

第5図は本発明の現像方法が適用可能なトナー搬送体
の断面概観図であって、アルミニウムやステンレス等の
導電性金属を用いて無端ベルト状または円筒状に形成さ
れた導電性支持体51上にゴム硬度数十度の弾性樹脂また
は発泡性樹脂を用いた絶縁層52が形成され、絶縁層52を
感光体に押圧してトナーの現像を行うが、絶縁層52の硬
度や絶縁抵抗が環境変化にともなって変化するため、安
定な帯電量でしかも安定な静電的付着力の得られるトナ
ーが必要であり本発明を適用すれば安定した出力画像濃
度が得られる。
FIG. 5 is a schematic cross-sectional view of a toner carrier to which the developing method of the present invention can be applied. The conductive carrier 51 is formed in an endless belt or cylindrical shape using a conductive metal such as aluminum or stainless steel. An insulating layer 52 made of an elastic resin or a foaming resin having a rubber hardness of several tens of degrees is formed thereon, and the toner is developed by pressing the insulating layer 52 against a photoconductor, but the hardness and insulation resistance of the insulating layer 52 are reduced. Since it changes with environmental changes, it is necessary to use a toner that has a stable charge amount and a stable electrostatic adhesion. By applying the present invention, a stable output image density can be obtained.

第6図は本発明の現像方法が適用可能なトナー搬送体
の断面概観図であって、アルミニウムやステンレス等の
導電性金属を用いて無端ベルト状または円筒状に形成さ
れた導電性支持体61上にゴム硬度数十度の弾性樹脂また
は発泡性樹脂を用いた絶縁層62が形成され絶縁層62の内
部または表面に複数の導体粉63を含み、導体粉63は二成
分現像法におけるキャリアの役割と同様の役割を持ちト
ナーの帯電や搬送に寄与するが、絶縁層62の硬度や絶縁
抵抗が環境変化にともなって変化すると導体粉63による
静電潜像の破壊や再帯電が起こるが、本現像方法で述べ
たように安定な帯電量と安定な静電的付着力が得られれ
ば不必要なトナー廃棄と非画像部の地汚れを低減するこ
とができる。尚、絶縁層52及び62の絶縁抵抗は望ましく
は106Ω以上であって、トナー搬送体に適用可能なトナ
ーの材質は、レジン系でもワックス系でも適用でき、磁
性トナーによる画像形成にも適用可能であって多種のト
ナーでの画像形成が可能である。
FIG. 6 is a schematic cross-sectional view of a toner carrier to which the developing method of the present invention can be applied. The conductive carrier 61 is formed in an endless belt or cylindrical shape using a conductive metal such as aluminum or stainless steel. An insulating layer 62 made of an elastic resin or a foaming resin having a rubber hardness of several tens degrees is formed thereon and includes a plurality of conductive powders 63 inside or on the surface of the insulating layer 62. It has a role similar to the role and contributes to the charging and transport of the toner, but if the hardness and insulation resistance of the insulating layer 62 change with environmental changes, the electrostatic powder destruction and recharging by the conductive powder 63 occur, As described in the present development method, if a stable charge amount and a stable electrostatic adhesion force can be obtained, unnecessary toner waste and background contamination of the non-image area can be reduced. The insulation resistance of the insulation layers 52 and 62 is desirably 10 6 Ω or more, and the toner material applicable to the toner carrier may be resin-based or wax-based, and may be applied to image formation using magnetic toner. It is possible to form an image with various kinds of toner.

以上実施例を述べたが、本発明は以上の実施例に限定
されるものではなく、広く電子写真の現像方法として応
用することができ、特に高解像や高階調性の必要なフル
カラーのプリンターや複写機、テレビ画像を記録するビ
デオプリンター、一成分トナーを用いたモノクロの複写
機やページプリンターやファクシミリ等、接触式の一成
分現像方法に応用すれば有効である。
Although the embodiments have been described above, the present invention is not limited to the above-described embodiments, and can be widely applied as a developing method of electrophotography, particularly a full-color printer requiring high resolution and high gradation. It is effective if applied to a contact-type one-component developing method such as a copier, a copier, a video printer for recording a television image, a monochrome copier using a one-component toner, a page printer, and a facsimile.

