JP2860158B2 - Hydraulic drive for civil and construction machinery - Google Patents
Hydraulic drive for civil and construction machineryInfo
- Publication number
- JP2860158B2 JP2860158B2 JP2506697A JP50669790A JP2860158B2 JP 2860158 B2 JP2860158 B2 JP 2860158B2 JP 2506697 A JP2506697 A JP 2506697A JP 50669790 A JP50669790 A JP 50669790A JP 2860158 B2 JP2860158 B2 JP 2860158B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- valve
- control
- pressure receiving
- pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Fluid-Pressure Circuits (AREA)
Description
【発明の詳細な説明】 技術分野 本発明は油圧ショベル等の土木・建設機械の油圧駆動
装置に係わり、特に、アクチュエータの駆動を制御する
流量制御弁の前後差圧を制御する圧力補償弁を備えた土
木・建設機械の油圧駆動装置に関する。Description: TECHNICAL FIELD The present invention relates to a hydraulic drive device for civil engineering and construction machinery such as a hydraulic shovel, and more particularly, to a pressure compensating valve for controlling a differential pressure between a flow control valve for controlling the drive of an actuator and a flow control valve for controlling the actuator. Hydraulic drive device for civil engineering and construction machinery.
背景技術 油圧ショベルが等の土木・建設機械に用いられる油圧
駆動装置には、油圧ポンプの吐出出力、即ち、ポンプ圧
力がアクチュエータの負荷圧力よりも一定値だけ高くな
るように油圧ポンプの吐出流量、即ち、ポンプ流量を制
御し、アクチュエータの駆動に必要な流量のみを油圧ポ
ンプから吐出させるロードセンシングシステムと称され
るシステムがある。このロードセンシングシステムは、
例えば特開昭60−11706号公報に記載のように、油圧ポ
ンプの押しのけ容積を制御する作動シリンダと、ポンプ
圧力と負荷圧力との差圧に応答して作動し、作動シリン
ダの駆動を制御する切換弁とを有するロードセンシング
制御(LS制御)用のポンプレギュレータを備えている。
切換弁にはポンプ圧力と負荷圧力との差圧に対向するよ
う切換弁を付勢するばねが設けられており、ポンプ圧力
と負荷圧力との差圧とそのばねの力とのバランスにより
切換弁を作動させ、当該差圧がそのばねの力に相当する
一定値、即ち、目標差圧に保持されるようポンプ流量が
制御される。BACKGROUND ART Hydraulic excavators include hydraulic drive devices used in civil engineering and construction machines, such as a hydraulic pump discharge output, that is, a discharge flow rate of a hydraulic pump such that a pump pressure is higher than a load pressure of an actuator by a constant value. That is, there is a system called a load sensing system that controls a pump flow rate and discharges only a flow rate necessary for driving an actuator from a hydraulic pump. This load sensing system
For example, as described in Japanese Patent Application Laid-Open No. 60-11706, a working cylinder that controls the displacement of a hydraulic pump, and operates in response to a differential pressure between a pump pressure and a load pressure to control the driving of the working cylinder. A pump regulator for load sensing control (LS control) having a switching valve is provided.
The switching valve is provided with a spring for biasing the switching valve so as to oppose the differential pressure between the pump pressure and the load pressure. The switching valve is provided by a balance between the differential pressure between the pump pressure and the load pressure and the force of the spring. Is operated, and the pump flow rate is controlled such that the differential pressure is maintained at a constant value corresponding to the force of the spring, that is, the target differential pressure.
また、ロードセンシングシステムには、流量制御弁の
上流側に流量制御弁の前後差圧を制御する圧力補償弁を
配置し、ポンプ圧力と負荷圧力との差圧の変動に対する
流量制御機能を確保するのが一般的である。In the load sensing system, a pressure compensating valve that controls the differential pressure across the flow control valve is arranged upstream of the flow control valve to secure a flow control function for fluctuations in the differential pressure between the pump pressure and the load pressure. It is common.
圧力補償弁は、一般的には、弁ハウジング内に摺動可
能に配置され、可変絞りを提供する流量制御部を有する
弁スプールと、弁ハウジング内に形成され、弁スプール
の両端がそれぞれ位置する対向する第1及び第2の制御
室とを有し、閉弁方向作動の第1の制御室には流量制御
弁の入口圧力が導かれ、開弁方向作動の第2の制御室に
はアクチュエータの負荷圧力(流量制御弁の出口圧力)
が導かれる。第2の制御室には弁スプールを開弁方向に
付勢するばねが配置され、このばねにより圧力補償の目
標値が与えられる。ポンプレギュレータのばねと圧力補
償弁のばねとは、LS制御の目標差圧が補償差圧の目標値
より大となる関係に設定される。そして、第1及び第2
の制御室に導かれる流量制御弁の入口圧力とアクチュエ
ータの負荷圧力との差圧、即ち、流量制御弁の前後差圧
とそのばねの力とのバランスにより弁スプールを作動さ
せ、流量制御弁の前後差圧を制御する。The pressure compensating valve is generally slidably disposed within the valve housing and has a valve spool having a flow control providing a variable restriction, and a pressure spool formed within the valve housing and located at opposite ends of the valve spool. First and second control chambers facing each other, an inlet pressure of the flow control valve is guided to the first control chamber in the valve closing direction, and an actuator is provided to the second control chamber in the valve opening direction. Load pressure (flow control valve outlet pressure)
Is led. A spring for biasing the valve spool in the valve opening direction is disposed in the second control chamber, and the spring provides a target value for pressure compensation. The spring of the pump regulator and the spring of the pressure compensating valve are set so that the target differential pressure of the LS control is larger than the target value of the compensation differential pressure. And the first and second
The valve spool is actuated by the differential pressure between the inlet pressure of the flow control valve guided to the control chamber and the load pressure of the actuator, that is, the balance between the differential pressure before and after the flow control valve and the force of its spring. Controls the differential pressure between front and rear.
即ち、ポンプレギュレータにより制御されるポンプ圧
力と負荷圧力との差圧、即ち、LS差圧がそのばねの力に
相当する一定値、即ち、補償差圧の目標値に至るまで
は、弁スプールはばねの力により全開状態に保持され、
LS差圧が補償差圧の目標値より大きくなり、流量制御弁
の前後差圧が当該目標値を越えようとすると、前記ばね
の力に抗して弁スプールが閉弁方向に移動して流量制御
部を絞り、流量制御弁の前後差圧をその目標値に保持す
る。これにより、流量制御弁を流れる流量、即ち、アク
チュエータに供給される流量は流量制御弁の開口面積に
比例した流量となり、アクチュエータの安定した制御が
可能となる。That is, until the differential pressure between the pump pressure controlled by the pump regulator and the load pressure, that is, the LS differential pressure reaches a constant value corresponding to the spring force, that is, the target value of the compensation differential pressure, the valve spool is It is held fully open by the force of the spring,
When the LS differential pressure becomes larger than the target value of the compensation differential pressure, and the differential pressure across the flow control valve attempts to exceed the target value, the valve spool moves in the valve closing direction against the force of the spring, and the flow rate is reduced. The controller is throttled to maintain the differential pressure across the flow control valve at its target value. As a result, the flow rate flowing through the flow control valve, that is, the flow rate supplied to the actuator becomes a flow rate proportional to the opening area of the flow control valve, and stable control of the actuator becomes possible.
なお、この種の圧力補償弁は、例えば米国特許4,688,
600号に記載されている。Incidentally, this type of pressure compensating valve is, for example, U.S. Pat.
No. 600.
しかしながら、上記従来の圧力補償弁を採用した油圧
駆動装置においては以下の問題があった。However, the hydraulic drive device employing the conventional pressure compensating valve has the following problems.
上記従来の圧力補償弁においては、弁スプールの流量
制御部を圧油が流れるとき、その流れにより弁スプール
に閉弁方向に作用する力、即ち、フローフォースが発生
する。このフローフォースは流量制御部を流れる流量と
流速の関数であり、流量がほぼ一定とすると、流速は流
量制御部の前後差圧の関数であり、これらが増大すると
フローフォースも大きくなる。このため、LS差圧が増加
するとフローフォースが増加し、このフローフォースの
増加により上記ばねの設定値、即ち、補償差圧の目標値
が減じられる。その結果、LS差圧に対する流量制御弁の
前後差圧の特性は負の勾配を持つ特性となり、これに対
応してLS差圧に対する流量制御弁を通過する流量の特性
も負の勾配を持つ特性となる。即ち、流量制御弁の通過
流量が減少するとLS差圧が増加し、流量が増加するとLS
差圧が減少する特性となる。In the above-mentioned conventional pressure compensating valve, when the pressure oil flows through the flow control unit of the valve spool, a force acting on the valve spool in the valve closing direction, that is, a flow force is generated by the flow. This flow force is a function of the flow rate and the flow rate flowing through the flow rate control unit. When the flow rate is substantially constant, the flow rate is a function of the differential pressure across the flow rate control unit, and as these increase, the flow force increases. Therefore, when the LS differential pressure increases, the flow force increases, and the set value of the spring, that is, the target value of the compensation differential pressure, decreases due to the increase of the flow force. As a result, the characteristic of the differential pressure across the flow control valve with respect to the LS differential pressure has a negative gradient, and the characteristic of the flow rate passing through the flow control valve with respect to the LS differential pressure also has a negative gradient. Becomes That is, when the flow rate through the flow control valve decreases, the LS differential pressure increases, and when the flow rate increases, the LS differential pressure increases.
The characteristic is such that the differential pressure decreases.
従って、従来の圧力補償弁においては、ポンプレギュ
レータの制御によりLS差圧が目標差圧に保持され、圧力
補償弁の弁スプールが絞り状態にあるとき、何らかの原
因でポンプ流量が減少し、流量制御弁を通過する流量が
これに対応して減少した場合は、圧力補償弁はLS差圧を
増加するように作動する。一方、LS差圧が増加すると、
ポンプレギュレータはLS差圧を目標差圧に保持すべくポ
ンプ流量を減少させる。このため、流量制御弁の通過流
量はさらに減少し、圧力補償弁はLS差圧をさらに増大す
るように作動する。また、逆に、ポンプ流量が増大し、
流量制御弁を通過する流量が増大した場合は、圧力補償
弁はLS差圧を減少するように作動し、このLS差圧の減少
に応答してポンプレギュレータはLS差圧を目標差圧に保
持すべくポンプ流量を増大させ、流量制御弁の通過流量
の増大に伴い圧力補償弁はLS差圧をさらに減少するよう
に作動する。Therefore, in the conventional pressure compensating valve, the LS differential pressure is maintained at the target differential pressure by the control of the pump regulator, and when the valve spool of the pressure compensating valve is in the throttle state, the pump flow rate decreases for some reason, and the flow rate control is performed. If the flow rate through the valve decreases correspondingly, the pressure compensating valve operates to increase the LS differential pressure. On the other hand, when the LS differential pressure increases,
The pump regulator reduces the pump flow rate to maintain the LS differential pressure at the target differential pressure. Therefore, the flow rate through the flow control valve further decreases, and the pressure compensating valve operates to further increase the LS differential pressure. Conversely, the pump flow rate increases,
When the flow rate through the flow control valve increases, the pressure compensating valve operates to decrease the LS differential pressure, and in response to the decrease in the LS differential pressure, the pump regulator holds the LS differential pressure at the target differential pressure. The pump flow rate is increased as much as possible, and as the flow rate through the flow control valve increases, the pressure compensating valve operates to further reduce the LS differential pressure.
以上のように、従来の圧力補償弁を備えた油圧駆動装
置においては、フローフォースの影響によりポンプ流量
が一方的に減少する方向または増大する方向に制御さ
れ、ポンプ流量が制御不能となる危険性がある。As described above, in the conventional hydraulic drive device including the pressure compensating valve, the pump flow rate is controlled to be unilaterally decreased or increased due to the influence of the flow force, and there is a risk that the pump flow rate becomes uncontrollable. There is.