[発明の効果] 以上述べたように、本発明によれば、温度環境変化、
特に低温環境下においてトナー搬送体自体の電気的特性
や機械的特性が変化し、トナーが過大帯電しても、非画
像部へ画像部と同極性のトナーが付着するするのを防止
でき、非画像部へ不要トナーが付着することによって発
生する地汚れや、不要廃棄トナーを少なくすることがで
きる。
[Effects of the Invention] As described above, according to the present invention, temperature environment changes,
Particularly, in a low-temperature environment, even if the electrical and mechanical properties of the toner carrier itself change and the toner is excessively charged, it is possible to prevent the toner of the same polarity as the image portion from adhering to the non-image portion. Background dirt and unnecessary waste toner caused by the adhesion of the unnecessary toner to the image portion can be reduced.

また、個数平均粒子径を5〜10μmにすることにより
高解像度の画像が得られ、粒径5μm以下のトナーの個
数占有率を10%以下にすることにより、トナーの静電凝
集を低減し、ファンデルワールス力による感光体へのト
ナーの不要な付着を低減し、トナーの感光体への鏡像力
のばらつきを低減しかつトナーの帯電量分布のばらつき
を抑えて安定した画像濃度で環境が変化しても背景部の
地汚れや不要廃棄トナーが少ない現像方法を提供するこ
とができる。
Further, by setting the number average particle diameter to 5 to 10 μm, a high-resolution image can be obtained. By setting the number occupancy of toner having a particle diameter of 5 μm or less to 10% or less, electrostatic aggregation of the toner is reduced. Reduces unnecessary adhesion of toner to photoreceptor due to Van der Waals force, reduces dispersion of toner's mirror image on photoreceptor, and suppresses variation in toner charge distribution, changes environment with stable image density Even in this case, it is possible to provide a developing method in which background stains and unnecessary waste toner are reduced.

また、個数平均粒径の2倍以上の粗大トナーの個数占
有率を10%以下にすることにより、均一で環境変化の影
響を受けにくい出力画像濃度の得られる現像方法を提供
することができる。
Further, by setting the number occupancy of the coarse toner having a number average particle diameter of twice or more to 10% or less, it is possible to provide a developing method capable of obtaining an output image density that is uniform and is not easily affected by environmental changes.

更に、弾性を有する絶縁層をトナー搬送体に用いる接
触現像法では、トナー搬送体の電気的特性や機械的特性
が環境変化に伴って変化しても微小粒径のトナーが少な
いためファンデルワールス力による未帯電トナーの付着
画像低減されるため不要廃棄トナーを低減しランニング
コストの安価な現像方法を提供することができる。
Furthermore, in the contact development method using an elastic insulating layer for the toner carrier, van der Waals is used because the toner having a small particle size is small even if the electrical and mechanical properties of the toner carrier change with environmental changes. Since the adhesion image of the uncharged toner is reduced by the force, unnecessary waste toner can be reduced, and a developing method with low running cost can be provided.