なお、このようなフローフォースの影響による圧力補
償弁の特性の変化を考慮して圧力補償弁の入口圧力が導
かれる通路にダンピング手段、例えば絞りを設け、ポン
プ流量の変化に対する応答性を遅らせることも考えられ
るが、このような絞りを設けると圧力補償弁の本来の圧
力補償機能としての応答性の劣化を招くという問題があ
る。In consideration of such a change in the characteristics of the pressure compensating valve due to the influence of the flow force, a damping means, for example, a throttle is provided in a passage through which the inlet pressure of the pressure compensating valve is led to delay the response to a change in the pump flow rate. However, the provision of such a throttle causes a problem that the response of the pressure compensating valve as the original pressure compensating function is deteriorated.
本発明の目的は、フローフォースの影響による圧力補
償弁の制御特性の劣化を防止し、安定したポンプ流量制
御を行える油圧駆動装置を提供することである。An object of the present invention is to provide a hydraulic drive device capable of preventing deterioration of control characteristics of a pressure compensating valve due to the influence of a flow force and performing stable pump flow control.
発明の開示 上記目的を達成するため、本発明によれば、油圧ポン
プと、この油圧ポンプから吐出された圧油によって駆動
されるアクチュエータと、前記油圧ポンプとアクチュエ
ータとの間に配置された流量制御弁と、この流量制御弁
の前後差圧を制御する圧力補償弁と、前記油圧ポンプか
ら吐出される流量をそのポンプ圧力と前記アクチュエー
タの負荷圧力との差圧に応じて制御するポンプ流量制御
手段とを備え、前記圧力補償弁は、弁体と、前記弁体に
前記流量制御弁の前後差圧に基づく第1の制御力を付与
し、これを閉弁方向に付勢する第1の制御手段と、前記
弁体に所定の第2の制御力を付与し、これを開弁方向に
付勢する第2の制御手段とを含む土木・建設機械の油圧
駆動装置において、前記圧力補償弁は、前記ポンプ圧力
と前記アクチュエータの負荷圧力との差圧に基づき、当
該差圧が増加するに従って連続的に増加する第3の制御
力を前記弁体に付与し、これを開弁方向に付勢する第3
の制御手段をさらに含むことを特徴とする土木・建設機
械の油圧駆動装置が提供される。DISCLOSURE OF THE INVENTION In order to achieve the above object, according to the present invention, there is provided a hydraulic pump, an actuator driven by pressure oil discharged from the hydraulic pump, and a flow control disposed between the hydraulic pump and the actuator. A valve, a pressure compensating valve for controlling a differential pressure across the flow control valve, and a pump flow control means for controlling a flow discharged from the hydraulic pump in accordance with a differential pressure between the pump pressure and a load pressure of the actuator. Wherein the pressure compensating valve includes a valve body, and a first control for applying a first control force to the valve body based on a pressure difference between the front and rear of the flow control valve and biasing the valve body in a valve closing direction. Means, and a second control means for applying a predetermined second control force to the valve body and urging the valve body in the valve opening direction, wherein the pressure compensating valve is , The pump pressure and the A third control force that continuously increases as the differential pressure increases based on the differential pressure with respect to the load pressure of the actuator, and applies a third control force to the valve body to urge the valve body in the valve opening direction;
And a hydraulic drive device for a civil engineering / construction machine.
ポンプ圧力とアクチュエータの負荷圧力との差圧、即
ち、LS差圧に基づき、当該差圧が増加するに従って連続
的に増加する第3の制御力を圧力補償弁の弁体に付与
し、これを開弁方向に付勢することにより、LS差圧に対
する流量制御弁の前後差圧の特性は、LS差圧が増加する
に従って後者の差圧が増加する正の勾配を持つ特性とな
り、これに対応して、LS差圧に対する流量制御弁の通過
流量の特性も、LS差圧が増加するに従って流量が増加す
る正の勾配を持つ特性となる。このため、ポンプ流量が
変動しても、フローフォースの影響を受けることなくLS
差圧はその目標差圧に戻るように制御され、これにより
ポンプレギュレータの安定した制御が可能となる。Based on the pressure difference between the pump pressure and the load pressure of the actuator, that is, based on the LS pressure difference, a third control force that continuously increases as the pressure difference increases is applied to the valve body of the pressure compensating valve. By energizing in the valve opening direction, the characteristic of the differential pressure across the flow control valve with respect to the LS differential pressure has a positive slope with the latter increasing as the LS differential pressure increases. Then, the characteristic of the flow rate of the flow control valve with respect to the LS differential pressure also has a positive slope in which the flow rate increases as the LS differential pressure increases. For this reason, even if the pump flow rate fluctuates, the LS
The differential pressure is controlled to return to the target differential pressure, thereby enabling stable control of the pump regulator.
好ましくは、前記第3の制御手段は、前記ポンプ圧力
が導かれ、前記弁体を開弁方向に付勢する第1の受圧手
段を含む。この第1の受圧手段は、前記弁体の内部に形
成されていてもよいし、前記弁体の外部に形成されてい
てもよい。Preferably, the third control means includes a first pressure receiving means to which the pump pressure is guided and urges the valve body in a valve opening direction. This first pressure receiving means may be formed inside the valve body, or may be formed outside the valve body.
また、好ましくは、前記第1の制御手段は、前記流量
制御弁の入口圧力が導かれる第1の制御室と、この第1
の制御室に配置され、前記弁体を閉弁方向に付勢する第
1の受圧部と、前記負荷圧力が導かれる第2の制御室
と、この第2の制御室に配置され、前記弁体を開弁方向
に付勢する第2の受圧部とを含み、前記第3の制御手段
は、前記ポンプ圧力が作用し、前記弁体を開弁方向に付
勢する第3の受圧部を含み、前記第2の受圧部の受圧面
積と前記第3の受圧部の受圧面積との和が前記第1の受
圧部の受圧面積にほぼ等しい。Preferably, the first control means includes: a first control chamber into which an inlet pressure of the flow control valve is led;
A first pressure receiving portion that is disposed in the control chamber of the first pressure chamber and biases the valve body in the valve closing direction; a second control chamber into which the load pressure is guided; and a second pressure chamber that is disposed in the second control chamber and includes the valve A second pressure receiving portion that urges the valve body in the valve opening direction; and a third pressure receiving portion that urges the valve member in the valve opening direction when the pump pressure acts on the second pressure receiving portion. The sum of the pressure receiving area of the second pressure receiving section and the pressure receiving area of the third pressure receiving section is substantially equal to the pressure receiving area of the first pressure receiving section.
好ましくは、前記第3の制御手段は、前記弁体の内部
に軸方向に形成され、一端が閉じられ、他端が前記第2
の受圧部に開口するシリンダ室と、前記シリンダ室に摺
動可能に挿通され、前記他端より前記弁体の外に突出す
るピストンロッドと、前記弁体に形成され、前記シリン
ダ室に前記ポンプ圧力を導く通路とを含み、前記第3の
受圧部は前記シリンダ室の閉じられた一端に形成されて
いる。前記弁体はその一端に大径部を含み、かつその大
径部の端面に前記第1の受圧部が形成され、前記第3の
制御手段は、前記大径部の前記第1の受圧部と反対側に
形成された環状の端面を含み、前記第3の受圧部は前記
環状の端面に形成されていてもよい。Preferably, the third control means is formed in the valve body in the axial direction, one end is closed, and the other end is the second control means.
A piston rod that is slidably inserted into the cylinder chamber and protrudes out of the valve body from the other end; and a pump that is formed in the valve body and is provided in the cylinder chamber. A third pressure receiving portion formed at a closed end of the cylinder chamber. The valve body includes a large-diameter portion at one end thereof, and the first pressure-receiving portion is formed on an end face of the large-diameter portion, and the third control means controls the first pressure-receiving portion of the large-diameter portion. And the third pressure receiving portion may be formed on the annular end surface.
前記第2の制御手段はばねであってもよいし、前記第
2の制御力を油圧により生成する油圧手段であってもよ
い。後者の場合、好ましくは、前記油圧手段は、一定の
油圧を発生させる第1の油圧発生手段と、前記一定の油
圧が導かれ、前記弁体を開弁方向に付勢する第2の受圧
手段と、可変的な油圧を発生させる第2の油圧発生手段
と、前記可変的な油圧が導かれ、前記弁体を閉弁方向に
付勢する第3の受圧手段とを含む。The second control means may be a spring or a hydraulic means for generating the second control force by hydraulic pressure. In the latter case, preferably, the hydraulic means includes first hydraulic pressure generating means for generating a constant hydraulic pressure, and second pressure receiving means for guiding the constant hydraulic pressure to urge the valve body in a valve opening direction. And second pressure generating means for generating a variable oil pressure, and third pressure receiving means for guiding the variable oil pressure to bias the valve body in a valve closing direction.
また、本発明によれば、油圧ポンプとアクチュエータ
との間に配置される流量制御弁の前後差圧を制御する圧
力補償弁であって、スプールボア、前記油圧ポンプの接
続される入口凹所及び前記流量制御弁に接続される出口
凹所を有する弁ハウジングと、前記スプールボアに摺動
可能に配置され、前記入口凹所と出口凹所間の連通を制
御する弁スプールと、前記弁ハウジング内に形成され、
前記流量制御弁の入口圧力が導かれる第1の制御室と、
前記第1の制御室に配置され、前記弁スプールを閉弁方
向に付勢する第1の受圧部と、前記弁スプール内に形成
され、前記アクチュエータの負荷圧力が導かれる第2の
制御室と、前記第2の制御室に配置され、前記弁スプー
ルを開弁方向に付勢する第2の受圧部と、前記弁スプー
ルを所定の制御力で開弁方向に付勢し、補償差圧の目標
値を設定する手段とを有する圧力補償弁において、前記
入口凹所の圧力が導かれ、前記弁スプールを開弁方向に
付勢する第3の受圧部を含む制御手段をさらに有し、前
記第2の受圧部の受圧面積と前記第3の受圧部の受圧面
積との和が前記第1の受圧部の受圧面積にほぼ等しいこ
とを特徴とする圧力補償弁が提供される。Further, according to the present invention, there is provided a pressure compensating valve for controlling a differential pressure across a flow control valve disposed between a hydraulic pump and an actuator, the spool compensating valve having a spool bore, an inlet recess connected to the hydraulic pump, and A valve housing having an outlet recess connected to the flow control valve; a valve spool slidably disposed in the spool bore for controlling communication between the inlet recess and the outlet recess; Formed in
A first control chamber into which an inlet pressure of the flow control valve is led;
A first pressure receiving portion that is disposed in the first control chamber and urges the valve spool in a valve closing direction; and a second control chamber that is formed in the valve spool and guides a load pressure of the actuator. A second pressure receiving portion disposed in the second control chamber and for urging the valve spool in the valve opening direction; and a second pressure receiving portion for urging the valve spool in the valve opening direction with a predetermined control force to reduce the compensation differential pressure. A pressure compensating valve having means for setting a target value, further comprising: a control means including a third pressure receiving portion that guides the pressure of the inlet recess and urges the valve spool in the valve opening direction. A pressure compensating valve is provided, wherein the sum of the pressure receiving area of the second pressure receiving section and the pressure receiving area of the third pressure receiving section is substantially equal to the pressure receiving area of the first pressure receiving section.
図面の簡単な説明 第1図は本発明の第1の実施例による油圧駆動装置を
示す概略図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing a hydraulic drive device according to a first embodiment of the present invention.
第2図は圧力補償弁におけるばねの特性を示す図であ
る。FIG. 2 is a diagram showing characteristics of a spring in the pressure compensating valve.
第3図は圧力補償弁におけるフローフォースの影響を
示す図である。FIG. 3 is a diagram showing the influence of the flow force on the pressure compensating valve.
第4図は圧力補償弁におけるLS差圧の影響を示す図で
ある。FIG. 4 is a diagram showing the effect of the LS differential pressure on the pressure compensating valve.
第5図は第1の実施例で得られるLS差圧と流量制御弁
の前後差圧との関係を示す特性図である。FIG. 5 is a characteristic diagram showing the relationship between the LS differential pressure obtained in the first embodiment and the differential pressure across the flow control valve.
第6図は第1の実施例で得られるLS差圧と流量制御弁
の通過流量との関係を示す特性図である。FIG. 6 is a characteristic diagram showing the relationship between the LS differential pressure obtained in the first embodiment and the flow rate through the flow control valve.