更に、弾性を有する絶縁層に導体粉を含むトナー搬送
体を用いる接触現像法では、上記の効果だけでなく、ト
ナーが感光体や導体粉に付着する力の一つである鏡像力
のばらつきが小さく、環境が変化しても異常に高い電荷
を持ったトナーが背景部に現像されることなく地汚れの
発生を防止でき、非画像部へのトナー付着の少ない高画
質の現像方法を提供することができる。
Furthermore, in the contact development method using a toner carrier containing a conductive powder in an insulating layer having elasticity, not only the above-described effect, but also a variation in a mirror image force, which is one of the forces that the toner adheres to the photoreceptor and the conductive powder. Provided is a high-quality developing method that can prevent the occurrence of background contamination without developing a small amount of toner having an unusually high charge even when the environment changes in a background portion and less toner adhesion to a non-image portion. be able to.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例における現像方法の環境温度と
背景部光学濃度の関係を示す図、第2図は本発明の実施
例における現像方法の粒径5μm以下のトナーの個数占
有率と光学濃度値の関係を示す図、第3図は第1図の各
現像方法で用いたトナーの粒径分布を示す図、第4図は
トナーの粒径と帯電量の関係を示す図、第5図は本発明
の現像方法が適用可能なトナー搬送体の断面概観図、第
6図は本発明の現像方法が適用可能な他のトナー搬送体
の断面概観図。 51,61:導電性支持体 52,62:絶縁層 63:導体粉
FIG. 1 is a diagram showing the relationship between the ambient temperature and the background optical density of the developing method according to the embodiment of the present invention, and FIG. FIG. 3 is a diagram showing a relationship between optical density values, FIG. 3 is a diagram showing a particle size distribution of toner used in each of the developing methods in FIG. 1, FIG. FIG. 5 is a schematic cross-sectional view of a toner conveying body to which the developing method of the present invention can be applied, and FIG. 6 is a schematic cross-sectional view of another toner conveying body to which the developing method of the present invention can be applied. 51,61: conductive support 52,62: insulating layer 63: conductor powder

フロントページの続き (56)参考文献 特開 昭58−95748(JP,A) 特開 昭61−281251(JP,A) 特開 昭63−73271(JP,A) 特開 昭63−101857(JP,A) 特開 昭60−115964(JP,A) 特開 平1−297657(JP,A) 特開 昭53−26135(JP,A) 特開 昭62−284364(JP,A) (58)調査した分野(Int.Cl.6,DB名) G03G 15/08 G03G 9/08Continuation of front page (56) References JP-A-58-95748 (JP, A) JP-A-61-281251 (JP, A) JP-A-63-73271 (JP, A) JP-A-63-101857 (JP) JP-A-60-115964 (JP, A) JP-A-1-297657 (JP, A) JP-A-53-26135 (JP, A) JP-A-62-284364 (JP, A) (58) Field surveyed (Int.Cl. 6 , DB name) G03G 15/08 G03G 9/08

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】静電潜像を形成する潜像担持体に隣接して
配置され、像形成体である一成分トナーを搬送するトナ
ー搬送体を有し、トナー搬送体を潜像担持体に押圧して
トナー搬送体上の前記トナーを静電的に前記潜像担持体
に付着させて前記静電潜像を顕像化する一成分接触現像
方法において、 前記トナーの個数平均粒子径が5〜10μmであって、さ
らに5μm以下の粒子数が全体の粒子数の10%以下であ
ることを特徴とする一成分接触現像方法。
An image forming apparatus is provided with a toner transporter disposed adjacent to a latent image carrier for forming an electrostatic latent image and transporting a one-component toner as an image forming body. A one-component contact developing method in which the toner on the toner carrier is electrostatically adhered to the latent image carrier by pressing to develop the electrostatic latent image, wherein the number average particle diameter of the toner is 5 A single-component contact developing method, wherein the number of particles having a particle size of 5 to 10 μm is 10% or less of the total number of particles.
【請求項2】前記トナーの個数平均粒子径の2倍以上の
粒子径の粒子数が全体の粒子数の10%以下であることを
特徴とする請求項1記載の一成分接触現像方法。
2. The one-component contact developing method according to claim 1, wherein the number of particles having a particle diameter of at least twice the number average particle diameter of the toner is 10% or less of the total number of particles.
【請求項3】前記トナー搬送体は、少なくとも導電性支
持体と絶縁層とを含み、前記導電性支持体上に前記絶縁
層を形成したことを特徴とする請求項1または2記載の
一成分接触現像方法。
3. The one component according to claim 1, wherein the toner carrier includes at least a conductive support and an insulating layer, and the insulating layer is formed on the conductive support. Contact development method.
【請求項4】前記トナー搬送体が、少なくとも導電性支
持体と絶縁層と導体粉を含み、前記導電性支持体上に前
記絶縁層が形成され、前記絶縁層の内部または表面に少
なくとも1個の前記導体粉を含むことを特徴とする請求
項1または2記載の一成分接触現像方法。
4. The toner carrier includes at least a conductive support, an insulating layer, and a conductive powder, wherein the insulating layer is formed on the conductive support, and at least one of the conductive layers is provided inside or on the surface of the insulating layer. The one-component contact developing method according to claim 1, wherein the conductive powder comprises:
JP63211899A 1988-08-26 1988-08-26 One-component contact development method Expired - Lifetime JP2860995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63211899A JP2860995B2 (en) 1988-08-26 1988-08-26 One-component contact development method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63211899A JP2860995B2 (en) 1988-08-26 1988-08-26 One-component contact development method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP9272480A Division JPH1091000A (en) 1997-10-06 1997-10-06 Single-component developing device