第7図は従来の圧力補償弁で得られるLS差圧と流量制
御弁の前後差圧との関係を示す特性図である。FIG. 7 is a characteristic diagram showing the relationship between the LS differential pressure obtained by the conventional pressure compensating valve and the differential pressure across the flow control valve.
第8図は従来の圧力補償弁で得られるLS差圧と流量制
御弁の通過流量との関係を示す特性図である。FIG. 8 is a characteristic diagram showing the relationship between the LS differential pressure obtained by the conventional pressure compensating valve and the flow rate through the flow control valve.
第9図は本発明の第2の実施例による油圧駆動装置を
示す概略図である。FIG. 9 is a schematic view showing a hydraulic drive device according to a second embodiment of the present invention.
第10図は本発明の第3の実施例による油圧駆動装置を
示す概略図である。FIG. 10 is a schematic diagram showing a hydraulic drive device according to a third embodiment of the present invention.
発明を実施するための最良の形態 以下、本発明の幾つかの好適実施例を図面を用いて説
明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, some preferred embodiments of the present invention will be described with reference to the drawings.
第1の実施例 まず、本発明の第1の実施例を第1図〜第8図により
説明する。First Embodiment First, a first embodiment of the present invention will be described with reference to FIGS.
第1図において、本実施例の油圧駆動装置は、可変容
量型の油圧ポンプ1と、この油圧ポンプ1から吐出され
る圧油によって駆動されるアクチュエータ2と、油圧ポ
ンプ1とアクチュエータ2との間の管路3,4a,4bに配置
され、アクチュエータ2の駆動を制御する流量制御弁5
と、流量制御弁5の上流側の管路、即ち、油圧ポンプ1
の吐出管路6と管路7とに配置され、流量制御弁5の前
後差圧Pz−PLSを制御する圧力補償弁8と、油圧ポンプ
1の吐出流量、即ち、ポンプ流量を油圧ポンプ1の吐出
圧力、即ち、ポンプ圧力Pdとアクチュエータ2の負荷圧
力PLSとの差圧Pd−PSに応じて制御するポンプレギュ
レータ9とを備えている。流量制御弁5と圧力補償弁8
との間の管路3,7には逆流を阻止するチェック弁10が配
置され、流量制御弁5の入口圧力Pzは管路3に接続され
た管路11により取り出され、流量制御弁5の出口圧力、
即ち、アクチュエータ2の負荷圧力PLSは流量制御弁5
に接続された負荷ライン12により検出される。In FIG. 1, a hydraulic drive device according to the present embodiment includes a variable displacement hydraulic pump 1, an actuator 2 driven by pressurized oil discharged from the hydraulic pump 1, and a hydraulic pump 1 and an actuator 2. Flow control valve 5 which is disposed in the pipelines 3, 4 a and 4 b and controls the driving of the actuator 2.
And the pipeline on the upstream side of the flow control valve 5, that is, the hydraulic pump 1
And a pressure compensating valve 8 arranged in the discharge pipes 6 and 7 for controlling the pressure difference Pz-PLS before and after the flow control valve 5, and the discharge flow rate of the hydraulic pump 1, that is, the pump flow rate There is provided a pump regulator 9 which controls the discharge pressure, that is, a pump pressure Pd and a pressure difference Pd-PS between the load pressure PLS of the actuator 2. Flow control valve 5 and pressure compensating valve 8
A check valve 10 for preventing backflow is disposed in the pipelines 3 and 7 between them, and the inlet pressure Pz of the flow control valve 5 is taken out by a pipeline 11 connected to the pipeline 3, Outlet pressure,
That is, the load pressure PLS of the actuator 2 is controlled by the flow control valve 5.
Is detected by the load line 12 connected to.
ポンプレギュレータ9は、油圧ポンプ1の斜板1aに連
結され、油圧ポンプ1の押しのけ容積を制御するアクチ
ュエータ13と、ポンプ圧力Pdと負荷圧力PLSとの差圧Pd
−PLSに応答して作動し、アクチュエータ13の駆動を制
御する切換弁14とを有している。アクチュエータ13は、
受圧面積の異なる両端面を持つピストン13aと、ピスト
ン13aのその両端面に位置する小径シリンダ室13bおよび
大径シリンダ室13cとを有する複動シリンダからなり、
小径シリンダ室13bは管路15を介して油圧ポンプ1の吐
出管路6に連通し、大径シリンダ室13cは管路16、切換
弁14及び管路17を介して吐出管路6に、また管路16、切
換弁14及び管路18を介してタンク19に接続されている。
切換弁14は対向する2つの駆動部14a,14bを有し、一方
の駆動部14aに管路20及び管路17よりポンプ圧力Psが負
荷され、他方の駆動部14bに負荷管路12より負荷圧力PL
Sが負荷される構造となっている。また、切換弁14の駆
動部14bの側にはばね14cが配置されている。The pump regulator 9 is connected to the swash plate 1a of the hydraulic pump 1 and controls the displacement of the hydraulic pump 1 by an actuator 13, and a differential pressure Pd between the pump pressure Pd and the load pressure PLS.
A switching valve 14 that operates in response to the PLS and controls the driving of the actuator 13; The actuator 13 is
A piston 13a having both end faces having different pressure receiving areas, and a double-acting cylinder having a small-diameter cylinder chamber 13b and a large-diameter cylinder chamber 13c located on both end faces of the piston 13a,
The small-diameter cylinder chamber 13b communicates with the discharge pipe 6 of the hydraulic pump 1 via the pipe 15, the large-diameter cylinder chamber 13c communicates with the discharge pipe 6 via the pipe 16, the switching valve 14 and the pipe 17, and The tank 19 is connected to the tank 19 via a pipe 16, a switching valve 14, and a pipe 18.
The switching valve 14 has two opposing driving units 14a and 14b, and one driving unit 14a is loaded with the pump pressure Ps from the pipes 20 and 17 and the other driving unit 14b is loaded with the pump pressure Ps from the load pipe 12. Pressure PL
S is loaded. Further, a spring 14c is disposed on the drive unit 14b side of the switching valve 14.
負荷管路12で検出された負荷圧力PLSが上昇すると切
換弁14は図示左方に駆動されて図示の位置をとり、アク
チュエータ13の大径シリンダ室13cは吐出管路6に連通
し、ピストン13aの両端面の受圧面積差によりピストン1
3aは図示左方に動かされ、斜板1aの傾転量、即ち、押し
のけ容積を増大させる。その結果、ポンプ流量は増加
し、ポンプ圧力Pdは上昇する。ポンプ圧力Pdが上昇する
と切換弁14は図示右方に戻され、差圧Pd−PLSがばね14
cによって定まる目標値に達すると切換弁14は停止し、
ポンプ流量は一定になる。逆に、負荷圧力PLSが減少す
ると切換弁14は図示右方に駆動され、大径シリンダ室13
cはタンク19に連通し、ピストン13aは図示右方に動かさ
れ、斜板1aの傾転量は減少する。その結果、ポンプ流量
は減少し、ポンプ圧力Pdは低下する。ポンプ圧力Pdが低
下すると切換弁14は図示左方に戻され、差圧Pd−PLSが
ばね14cによって定まる目標値に達すると切換弁14cは停
止し、ポンプ流量は一定となる。このように差圧Pd−P
LSがばね14cによって定まる目標差圧に保持されるよう
ポンプ流量が制御される。When the load pressure PLS detected in the load line 12 increases, the switching valve 14 is driven to the left in the drawing to assume the position shown in the drawing, the large-diameter cylinder chamber 13c of the actuator 13 communicates with the discharge line 6, and the piston 13a Piston 1
3a is moved to the left in the figure to increase the amount of tilt of the swash plate 1a, that is, the displacement. As a result, the pump flow increases and the pump pressure Pd increases. When the pump pressure Pd rises, the switching valve 14 is returned to the right in the figure, and the differential pressure Pd-PLS is
When reaching the target value determined by c, the switching valve 14 stops,
The pump flow rate will be constant. Conversely, when the load pressure PLS decreases, the switching valve 14 is driven to the right in the figure, and the large-diameter cylinder chamber 13
c communicates with the tank 19, the piston 13a is moved rightward in the figure, and the tilt amount of the swash plate 1a decreases. As a result, the pump flow rate decreases, and the pump pressure Pd decreases. When the pump pressure Pd decreases, the switching valve 14 is returned to the left in the figure. When the differential pressure Pd-PLS reaches a target value determined by the spring 14c, the switching valve 14c stops, and the pump flow rate becomes constant. Thus, the differential pressure Pd-P
The pump flow rate is controlled so that LS is maintained at the target differential pressure determined by the spring 14c.
圧力補償弁8は、入口ポート21a及び出口ポート21bと
2つの制御ポート21c,21dとを有しかつ内部にスプール
ボア22を形成した弁ハウジング21と、スプールボア22内
に軸方向に摺動可能に捜通された弁スプール23とを有し
ている。弁ハウジング21内には、またそれぞれ入口ポー
ト21a及び出口ポート21bに連通する環状の入口凹所24及
び出口凹所25が形成され、弁スプール23の流量制御部23
aには、入口凹所24と出口凹所25との間に可変絞りを構
成する複数のノッチ26が形成されている。The pressure compensating valve 8 has an inlet port 21a and an outlet port 21b, two control ports 21c, 21d, and has a spool housing 22 formed therein, and is slidable in the spool bore 22 in the axial direction. And the valve spool 23 that has been sought. Annular inlet recesses 24 and outlet recesses 25 communicating with the inlet port 21a and the outlet port 21b are formed in the valve housing 21, respectively.
In a, a plurality of notches 26 forming a variable aperture are formed between the inlet recess 24 and the outlet recess 25.
また、弁ハウジング21内には、弁スプール23の両端の
端面が形成する受圧部27,28が位置し、弁スプール23を
それぞれ閉弁方向及び開弁方向に付勢する2つの制御室
29,30が形成され、これら制御室29,30はそれぞれ2つの
制御ポート21c,21dに連通している。制御室30内にはば
ね31が配置されている。In the valve housing 21, pressure receiving portions 27 and 28 formed by end faces of both ends of the valve spool 23 are located, and two control chambers for urging the valve spool 23 in the valve closing direction and the valve opening direction, respectively.
29, 30 are formed, and these control chambers 29, 30 communicate with two control ports 21c, 21d, respectively. A spring 31 is arranged in the control room 30.
入口ポート21aは吐出管路6に接続され、出口ポート2
1bは管路7に接続され、制御ポート21cは管路11に接続
され、制御ポート21dは負荷管路12に接続されている。The inlet port 21a is connected to the discharge line 6, and the outlet port 2
1b is connected to the pipeline 7, the control port 21c is connected to the pipeline 11, and the control port 21d is connected to the load pipeline 12.
そして、本実施例では、弁スプール23の内部に、一端
が閉じられ他端が弁スプール23の受圧部28の端面に開口
するシリンダ室32が軸方向に形成され、シリンダ室32に
は制御室30内に突出するピストンロッド33が摺動可能に
挿通されている。また、弁スプール23にはシリンダ室32
を入口凹所24に連通する通路34が形成され、シリンダ室
32の閉じられた端部には受圧部35が形成されている。In the present embodiment, a cylinder chamber 32 having one end closed and the other end opened to the end surface of the pressure receiving portion 28 of the valve spool 23 is formed in the valve spool 23 in the axial direction. A piston rod 33 projecting into 30 is slidably inserted. The valve spool 23 has a cylinder chamber 32.
A passage 34 communicating with the inlet recess 24 is formed in the cylinder chamber.
A pressure receiving portion 35 is formed at the closed end of the portion 32.
受圧部27の受圧面積をAz、受圧部28の受圧面積をAL
S、受圧部35の受圧面積をAdとすると、Az=ALS+Adの
関係になっている。The pressure receiving area of the pressure receiving section 27 is Az, and the pressure receiving area of the pressure receiving section 28 is AL.
S, if the pressure receiving area of the pressure receiving unit 35 is Ad, the relationship is Az = ALS + Ad.
以上に構成において、制御室29,30及び受圧部27,28は
弁スプール23に流量制御弁5の前後差圧Pz−PLSに基づ
く第1の制御力を付与し、弁スプール23を閉弁方向に付
勢する第1の制御手段を提供し、ばね31は弁スプール23
にそのばね定数に基づく第2の制御力を付与し、弁スプ
ール23を開弁方向に付勢する第2の制御手段を提供して
いる。また、制御室29及び受圧部27とシリンダ室32及び
その受圧部35はポンプレギュレータ9によってロードセ
ンシング制御(LS制御)されるポンプ圧力と負荷圧力と
の差圧、即ち、LS差圧Pd−PLSの増加に応じて増加する
第3の制御力を弁スプール23に付与し、弁スプール23を
開弁方向に付勢する第3の制御手段を提供している。In the above configuration, the control chambers 29, 30 and the pressure receiving portions 27, 28 apply a first control force to the valve spool 23 based on the pressure difference Pz-PLS between the flow control valve 5 and the valve spool 23 in the valve closing direction. To provide a first control means for biasing the valve spool 23
And a second control means for applying a second control force based on the spring constant to bias the valve spool 23 in the valve opening direction. The control chamber 29 and the pressure receiving section 27, the cylinder chamber 32 and the pressure receiving section 35 are provided with a differential pressure between the pump pressure and the load pressure controlled by the load sensing control (LS control) by the pump regulator 9, that is, the LS differential pressure Pd-PLS. The third control means that applies a third control force that increases in accordance with the increase of the pressure to the valve spool 23 and urges the valve spool 23 in the valve opening direction is provided.
このように構成した第1の実施例にあっては、流量制
御弁5が中立位置にあるときは、ばね31により弁スプー
ル23は図示左方に移動し、圧力補償弁8は全開状態にあ
る。また、このとき油圧ポンプ1の斜板1aはポンプレギ
ュレータ9により最小傾転位置に保持されている。In the first embodiment configured as described above, when the flow control valve 5 is at the neutral position, the valve spool 23 is moved leftward in the figure by the spring 31, and the pressure compensating valve 8 is in the fully open state. . At this time, the swash plate 1a of the hydraulic pump 1 is held at the minimum tilt position by the pump regulator 9.
このような状態において、流量制御弁5を中立位置か
ら開く方向に適宜操作すると、圧油がアクチュエータ2
に供給され、ポンプ圧力Pdが低下しようとするので、前
述したごとくポンプレギュレータ9が作動し、ポンプ流
量が増大する。圧力補償弁8の制御室29,30にはそれぞ
れ管路11,12を介して流量制御弁5の入口圧力Pz及びア
クチュエータ2の負荷圧力PLSが導かれ、シリンダ室32
には通路34を介してポンプ圧力Pdが導かれ、弁スプール
23には制御室29に導かれた流量制御弁5の入口圧力Pzが
閉弁方向に作用し、制御室30に導かれた負荷圧力PLSが
開弁方向に作用し、シリンダ室32に導かれたポンプ圧力
Pdが開弁方向に作用する。In such a state, when the flow control valve 5 is appropriately operated in a direction to open from the neutral position, the pressure oil
And the pump pressure Pd tends to decrease, so that the pump regulator 9 operates as described above, and the pump flow rate increases. The inlet pressure Pz of the flow control valve 5 and the load pressure PLS of the actuator 2 are led to the control chambers 29 and 30 of the pressure compensating valve 8 via pipes 11 and 12, respectively.
The pump pressure Pd is guided through the passage 34 to the valve spool
At 23, the inlet pressure Pz of the flow control valve 5 guided to the control chamber 29 acts in the valve closing direction, and the load pressure PLS guided to the control chamber 30 acts in the valve opening direction, and is guided to the cylinder chamber 32. Pump pressure
Pd acts in the valve opening direction.
ここで、ポンプレギュレータ9のばね14cによって定
まるLS差圧Pd−PLSの目標値をPxとし、圧力補償弁8の
後述する補償差圧の初期目標値をPoとすると、Px>Poに
設定されている。このため、LS差圧Pd−PLSが補償差圧
の初期目標値Poに至るまでは弁スプール23は動かず、圧
力補償弁23は全開状態のままであり、補償差圧の初期目
標値Poを過ぎると、ばね31のばね定数と、入口圧力Pz、
負荷圧力PLS及びポンプ圧力Pdの大きさに応じて弁スプ
ール23が閉弁方向に移動してノッチ26を絞り、これによ
り流量制御弁5の前後差圧が所定の値に保持される。Here, if the target value of the LS differential pressure Pd−PLS determined by the spring 14c of the pump regulator 9 is Px, and the initial target value of the compensation differential pressure of the pressure compensating valve 8 described later is Po, Px> Po is set. I have. Therefore, the valve spool 23 does not move until the LS differential pressure Pd-PLS reaches the initial target value Po of the compensation differential pressure, the pressure compensating valve 23 remains fully open, and the initial target value Po of the compensation differential pressure is reduced. After passing, the spring constant of the spring 31 and the inlet pressure Pz,
The valve spool 23 moves in the valve closing direction according to the magnitude of the load pressure PLS and the pump pressure Pd to narrow the notch 26, whereby the differential pressure across the flow control valve 5 is maintained at a predetermined value.
次に、本実施例の圧力補償弁8の制御特性を詳細に説
明する。上述した圧力補償弁8の動作において、弁スプ
ール23のノッチ26を圧油が流れるとき、その流れにより
弁スプール23に閉弁方向に作用する力、即ち、フローフ
ォース36が発生する。このフローフォース36をfとし、
ばね31の力をFとすると、この弁スプール23に作用する
力の釣り合いは、 Pz・Az+f =Pd・Ad+F+PLS・ALS …(1) であり、この(1)式から流量制御弁5の前後差圧Pz−
PLSは、Az=ALS+Adであることから、 Pz−PLS=(F/Az)−(f/Az) +(Ad/Az)(Pd−PLS) …(2) となる。即ち、圧力補償弁8で制御される流量制御弁5
の前後差圧Pz−PLSは上記(2)式右辺の3つの項の影
響を受ける。そこで、これら3つの項の各々につき以下
に検討する。Next, control characteristics of the pressure compensating valve 8 of the present embodiment will be described in detail. In the operation of the pressure compensating valve 8 described above, when pressure oil flows through the notch 26 of the valve spool 23, a force acting on the valve spool 23 in the valve closing direction, that is, a flow force 36 is generated by the flow. Let this flow force 36 be f,
Assuming that the force of the spring 31 is F, the balance of the force acting on the valve spool 23 is as follows: Pz · Az + f = Pd · Ad + F + PLS · ALS (1) Pressure Pz−
Since PLS is Az = ALS + Ad, Pz−PLS = (F / Az) − (f / Az) + (Ad / Az) (Pd−PLS) (2) That is, the flow control valve 5 controlled by the pressure compensating valve 8
Is affected by the three terms on the right side of the above equation (2). Therefore, each of these three terms will be discussed below.
まず、上記(2)式右辺の第1項はばね31による圧力
補償の項であり、このばね31のみによる制御特性は第2
図に示すようになる。図中、一点鎖線Aがその制御特性
を示し、Po1はばね31により与えられる補償差圧の目標
値である。即ち、LS差圧Pd−PLSが補償差圧の目標値Po
1に至るまでは弁スプール23は動かず、圧力補償弁23は
全開状態のままであり、従って、流量制御弁5の前後差
圧Pz−PLSはLS差圧Pd−PLSと同じ変化をする。LS差圧
が補償差圧の目標値Po1を過ぎると弁スプール23は閉弁
方向に移動してノッチ26が絞られ、流量制御弁5の前後
差圧Pz−PLSを補償差圧の目標値Po1に保持する。First, the first term on the right side of the above equation (2) is a term of pressure compensation by the spring 31, and the control characteristic by the spring 31 alone is the second term.
As shown in the figure. In the figure, the dashed line A indicates the control characteristic, and Po1 is the target value of the compensation differential pressure provided by the spring 31. That is, the LS differential pressure Pd−PLS is equal to the target value Po of the compensation differential pressure.
Until the pressure reaches 1, the valve spool 23 does not move, and the pressure compensating valve 23 remains fully open. Therefore, the differential pressure Pz-PLS before and after the flow control valve 5 changes the same as the LS differential pressure Pd-PLS. When the LS differential pressure exceeds the target value Po1 of the compensation differential pressure, the valve spool 23 moves in the valve closing direction, the notch 26 is narrowed, and the differential pressure Pz-PLS before and after the flow control valve 5 is reduced to the target value Po1 of the compensation differential pressure. To hold.
一方、上記(2)式右辺の第2項はばね31により与え
られる補償差圧の目標値Po1に対するフローフォースf
の影響の項であり、フローフォースfはその目標値Po1
を減じるように作用する。このフローフォースfはノッ
チ26を流れる圧油の流量と流速の関数であり、流量を一
定とすれば流速はノッチ26の前後差圧の関数である。こ
のため、LS差圧Pd−PLSの増加に対して流量制御弁5の
前後差圧Pz−PLSが第2図に示すように変化する場合
は、LS差圧がPo1に至るまではLS差圧の増加に伴って流
量及び流速が増加し、これに伴ってフローフォースfが
増加し、LS差圧がPo1を越えると、LS差圧の増加に伴っ
てノッチ26の前後差圧が増加し、この差圧の増加に応じ
てフローフォースfが増加する。結局、フローフォース
fはLS差圧の増加に伴って連続的に増加し、このフロー
フォースの増加による補償差圧の目標値の減少は第3図
に破線Bで示すようになる。破線Bの勾配は−1/Azに対
応する。On the other hand, the second term on the right side of the above equation (2) is the flow force f with respect to the target value Po1 of the compensation differential pressure given by the spring 31.
And the flow force f is the target value Po1
Acts to reduce This flow force f is a function of the flow rate and flow rate of the pressure oil flowing through the notch 26, and the flow rate is a function of the differential pressure across the notch 26 if the flow rate is constant. Therefore, when the differential pressure Pz-PLS before and after the flow control valve 5 changes as shown in FIG. 2 with respect to the increase in the LS differential pressure Pd-PLS, the LS differential pressure is maintained until the LS differential pressure reaches Po1. As the flow rate and the flow velocity increase with the increase of the flow force f, and the LS differential pressure exceeds Po1, the differential pressure across the notch 26 increases with the increase of the LS differential pressure, The flow force f increases in accordance with the increase in the differential pressure. Eventually, the flow force f continuously increases with an increase in the LS differential pressure, and the decrease in the target value of the compensation differential pressure due to the increase in the flow force becomes as shown by a broken line B in FIG. The slope of dashed line B corresponds to -1 / Az.
また、上記(2)式右辺の第3項はシリンダ室32を設
けたことによるポンプ圧力Pdと負荷圧力PLSとの差圧、
即ち、LS差圧の影響の項であり、Ad/Az=一定なので、L
S差圧は補償差圧の目標値Po1を増加するように作用す
る。このLS差圧による補償差圧の目標値の増加は第4図
に2点鎖線Cで示すようになる。2点鎖線Cの勾配はAd
/Azに対応する。本発明では、この勾配は第3図の破線
Bの勾配の絶対値よりも大きく設定される。The third term on the right side of the above equation (2) is a differential pressure between the pump pressure Pd and the load pressure PLS due to the provision of the cylinder chamber 32,
That is, it is a term of the influence of the LS differential pressure, and since Ad / Az = constant, L
The S differential pressure acts to increase the target value Po1 of the compensation differential pressure. The increase in the target value of the compensation differential pressure due to the LS differential pressure is as shown by a two-dot chain line C in FIG. The gradient of the two-dot chain line C is Ad
Corresponds to / Az. In the present invention, this gradient is set to be larger than the absolute value of the gradient shown by the broken line B in FIG.
上記(2)式の制御特性は上述の第2図〜第4図の特
性を合成すれば得られる。第5図にその合成した特性を
実線Dで示す。The control characteristics of the above equation (2) can be obtained by synthesizing the characteristics of FIGS. 2 to 4 described above. FIG. 5 shows the synthesized characteristics by a solid line D.
第5図から分かるように、本実施例の圧力補償弁8で
は、LS差圧Pd−PLSに対する流量制御弁5の前後差圧Pz
−PLSの特性は、LS差圧Pd−PLSが補償差圧の初期目標
値Poを過ぎると、差圧Pd−PLSが増加するに従って差圧
Pz−PLSが増加する正の勾配を持つ特性となっている。As can be seen from FIG. 5, in the pressure compensating valve 8 of the present embodiment, the differential pressure Pz before and after the flow control valve 5 with respect to the LS differential pressure Pd-PLS.