Publications (2)

Publication Number Publication Date
JPH0261652A JPH0261652A (en) 1990-03-01
JP2860995B2 true JP2860995B2 (en) 1999-02-24

Family

ID=16613486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63211899A Expired - Lifetime JP2860995B2 (en) 1988-08-26 1988-08-26 One-component contact development method

Country Status (1)

Country Link
JP (1) JP2860995B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2662677B2 (en) * 1990-05-29 1997-10-15 株式会社リコー Developer carrier
JPH09280348A (en) * 1996-04-10 1997-10-28 Komatsu Ltd Method and device for detecting wear of clutch of transmission
JP3536537B2 (en) * 1996-06-28 2004-06-14 トヨタ自動車株式会社 Shift control device for automatic transmission for vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326135A (en) * 1976-08-24 1978-03-10 Ricoh Co Ltd Developing device for electrostatic latent image
JPS60115964A (en) * 1983-11-29 1985-06-22 Ricoh Co Ltd Manufacture of developer carrying body
JPS62284364A (en) * 1986-06-03 1987-12-10 Fuji Xerox Co Ltd Image forming method
JPS6373271A (en) * 1986-09-17 1988-04-02 Canon Inc Positively electrifiable developer
JPH0751634B2 (en) * 1986-10-20 1995-06-05 東芝シリコ−ン株式会社 Surface-treated spherical polymethylsilsesquioxane powder
JPH01297657A (en) * 1988-05-26 1989-11-30 Matsushita Electric Ind Co Ltd Electrostatic charge image developer

Also Published As

Publication number Publication date
JPH0261652A (en) 1990-03-01

Similar Documents

Publication Publication Date Title
US8326195B2 (en) Transfer device and image forming apparatus
US5486909A (en) Developing device for an image forming apparatus
US5233396A (en) Intermediate transfer member having a low surface energy compliant structure and method of using same
US5495322A (en) Electrophotographic developing apparatus which utilizes single-component developing material
US4205322A (en) Electrostatic method of simultaneously transferring to a recording medium a toner image having different polarities
EP0992861A2 (en) Developing agent carrier, developing unit, and image forming apparatus
US5103265A (en) Image forming apparatus with a developing and removing device
JP2860995B2 (en) One-component contact development method
JPH1091000A (en) Single-component developing device
US20040043316A1 (en) Image forming apparatus and toner used therein
JP3410783B2 (en) Developing device
US4155330A (en) Electrographic development apparatus for use with conductive toner
CA2105253C (en) Transfer roller and toner for electrophotographic apparatus
US20010028815A1 (en) Color image forming apparatus
JP3131244B2 (en) Multicolor image forming method
JP3082546B2 (en) Image forming device
JPH0451266A (en) Image forming device
JPH0642087B2 (en) Development method
JPH0470876A (en) Developing device
JPH02220079A (en) Developing device
JPH02220078A (en) Developing device
JP2003345106A (en) Image forming apparatus
JP2002108028A (en) Image forming device
JPH1124388A (en) Developing device
JPH02201470A (en) Developing device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10