The characteristic of -PLS is that when the differential pressure Pd-PLS exceeds the initial target value Po of the compensation differential pressure, the differential pressure Pd-PLS increases as the differential pressure Pd-PLS increases.
The characteristic has a positive slope in which Pz-PLS increases.
また、流量制御弁5を流れる流量Qは、流量制御弁5
の開口面積をA、比例定数をKとすると、 で一般に表わされる。従って、第5図の実線Dに対応す
るLS差圧に対する流量制御弁5の通過流量Qの特性は第
6図に実線Eで示すようになる。即ち、LS差圧Pd−PLS
に対する通過流量Qの特性も、LS差圧Pd−PLSが補償差
圧の初期目標値Poを越えると、差圧Pd−PLSが増加する
に従って流量Qが増加する正の勾配を持つ特性となって
いる。The flow rate Q flowing through the flow control valve 5 is
Let A be the opening area and K be the proportionality constant of Is generally represented by Accordingly, the characteristic of the passing flow rate Q of the flow control valve 5 with respect to the LS differential pressure corresponding to the solid line D in FIG. 5 is as shown by the solid line E in FIG. That is, LS differential pressure Pd-PLS
The characteristic of the passing flow rate Q with respect to is that the flow rate Q increases as the differential pressure Pd-PLS increases when the LS differential pressure Pd-PLS exceeds the initial target value Po of the compensation differential pressure. I have.
比較のため、本実施例の特徴であるシリンダ室32及び
ピストンロッド33を有しない従来の圧力補償弁のLS差圧
Pd−PLSに対する流量制御弁の前後差圧Pz−PLSの特性
を第7図に実線Fで、これに対応するLS差圧に対応する
流量制御弁の通過流量Qの特性を第8図に実線Gで示
す。第7図から分かるように、従来の圧力補償弁では、
LS差圧が補償差圧の初期目標値Po2を過ぎると、フロー
フォースの影響により差圧Pd−PLSが増加するに従って
差圧Pz−PLSが減少する負の勾配を持つ特性となってい
る。同様に、第8図に示すように、LS差圧が補償差圧の
初期目標値Poを過ぎると差圧Pd−PLSが増加するに従っ
て流量Qが減少する負の勾配を持つ特性となっている。For comparison, the LS differential pressure of the conventional pressure compensating valve without the cylinder chamber 32 and the piston rod 33, which is a feature of this embodiment,
The characteristic of the differential pressure Pz-PLS before and after the flow control valve with respect to Pd-PLS is shown by a solid line F in FIG. 7, and the characteristic of the corresponding flow rate Q of the flow control valve corresponding to the LS differential pressure is shown by a solid line in FIG. Shown by G. As can be seen from FIG. 7, in the conventional pressure compensating valve,
When the LS differential pressure exceeds the initial target value Po2 of the compensation differential pressure, the characteristic has a negative gradient in which the differential pressure Pz-PLS decreases as the differential pressure Pd-PLS increases due to the influence of the flow force. Similarly, as shown in FIG. 8, when the LS differential pressure exceeds the initial target value Po of the compensating differential pressure, the flow rate Q decreases as the differential pressure Pd-PLS increases. .
次に、本実施例の圧力補償弁の上述した制御特性に基
づく効果を説明する。Next, effects of the pressure compensating valve according to the present embodiment based on the above-described control characteristics will be described.
まず、第7図及び第8図に示す制御特性を有する従来
の圧力補償弁を用いた油圧駆動装置について説明する。First, a hydraulic drive device using a conventional pressure compensating valve having the control characteristics shown in FIGS. 7 and 8 will be described.
ポンプレギュレータ9によりLS差圧が目標値Pxに保持
されているとき、圧力補償弁の弁スプールは閉弁方向に
移動し、絞り状態にある。このときの第8図の特性線G
上の位置を40で示し、対応する流量をQ1で示す。この状
態において、何らかの原因でポンプ流量が減少し、流量
制御弁5を通過する流量がこれに対応して減少した場合
は、LS差圧Pd−PLSと流量Qとの関係が負の勾配を持つ
特性であることから、特性線G上の位置40は矢印41で示
す方向に移動し、圧力補償弁はLS差圧を増加するように
作動する。一方、LS差圧が増加すると、ポンプレギュレ
ータ9はこのLS差圧の増加に応答してLS差圧を目標値Px
に保持すべくポンプ流量を減少させるように作動する。
ポンプ流量が減少すると、流量制御弁5の通過流量Qは
さらに減少し、特性線G上の位置はさらに矢印41の方向
に移動し、圧力補償弁はLS差圧をさらに増大するように
作動する。以上のことが繰り返される結果、ポンプ流量
は一方的に減少方向に制御され、ポンプレギュレータ9
は制御不能となり、アクチュエータを所望の速度で駆動
できなくなる。When the LS differential pressure is maintained at the target value Px by the pump regulator 9, the valve spool of the pressure compensating valve moves in the valve closing direction and is in the throttle state. At this time, the characteristic line G in FIG.
The upper position is indicated by 40 and the corresponding flow rate is indicated by Q1. In this state, if the pump flow rate decreases for some reason and the flow rate passing through the flow control valve 5 decreases correspondingly, the relationship between the LS differential pressure Pd-PLS and the flow rate Q has a negative gradient. Because of the characteristic, the position 40 on the characteristic line G moves in the direction indicated by the arrow 41, and the pressure compensating valve operates to increase the LS differential pressure. On the other hand, when the LS differential pressure increases, the pump regulator 9 sets the LS differential pressure to the target value Px in response to the increase in the LS differential pressure.
To reduce the pump flow rate to maintain
When the pump flow rate decreases, the flow rate Q passing through the flow control valve 5 further decreases, the position on the characteristic line G further moves in the direction of the arrow 41, and the pressure compensating valve operates to further increase the LS differential pressure. . As a result of repeating the above, the pump flow rate is unilaterally controlled to decrease, and the pump regulator 9 is controlled.
Cannot be controlled, and the actuator cannot be driven at a desired speed.
また、逆に、ポンプ流量が増大し、流量制御弁5を通
過する流量Qが増大した場合は、特性線G上の位置40は
矢印42の方向に移動し、圧力補償弁はLS差圧を減少する
ように作動し、ポンプレギュレータ9はこのLS差圧の減
少に応答してポンプ流量を増大させるように作動し、流
量制御弁の通過流量Qの増大に伴い圧力補償弁はLS差圧
をさらに減少するように作動する。以上のことが繰り返
される結果、ポンプ流量は一方的に増加方向に制御さ
れ、ポンプレギュレータ9は同様に制御不能となり、ア
クチュエータを適正に駆動できなくなる。Conversely, when the pump flow rate increases and the flow rate Q passing through the flow control valve 5 increases, the position 40 on the characteristic line G moves in the direction of the arrow 42, and the pressure compensating valve reduces the LS differential pressure. The pump regulator 9 operates so as to increase the pump flow rate in response to the decrease in the LS differential pressure, and the pressure compensating valve reduces the LS differential pressure with the increase in the flow rate Q passing through the flow control valve. It operates to further decrease. As a result of the repetition of the above, the pump flow rate is unilaterally controlled in the increasing direction, the pump regulator 9 becomes similarly uncontrollable, and the actuator cannot be driven properly.
これに対し、本実施例においては、ポンプレギュレー
タ9によりLS差圧が目標値Pxに保持されているときの第
6図に示す特性線E上の位置を43とすると、この状態に
おいて、何らかの原因でポンプ流量が減少し、流量制御
弁5を通過する流量がこれに対応して減少した場合は、
LS差圧Pd−PLSと流量Qとの関係が正の勾配を持つ特性
であることから、特性線E上の位置43は矢印44で示す方
向に移動し、圧力補償弁8はLS差圧を減少するように作
動する。一方、LS差圧が減少すると、ポンプレギュレー
タ9はこのLS差圧の減少に応答してLS差圧を目標値Pxに
保持すべくポンプ流量を増加させるように作動する。ポ
ンプ流量が増加すると、流量制御弁5の通過流量Qも増
加し、特性線E上の位置は矢印45で示すように最初の位
置43に向けて移動し、圧力補償弁8はLS差圧Pd−PLSを
目標値Pxに戻すように作動する。これにより、LS差圧は
目標値Pxに再び保持される。On the other hand, in this embodiment, if the position on the characteristic line E shown in FIG. 6 when the LS differential pressure is held at the target value Px by the pump regulator 9 is 43, in this state, If the pump flow rate decreases and the flow rate through the flow control valve 5 decreases correspondingly,
Since the relationship between the LS differential pressure Pd-PLS and the flow rate Q is a characteristic having a positive gradient, the position 43 on the characteristic line E moves in the direction indicated by the arrow 44, and the pressure compensating valve 8 reduces the LS differential pressure. Operates to decrease. On the other hand, when the LS differential pressure decreases, the pump regulator 9 operates to increase the pump flow rate in order to maintain the LS differential pressure at the target value Px in response to the decrease in the LS differential pressure. When the pump flow rate increases, the flow rate Q passing through the flow control valve 5 also increases, the position on the characteristic line E moves toward the initial position 43 as indicated by the arrow 45, and the pressure compensating valve 8 sets the LS differential pressure Pd Act to return PLS to the target value Px. As a result, the LS differential pressure is again held at the target value Px.
逆に、ポンプ流量が増大し、流量制御弁5を通過する
流量Qが増大した場合は、特性線E上の位置43は矢印46
の方向に移動し、圧力補償弁8はLS差圧を増加するよう
に作動し、ポンプレギュレータ9はこのLS差圧の増加に
応答してポンプ流量を減少させるように作動し、流量制
御弁の通過流量Qの減少に伴い特性線E上の位置は矢印
47の方向に移動し、圧力補償弁8はLS差圧を増加するよ
うに作動する。これにより同様に、LS差圧は目標値Pxに
再び保持される。Conversely, when the pump flow rate increases and the flow rate Q passing through the flow control valve 5 increases, the position 43 on the characteristic line E is indicated by an arrow 46.
, The pressure compensating valve 8 operates to increase the LS differential pressure, and the pump regulator 9 operates to decrease the pump flow in response to the increase in the LS differential pressure. As the passing flow rate Q decreases, the position on the characteristic line E is indicated by an arrow.
Moving in the direction of 47, the pressure compensating valve 8 operates to increase the LS differential pressure. Thereby, similarly, the LS differential pressure is again held at the target value Px.
以上のように、本実施例にあっては、フローフォース
の影響を受けることなくLS差圧Pd−PLSは目標差圧Pxに
戻るように制御され、これによりポンプレギュレータ9
の安定した制御が可能である。このため、流量制御弁5
を介してアクチュエータ2に流量制御弁5の開口量に応
じた流量Qを供給でき、ポンプ流量の変動の影響を受け
ることなくアクチュエータ2の駆動速度を安定して制御
することができる。As described above, in the present embodiment, the LS differential pressure Pd-PLS is controlled so as to return to the target differential pressure Px without being affected by the flow force.
Stable control is possible. Therefore, the flow control valve 5
Thus, the flow rate Q corresponding to the opening amount of the flow control valve 5 can be supplied to the actuator 2 via the actuator, and the drive speed of the actuator 2 can be controlled stably without being affected by the fluctuation of the pump flow rate.
また、絞り等のダンピング手段を設けることがないの
で、圧力補償弁8の良好な応答性を確保でき、また、弁
スプール23にシリンダ室32と通路34を形成し、シリンダ
室32にピストンロッド33を挿通するだけの簡単な構造で
あるので、製作が容易である。Further, since no damping means such as a throttle is provided, good responsiveness of the pressure compensating valve 8 can be ensured. Further, the cylinder chamber 32 and the passage 34 are formed in the valve spool 23, and the piston rod 33 is formed in the cylinder chamber 32. Is easy to manufacture because it has a simple structure in which only a.
第2の実施例 本発明の第2の実施例を第9図により説明する。本実
施例は補償差圧の目標値を与える手段をばねに代え、油
圧手段で構成したものである。Second Embodiment A second embodiment of the present invention will be described with reference to FIG. In this embodiment, the means for giving the target value of the compensation differential pressure is replaced by a spring, and is constituted by hydraulic means.
第9図において、本実施例の圧力補償弁8Aは、入力ポ
ート21a及び出口ポート21bと2つの制御ポート21c,21d
に加え、さらに2つの制御ポート21e,21fを有する弁ハ
ウジング21Aを有し、弁ハウジング21A内にはスプールボ
ア22A、環状の入口凹所24及び出口凹所25、4つの制御
室29A,30A,50,51が形成されている。スプールボア21A内
には複数のノッチ26を有する弁スプール23Aが軸方向に
摺動可能に挿通されている。In FIG. 9, the pressure compensating valve 8A of this embodiment has an input port 21a, an outlet port 21b, and two control ports 21c and 21d.
In addition, the valve housing 21A has two control ports 21e and 21f, in which a spool bore 22A, an annular inlet recess 24 and an outlet recess 25, and four control chambers 29A, 30A, 50 and 51 are formed. A valve spool 23A having a plurality of notches 26 is slidably inserted in the spool bore 21A in the axial direction.
弁スプール23Aの両端部分にはそれぞれ小径部52,53が
形成され、小径部52,53に移行する部分に環状の受圧部2
7A,54が形成され、小径部52,53の端面に受圧部55,28Aが
形成されている。受圧部27A,28Aはそれぞれ制御室29A,3
0Aに位置し、これら制御室29A,30Aには制御ポート21c,2
1dを介してそれぞれ流量制御弁4の入口圧力Px及びアク
チュエータ2の負荷圧力PLSが導かれている。受圧部5
4,55はそれぞれ制御室50,51に位置し、制御室50は制御
ポート21eを介して油圧源56に連絡してあり、制御室51
は制御ポート21fを介して、油圧源57に接続された電磁
比例弁58に連絡してある。Small-diameter portions 52, 53 are formed at both end portions of the valve spool 23A, respectively.
7A and 54 are formed, and pressure receiving portions 55 and 28A are formed on end faces of the small diameter portions 52 and 53. The pressure receiving parts 27A, 28A are in control rooms 29A, 3 respectively.
0A, and these control rooms 29A, 30A have control ports 21c, 2c.
The inlet pressure Px of the flow control valve 4 and the load pressure PLS of the actuator 2 are led through 1d, respectively. Pressure receiving part 5
4 and 55 are located in the control rooms 50 and 51, respectively, and the control room 50 is connected to the hydraulic pressure source 56 through the control port 21e.
Is connected to an electromagnetic proportional valve 58 connected to a hydraulic pressure source 57 via a control port 21f.
油圧源56,57はそれぞれ一定のパイロット圧力Piを発
生する。また、電磁比例弁58は油圧源57からの一定のパ
イロット圧力を電気信号に応じて減圧し、電気信号に応
じた制御圧力Pcを発生する。油圧源56からのパイロット
圧力Piにより制御室50内で発生した制御力は弁スプール
23Aを開弁方向に付勢し、電磁比例弁58からの制御圧力P
cにより制御室51内で発生した制御力は弁スプール23Aを
閉弁方向に付勢する。受圧部54,55の受圧面積は後述す
るように等しく、これらパイロット圧力Pi及び制御圧力
Pcは、前者の制御力が後者の制御力より大となるように
設定され、これにより両制御力の差が弁スプール23Aを
開弁方向に付勢し、第1の実施例のばね31と同様に補償
差圧の目標値が与えられる。また、電磁比例弁58を制御
して制御圧力Pcを調整することにより両制御力の差を制
御し、補償差圧の目標値を自由に変えることができる。The hydraulic pressure sources 56 and 57 each generate a constant pilot pressure Pi. In addition, the electromagnetic proportional valve 58 reduces a constant pilot pressure from the hydraulic pressure source 57 according to the electric signal, and generates a control pressure Pc according to the electric signal. The control force generated in the control chamber 50 by the pilot pressure Pi from the hydraulic pressure source 56 is applied to the valve spool.
23A is urged in the valve opening direction, and the control pressure P from the electromagnetic proportional valve 58
The control force generated in the control chamber 51 by c urges the valve spool 23A in the valve closing direction. The pressure receiving areas of the pressure receiving sections 54 and 55 are equal as described later, and the pilot pressure Pi and the control pressure
Pc is set so that the former control force is greater than the latter control force, whereby the difference between the two control forces urges the valve spool 23A in the valve opening direction, and the difference between the control force and the spring 31 of the first embodiment. Similarly, a target value of the compensation differential pressure is given. Also, by controlling the electromagnetic proportional valve 58 to adjust the control pressure Pc, the difference between the two control forces can be controlled, and the target value of the compensation differential pressure can be freely changed.
なお、この電磁比例弁の制御には例えばEP,A1,326,15
0(特開平1−312202号に対応)の発明を適用でき、こ
れにより複数のアクチュエータを駆動する油圧駆動装置
において、油圧ポンプが飽和した場合に複数の圧力補償
弁の補償差圧の目標値をそれぞれ適宜変更し、各アクチ
ュエータに確実に圧油を供給する分流制御等、適切な流
量制御を行うことができる。The control of the electromagnetic proportional valve is performed, for example, in EP, A1, 326, 15
0 (corresponding to Japanese Patent Application Laid-Open No. 1-312202), whereby a hydraulic drive device for driving a plurality of actuators can set a target value of compensation differential pressure of a plurality of pressure compensating valves when a hydraulic pump is saturated. Appropriate flow rate control such as split flow control for surely supplying pressure oil to each actuator can be performed by appropriately changing each of them.
弁スプール23Aには第1の実施例と同様にシリンダ室3
2、通路34及び受圧部35が形成され、シリンダ室32には
ピストンロッド33が挿通されている。The valve spool 23A has a cylinder chamber 3 as in the first embodiment.
2. A passage 34 and a pressure receiving portion 35 are formed, and a piston rod 33 is inserted into the cylinder chamber 32.
受圧部27Aの受圧面積をAz、受圧部28Aの受圧面積をA
LS、受圧部35の受圧面積をAdとし、受圧部54の受圧面積
をAi、受圧部55の受圧面積をAcとすると、Az+Ac=ALS
+Ad+Ai、及びAz=ALS+Ad(従って、Ac=Ai)の関係
になっている。The pressure receiving area of the pressure receiving section 27A is Az, and the pressure receiving area of the pressure receiving section 28A is A.
Assuming that LS, the pressure receiving area of the pressure receiving section 35 is Ad, the pressure receiving area of the pressure receiving section 54 is Ai, and the pressure receiving area of the pressure receiving section 55 is Ac, Az + Ac = ALS
+ Ad + Ai and Az = ALS + Ad (accordingly, Ac = Ai).
以上に構成において、制御室29A,30A及び受圧部27A,2
8Aは弁スプール23Aに流量制御弁5の前後差圧Pz−PLS
に基づく第1の制御力を付与し、弁スプール23Aを閉弁
方向に付勢する第1の制御手段を提供し、制御室50,51
及び受圧部54,55は弁スプール23Aにパイロット圧力Pi及
び制御圧力Pcに基づく第2の制御力を付与し、弁スプー
ル23Aを開弁方向に付勢する第2の制御手段を提供して
いる。また、制御室29A及び受圧部27Aとシリンダ室32及
びその受圧部35はポンプレギュレータ9によってLS制御
されるポンプ圧力と負荷圧力との差圧、即ち、LS差圧Pd
−PLSの増加に応じて増加する第3の制御力を弁スプー
ル23Aに付与し、弁スプール23Aを開弁方向に付勢する第
3の制御手段を提供している。In the above configuration, the control chambers 29A, 30A and the pressure receiving sections 27A, 2
8A is a differential pressure Pz-PLS between the front and rear of the flow control valve 5 on the valve spool 23A.
To provide a first control means for applying a first control force based on the control signal, and for urging the valve spool 23A in the valve closing direction.
The pressure receiving portions 54 and 55 provide a second control unit that applies a second control force based on the pilot pressure Pi and the control pressure Pc to the valve spool 23A and urges the valve spool 23A in the valve opening direction. . The control chamber 29A and the pressure receiving portion 27A, the cylinder chamber 32 and the pressure receiving portion 35 are provided with a differential pressure between the pump pressure and the load pressure controlled by the pump regulator 9 LS, that is, the LS differential pressure Pd.
-A third control means for applying a third control force, which increases in accordance with an increase in PLS, to the valve spool 23A and biasing the valve spool 23A in the valve opening direction is provided.
このように構成した本実施例においては、フローフォ
ースfを考慮した弁スプール23Aに作用する力の釣り合
いは、 Pc・Ac+Pz・Az+f =Pd・Ad+Pi・Ai+PLS・ALS …(4) であり、この(4)式から流量制御弁5の前後差圧Pz−
PLSは、Az+Ac=Ad+ALS+AiでありかつAc=Aiである
ことから、 Pz−PLS={Ai(Pi−Pc)/Az} −(f/Az)+(Ad/Az)(Pd−PLS) …(5) となる。この(5)式において、右辺第1項は制御圧力
Piに応じて定まる値であり、(2)式の右辺第1項とに
相当する。右辺第2項及び第3項は(2)式のそれと同
じである。In the present embodiment configured as above, the balance of the forces acting on the valve spool 23A in consideration of the flow force f is Pc · Ac + Pz · Az + f = Pd · Ad + Pi · Ai + PLS · ALS (4) From equation 4), the differential pressure Pz-
Since PLS is Az + Ac = Ad + ALS + Ai and Ac = Ai, Pz−PLS = {Ai (Pi−Pc) / Az} − (f / Az) + (Ad / Az) (Pd−PLS) 5) In the equation (5), the first term on the right side is the control pressure.
This value is determined according to Pi, and corresponds to the first term on the right side of Expression (2). The second and third terms on the right side are the same as those in equation (2).
従って、本実施例においても、LS差圧Pd−PLSに対す
る圧力補償弁8Aにより制御される流量制御弁5の前後差
圧Pz−PLSの特性は第5図の実線Dで示すようになり、
同様に、LS差圧に対する流量制御弁6の通過流量Qの特
性は第6図に実線Eで示すようになる。即ち、LS差圧Pd
−PLSに対する流量制御弁5の前後差圧Pz−PLSの特性
は、LS差圧Pd−PLSが補償差圧の初期目標値Poを過ぎる
と、差圧Pd−PLSが増加するに従って差圧Pz−PLSが増
加する正の勾配を持つ特性となる。また、LS差圧Pd−P
LSに対する流量制御弁5の通過流量Qの特性は、LS差圧
Pd−PLSが補償差圧の初期目標値Poを過ぎると、差圧Pd
−PLSが増加するに従って流量Qが増加する正の勾配を
持つ特性となる。Therefore, also in this embodiment, the characteristic of the differential pressure Pz-PLS before and after the flow control valve 5 controlled by the pressure compensating valve 8A with respect to the LS differential pressure Pd-PLS is as shown by a solid line D in FIG.
Similarly, the characteristic of the passing flow rate Q of the flow control valve 6 with respect to the LS differential pressure is as shown by a solid line E in FIG. That is, LS differential pressure Pd
The characteristic of the differential pressure Pz-PLS before and after the flow control valve 5 with respect to PLS is that when the LS differential pressure Pd-PLS exceeds the initial target value Po of the compensation differential pressure, the differential pressure Pz-PLS increases as the differential pressure Pd-PLS increases. The characteristic has a positive slope in which PLS increases. Also, the LS differential pressure Pd-P
The characteristic of the flow rate Q of the flow control valve 5 with respect to LS is the LS differential pressure.
When Pd-PLS exceeds the initial target value Po of the compensation differential pressure, the differential pressure Pd
-A characteristic having a positive slope in which the flow rate Q increases as PLS increases.
従って、本実施例においても第1の実施例と同様の効
果を得ることができる。また、本実施例によれば、制御
圧力Pcを変えることにより第2図に示す補償差圧の目標
値Po1を適宜変えることができ、これにより上述したポ
ンプ飽和時の分流制御等、望ましい流量制御を行うこと
ができる。Therefore, in this embodiment, the same effect as that of the first embodiment can be obtained. Further, according to the present embodiment, by changing the control pressure Pc, the target value Po1 of the compensation differential pressure shown in FIG. 2 can be appropriately changed, whereby the desired flow rate control such as the above-described split flow control at the time of pump saturation is achieved. It can be performed.
第3の実施例 本発明の第3の実施例を第10図により説明する。本実
施例はLS差圧の増加に応じて増加する制御力を付与する
手段を、シリンダ室内の受圧部のように弁スプールの内
部でなく外部に設けたものである。Third Embodiment A third embodiment of the present invention will be described with reference to FIG. In this embodiment, means for applying a control force that increases in accordance with an increase in the LS differential pressure is provided outside the valve spool, not inside the valve spool as in the pressure receiving section in the cylinder chamber.
第10図において、本実施例の圧力補償弁8Bは第1の実
施例と同様に、入口ポート21a及び出口ポート21bと2つ
の制御ポート21c,21dを有する弁ハウジング21Bを有し、
弁ハウジング21B内にはスプールボア22B、環状の入口凹
所24及び出口凹所25、2つの制御室29B,30Bが形成され
ている。スプールボア21B内には複数のノッチ26を有す
る弁スプール23Bが軸方向に摺動可能に挿通されてい
る。In FIG. 10, the pressure compensating valve 8B of this embodiment has a valve housing 21B having an inlet port 21a, an outlet port 21b, and two control ports 21c and 21d, as in the first embodiment,
A spool bore 22B, an annular inlet recess 24 and an outlet recess 25, and two control chambers 29B and 30B are formed in the valve housing 21B. A valve spool 23B having a plurality of notches 26 is slidably inserted in the spool bore 21B in the axial direction.
弁スプール23Bの一方の端部は大径部60になってお
り、大径部60の端面に受圧部27Bが形成され、他方の端
部の端面に受圧部28Bが形成されている。受圧部27B,28B
はそれぞれ制御室29B,30Bに位置し、従って、制御室29B
も制御室29Aより大径となっている。制御室29B,30Bには
制御ポート21c,21dを介してそれぞれ流量制御弁4の入
口圧力Pz及びアクチュエータ2の負荷圧力PLSが導かれ
ている。また、制御室30Bにはばね31が配置されてい
る。One end of the valve spool 23B has a large-diameter portion 60, and a pressure-receiving portion 27B is formed on an end surface of the large-diameter portion 60, and a pressure-receiving portion 28B is formed on an end surface of the other end. Pressure receiving part 27B, 28B
Are located in the control rooms 29B and 30B, respectively,
Also has a larger diameter than the control room 29A. The inlet pressure Pz of the flow control valve 4 and the load pressure PLS of the actuator 2 are led to the control chambers 29B and 30B via control ports 21c and 21d, respectively. Further, a spring 31 is disposed in the control room 30B.
大径部60の受圧部27Bの反対側の肩部61には入口凹部2
4に臨む環状の端面が形成され、この端面に入口凹所24
のポンプ圧力を受け、弁スプールを開弁方向に付勢する
受圧部62が形成されている。The inlet recess 2 is formed in the shoulder 61 of the large diameter portion 60 on the opposite side of the pressure receiving portion 27B.
An annular end face facing 4 is formed, and this end face has an inlet recess 24.
A pressure receiving portion 62 is formed to receive the pump pressure of the above and urge the valve spool in the valve opening direction.
受圧部27Bの受圧面積をAz、受圧部28Bの受圧面積をA
LS、受圧部62の受圧面積をAdとすると、Az=ALS+Adの
関係になっている。The pressure receiving area of the pressure receiving section 27B is Az, and the pressure receiving area of the pressure receiving section 28B is A
Assuming that LS and the pressure receiving area of the pressure receiving section 62 are Ad, the relationship is Az = ALS + Ad.
以上に構成において、制御室29B,30B及び受圧部27B,2
8Bとばね31が持つ機能は第1の実施例と同じである。ま
た、制御室29B及び受圧部27Bと受圧部62はポンプレギュ
レータ9によってLS制御されるポンプ圧力と負荷圧力と
の差圧、即ち、LS差圧Pd−PLSの増加に応じて増加する
第3の制御力を弁スプール23Bに付与し、弁スプール23B
を開弁方向に付勢する第3の制御手段を提供している。In the above configuration, the control chambers 29B, 30B and the pressure receiving sections 27B, 2
The functions of 8B and the spring 31 are the same as in the first embodiment. Further, the control chamber 29B and the pressure receiving section 27B and the pressure receiving section 62 have a third pressure that increases in accordance with an increase in the differential pressure between the pump pressure and the load pressure controlled by the pump regulator 9 in LS, that is, the LS differential pressure Pd-PLS. The control force is applied to the valve spool 23B, and the valve spool 23B
The third control means for urging the valve in the valve opening direction is provided.
このように構成した本実施例においては、フローフォ
ースfを考慮した弁スプール23Bに作用する力の釣り合
いは、前記(1)式と同じ Pz・Az+f =Pd.Ad+F+PLS・ALS となり、この式から流量制御弁5の前後差圧Pz−PLS
は、Az=ALS+Adであることから、前記(2)式と同じ Pz−PLS=(F/Az)−(f/Az) +(Ad/Az)(Pd−PLS) となる。In the present embodiment configured as above, the balance of the force acting on the valve spool 23B in consideration of the flow force f is Pz · Az + f = Pd.Ad + F + PLS · ALS, which is the same as the above equation (1). Differential pressure Pz-PLS before and after control valve 5
Since Az = ALS + Ad, Pz-PLS = (F / Az)-(f / Az) + (Ad / Az) (Pd-PLS), which is the same as the equation (2).
従って、本実施例においても、LS差圧Pd−PLSに対す
る圧力補償弁8Bにより制御される流量制御弁5の前後差
圧Pz−PLSの特性は、第5図の実線Dで示すように正の
勾配を持つ特性となり、LS差圧に対する流量制御弁6の
通過流量Qの特性も、第6図に実線Eで示すように正の
勾配を持つ特性となる。従って、本実施例によっても第
1の実施例と同様の効果を得ることができる。Therefore, also in this embodiment, the characteristic of the differential pressure Pz-PLS before and after the flow control valve 5 controlled by the pressure compensating valve 8B with respect to the LS differential pressure Pd-PLS is positive as shown by the solid line D in FIG. A characteristic having a gradient, and a characteristic of the passing flow rate Q of the flow control valve 6 with respect to the LS differential pressure also has a characteristic having a positive gradient as shown by a solid line E in FIG. Therefore, according to this embodiment, the same effect as that of the first embodiment can be obtained.
産業上の利用可能性 本発明によれば、ポンプ圧力と負荷圧力との差圧(LS
差圧)に対する流量制御弁の通過流量の特性が正の勾配
を持つ特性、即ち、流量の増減に対応してLS差圧が増減
する特性となるので、フローフォースによりポンプ流量
が制御不能になることはなく、安定した流量制御を行う
ことができる。また、良好な応答性を確保でき、かつ構
成が比較的簡単なので、製作が容易である。Industrial Applicability According to the present invention, the pressure difference between the pump pressure and the load pressure (LS
Since the characteristic of the flow rate of the flow control valve with respect to the differential pressure) has a positive slope, that is, the characteristic that the LS differential pressure increases and decreases in response to the increase and decrease of the flow rate, the flow rate makes the pump flow rate uncontrollable. Therefore, stable flow control can be performed. In addition, since good responsiveness can be ensured and the configuration is relatively simple, manufacturing is easy.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−39807(JP,A) 特開 昭61−226495(JP,A) 特開 平1−312201(JP,A) (58)調査した分野(Int.Cl.6,DB名) F15B 11/00 F15B 11/05 E02F 9/22────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-58-39807 (JP, A) JP-A-61-226495 (JP, A) JP-A-1-321201 (JP, A) (58) Field (Int.Cl. 6 , DB name) F15B 11/00 F15B 11/05 E02F 9/22
Claims (13)
吐出された圧油によって駆動されるアクチュエータ
(2)と、前記油圧ポンプとアクチュエータとの間に配
置された流量制御弁(5)と、この流量制御弁の前後差
圧(Pz−PLS)を制御する圧力補償弁(8,8A,8B)と、前
記油圧ポンプから吐出される流量をそのポンプ圧力と前
記アクチュエータの負荷圧力との差圧(Pd−PLS)に応
じて制御するポンプ流量制御手段(9)とを備え、前記
圧力補償弁は、弁体(23,23A,23B)と、前記弁体に前記
流量制御弁の前後差圧に基づく第1の制御力を付与し、
これを閉弁方向に付勢する第1の制御手段(29,30;29A,
30A;29B,30B)と、前記弁体に所定の第2の制御力を付
与し、これを開弁方向に付勢する第2の制御手段(31;5
0,51)とを含む土木・建設機械の油圧駆動装置におい
て、 前記圧力補償弁(8,8A,8B)は、前記ポンプ圧力と前記
アクチュエータの負荷圧力との差圧(Pd−PLS)に基づ
き、当該差圧(Pd−PLS)が増加するに従って連続的に
増加する第3の制御力を前記弁体(23,23A,23B)に付与
し、これを開弁方向に付勢する第3の制御手段(32,35;
62)をさらに含むことを特徴とする土木・建設機械の油
圧駆動装置。1. A hydraulic pump (1), an actuator (2) driven by pressure oil discharged from the hydraulic pump, and a flow control valve (5) disposed between the hydraulic pump and the actuator. A pressure compensating valve (8, 8A, 8B) for controlling the pressure difference (Pz-PLS) of the flow control valve, and the flow rate discharged from the hydraulic pump is determined by the difference between the pump pressure and the load pressure of the actuator. And a pump flow control means (9) for controlling the pressure compensating valve according to the pressure (Pd-PLS). The pressure compensating valve comprises a valve element (23, 23A, 23B), Providing a first control force based on pressure;
The first control means (29, 30; 29A,
30A; 29B, 30B) and a second control means (31; 5) for applying a predetermined second control force to the valve body and urging the same in the valve opening direction.
0,51), the pressure compensating valves (8, 8A, 8B) are based on a differential pressure (Pd-PLS) between the pump pressure and the load pressure of the actuator. A third control force that continuously increases as the differential pressure (Pd-PLS) increases, is applied to the valve body (23, 23A, 23B), and a third control force is urged in the valve opening direction. Control means (32, 35;
62) A hydraulic drive system for civil engineering and construction machinery, further comprising:
装置において、前記第3の制御手段は、前記ポンプ圧力
(Pd)が導かれ、前記弁体(23,23A,23B)を開弁方向に
付勢する第1の受圧手段(35;62)を含むことを特徴と
する土木・建設機械の油圧駆動装置。2. The hydraulic drive device for civil engineering and construction machinery according to claim 1, wherein said third control means is adapted to open said valve element (23, 23A, 23B) by being guided by said pump pressure (Pd). A hydraulic drive device for a civil engineering / construction machine, comprising: a first pressure receiving means (35; 62) biasing in a valve direction.
装置において、前記第1の受圧手段(35)は、前記弁体
(23,23A)の内部に形成されていることを特徴とする土
木・建設機械の油圧駆動装置。3. The hydraulic drive system for civil engineering and construction machinery according to claim 2, wherein said first pressure receiving means (35) is formed inside said valve element (23, 23A). Hydraulic drive for civil engineering and construction machinery.
装置において、前記第1の受圧手段(62)は、前記弁体
(23B)の外部に形成されていることを特徴とする土木
・建設機械の油圧駆動装置。4. The hydraulic drive system for a civil engineering and construction machine according to claim 2, wherein said first pressure receiving means (62) is formed outside said valve element (23B).・ Hydraulic drive for construction machinery.
装置において、前記第1の制御手段は、前記流量制御弁
(5)の入口圧力(Pz)が導かれる第1の制御室(29;2
9A;29B)と、前記第1の制御室に配置され、前記弁体
(23,23A;23B)を閉弁方向に付勢する第1の受圧部(2
7;27A;27B)と、前記負荷圧力(PLS)が導かれる第2の
制御室(30;30A;30B)と、この第2の制御室に配置さ
れ、前記弁体を開弁方向に付勢する第2の受圧部(28;2
8A;28B)とを含み、前記第3の制御手段は、前記ポンプ
圧力(Pd)が作用し、前記弁体を開弁方向に付勢する第
3の受圧部(35;62)を含み、前記第2の受圧部の受圧
面積(ALS)と前記第3の受圧部の受圧面積(Ad)との
和が前記第1の受圧部の受圧面積(Az)にほぼ等しいこ
とを特徴とする土木・建設機械の油圧駆動装置。5. The hydraulic drive system for civil engineering and construction equipment according to claim 1, wherein said first control means includes a first control chamber (1) into which an inlet pressure (Pz) of said flow control valve (5) is introduced. 29; 2
9A; 29B) and a first pressure receiving portion (2) disposed in the first control chamber and for urging the valve element (23, 23A; 23B) in a valve closing direction.
7; 27A; 27B), a second control chamber (30; 30A; 30B) into which the load pressure (PLS) is led, and the second control chamber is disposed in the second control chamber. Second pressure receiving part (28; 2
8A; 28B), and the third control means includes a third pressure receiving portion (35; 62) to which the pump pressure (Pd) acts and urges the valve body in the valve opening direction. Civil engineering wherein the sum of the pressure receiving area (ALS) of the second pressure receiving section and the pressure receiving area (Ad) of the third pressure receiving section is substantially equal to the pressure receiving area (Az) of the first pressure receiving section.・ Hydraulic drive for construction machinery.
装置において、前記第3の制御手段は、前記弁体(23,2
3A)の内部に軸方向に形成され、一端が閉じられ、他端
が前記第2の受圧部(28;28A)に開口するシリンダ室
(32)と、前記シリンダ室に摺動可能に挿通され、前記
他端より前記弁体の外に突出するピストンロッド(33)
と、前記弁体に形成され、前記シリンダ室に前記ポンプ
圧力(Pd)を導く通路(34)とを含み、前記第3の受圧
部(35)は前記シリンダ室の閉じられた一端に形成され
ていることを特徴とする土木・建設機械の油圧駆動装
置。6. A hydraulic drive system for a civil engineering / construction machine according to claim 5, wherein said third control means includes a valve body (23, 2).
3A), a cylinder chamber (32) formed in the axial direction, one end of which is closed and the other end of which is open to the second pressure receiving portion (28; 28A), and is slidably inserted into the cylinder chamber. A piston rod protruding out of the valve body from the other end;
And a passage (34) formed in the valve body and guiding the pump pressure (Pd) to the cylinder chamber. The third pressure receiving portion (35) is formed at a closed end of the cylinder chamber. A hydraulic drive device for civil engineering and construction machinery.
装置において、前記弁体(23B)はその一端に大径部(6
0)を含み、かつその大径部の端面に前記第1の受圧部
(27B)が形成され、前記第3の制御手段は、前記大径
部の前記第1の受圧部と反対側(61)に形成された環状
の端面を含み、前記第3の受圧部(62)は前記環状の端
面に形成されていることを特徴とする土木・建設機械の
油圧駆動装置。7. A hydraulic drive system for civil engineering and construction machinery according to claim 5, wherein said valve element (23B) has a large diameter portion (6) at one end thereof.
0), and the first pressure-receiving portion (27B) is formed on the end face of the large-diameter portion, and the third control means controls the large-diameter portion on the side opposite to the first pressure-receiving portion (61B). ), Wherein the third pressure receiving portion (62) is formed on the annular end surface.
装置において、前記第2の制御手段はばね(31)である
ことを特徴とする土木・建設機械の油圧駆動装置。8. The hydraulic drive device for a civil engineering / construction machine according to claim 1, wherein said second control means is a spring (31).
装置において、前記第2の制御手段は前記第2の制御力
を油圧により生成する油圧手段(50,51)であることを
特徴とする土木・建設機械の油圧駆動装置。9. The hydraulic drive system for civil engineering and construction machinery according to claim 1, wherein said second control means is a hydraulic means (50, 51) for generating said second control force by hydraulic pressure. Hydraulic drive for civil engineering and construction machinery.
動装置において、前記油圧手段は、一定の油圧を発生さ
せる第1の油圧発生手段(56)と、前記一定の油圧が導
かれ、前記弁体(23A)を開弁方向に付勢する第2の受
圧手段(50)と、可変的な油圧を発生させる第2の油圧
発生手段(57,58)と、前記可変的な油圧が導かれ、前
記弁体を閉弁方向に付勢する第3の受圧手段(51)とを
含むことを特徴とする土木・建設機械の油圧駆動装置。10. A hydraulic drive system for a civil engineering / construction machine according to claim 9, wherein said hydraulic means is a first hydraulic pressure generating means (56) for generating a constant hydraulic pressure, and said constant hydraulic pressure is guided, A second pressure receiving means (50) for urging the valve element (23A) in a valve opening direction, a second oil pressure generating means (57, 58) for generating a variable oil pressure, and And a third pressure receiving means (51) for guiding and urging the valve body in a valve closing direction.
(2)との間に配置される流量制御弁(5)の前後差圧
を制御する圧力補償弁(8;8A;8B)であって、スプール
ボア(22;22A,22B)、前記油圧ポンプの接続される入口
凹所(24)及び前記流量制御弁に接続される出口凹所
(25)を有する弁ハウジング(21;21A;21B)と、前記ス
プールボアに摺動可能に配置され、前記入口凹所と出口
凹所間の連通を制御する弁スプール(23;24A;23B)と、
前記弁ハウジング内に形成され、前記流量制御弁の入口
圧力が導かれる第1の制御室(29;29A;29B)と、前記第
1の制御室に配置され、前記弁スプールを閉弁方向に付
勢する第1の受圧部(27;27A;27B)と、前記弁スプール
内に形成され、前記アクチュエータの負荷圧力が導かれ
る第2の制御室(30;30A;30B)と、前記第2の制御室に
配置され、前記弁スプールを開弁方向に付勢する第2の
受圧部(28;28A;28B)と、前記弁スプールを所定の制御
力で開弁方向に付勢し、補償差圧の目標値を設定する手
段(31;50,51)とを有する圧力補償弁において、 前記入口凹所(24)の圧力が導かれ、前記弁スプール
(23;23A;23B)を開弁方向に付勢する第3の受圧部(3
5;62)を含む制御手段をさらに有し、前記第2の受圧部
(28;28A;28B)の受圧面積(ALS)と前記第3の受圧部
(35;62)の受圧面積(Ad)との和が前記第1の受圧部
(27;27A;27B)の受圧面積(Az)にほぼ等しいことを特
徴とする圧力補償弁。11. A pressure compensating valve (8; 8A; 8B) for controlling a pressure difference between before and after a flow control valve (5) disposed between a hydraulic pump (1) and an actuator (2), comprising: A valve housing (21; 21A; 21B) having a bore (22; 22A, 22B), an inlet recess (24) connected to the hydraulic pump, and an outlet recess (25) connected to the flow control valve; A valve spool (23; 24A; 23B) slidably disposed in the spool bore and controlling communication between the inlet recess and the outlet recess;
A first control chamber (29; 29A; 29B) formed in the valve housing to guide the inlet pressure of the flow control valve; and a first control chamber disposed in the first control chamber, wherein the valve spool is moved in a valve closing direction. A first pressure receiving portion (27; 27A; 27B) for energizing, a second control chamber (30; 30A; 30B) formed in the valve spool, and to which a load pressure of the actuator is led; A second pressure receiving portion (28; 28A; 28B) for urging the valve spool in the valve opening direction, and urging the valve spool in a valve opening direction with a predetermined control force to compensate A pressure compensating valve having means (31; 50, 51) for setting a target value of the differential pressure, wherein the pressure in the inlet recess (24) is led to open the valve spool (23; 23A; 23B). Pressure receiving part (3
5; 62), the pressure receiving area (ALS) of the second pressure receiving section (28; 28A; 28B) and the pressure receiving area (Ad) of the third pressure receiving section (35; 62). The pressure compensation area is substantially equal to the pressure receiving area (Az) of the first pressure receiving portion (27; 27A; 27B).
記制御手段は、前記弁スプール(23,23A)の内部に軸方
向に形成され、一端が閉じられ、他端が前記第2の受圧
部(28;28A)に開口するシリンダ室と、前記シリンダ室
(32)に摺動可能に挿通され、前記他端より前記弁スプ
ールの外に突出するピストンロッド(33)と、前記弁ス
プールに形成され、前記シリンダ室に前記入口凹所の圧
力を導く通路(34)とを含み、前記第3の受圧部(35)
は前記シリンダ室の閉じられた一端に形成されているこ
とを特徴とする圧力補償弁。12. The pressure compensating valve according to claim 11, wherein said control means is formed in the valve spool (23, 23A) in an axial direction, one end of which is closed, and the other end of which is the second pressure receiving valve. A cylinder chamber opening to the portion (28; 28A); a piston rod (33) slidably inserted into the cylinder chamber (32) and projecting out of the valve spool from the other end; A passage (34) formed to guide the pressure of the inlet recess into the cylinder chamber, and the third pressure receiving portion (35)
The pressure compensating valve is formed at a closed end of the cylinder chamber.
記弁スプール(23B)はその一端に大径部(60)を含
み、かつその大径部の端面に前記第1の受圧部(27B)
が形成され、前記制御手段は、前記大径部の前記第1の
受圧部と反対側(61)に形成され、前記入口凹所に臨む
環状の端面を含み、前記第3の受圧部(62)は前記環状
の端面に形成されていることを特徴とする圧力補償弁。13. The pressure compensating valve according to claim 11, wherein said valve spool (23B) includes a large-diameter portion (60) at one end thereof, and said first pressure-receiving portion (27B) is provided at an end surface of said large-diameter portion. )
Is formed on the opposite side of the large-diameter portion from the first pressure receiving portion (61), and includes an annular end face facing the inlet recess, and the third pressure receiving portion (62 ) Is a pressure compensating valve formed on the annular end face.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2506697A JP2860158B2 (en) | 1989-05-02 | 1990-05-01 | Hydraulic drive for civil and construction machinery |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1-112207 | 1989-05-02 | ||
JP11220789 | 1989-05-02 | ||
JP2506697A JP2860158B2 (en) | 1989-05-02 | 1990-05-01 | Hydraulic drive for civil and construction machinery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2860158B2 true JP2860158B2 (en) | 1999-02-24 |
Family
ID=26451433
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2506697A Expired - Fee Related JP2860158B2 (en) | 1989-05-02 | 1990-05-01 | Hydraulic drive for civil and construction machinery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2860158B2 (en) |
-
1990
- 1990-05-01 JP JP2506697A patent/JP2860158B2/en not_active Expired - Fee Related
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6422009B1 (en) | Pump capacity control device and valve device | |
KR960006358B1 (en) | Hydraulic driving system and direction change-over valves | |
US5394697A (en) | Hydraulic drive system | |
KR930009914B1 (en) | Hydraulic driving device of construction equipment | |
JP5061107B2 (en) | Electrohydraulic throttle valve with integrated flow control | |
JP3194384B2 (en) | Hydraulic drive for civil and construction machinery | |
KR950001408B1 (en) | Hydraulic drive system for civil-engineering and construction machine | |
JPH1089304A (en) | Hydraulic driving device | |
EP0477370A1 (en) | Valve device and hydraulic driving device | |
Wu | Modeling and experimental evaluation of a load-sensing and pressure compensated hydraulic system | |
US6772590B2 (en) | Hydraulic driving device | |
JP3144914B2 (en) | Hydraulic control valve device | |
JP2860158B2 (en) | Hydraulic drive for civil and construction machinery | |
JP2634969B2 (en) | Hydraulic drive and unload valve for civil engineering and construction machinery | |
JP2771235B2 (en) | Hydraulic drive for civil and construction machinery | |
JP2889317B2 (en) | Pressure compensation valve | |
JP3162203B2 (en) | Valve device | |
JP2002005107A (en) | Hydraulic driving device | |
JP2819594B2 (en) | Hydraulic drive for civil and construction machinery | |
JP2986818B2 (en) | Hydraulic drive for civil and construction machinery | |
JPH09296803A (en) | Hydraulic driving device and proportioning pressure reducing valve for hydraulic driving device | |
JP2816024B2 (en) | Valve device and hydraulic drive device | |
JPH11316611A (en) | Pressure compensating valve | |
JP3281426B2 (en) | Hydraulic control device for construction machinery | |
JP2758469B2 (en) | Hydraulic drive |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081204 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091204 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |