JP2857220B2 - Rolling roller bearing - Google Patents

Rolling roller bearing

Info

Publication number
JP2857220B2
JP2857220B2 JP2106792A JP10679290A JP2857220B2 JP 2857220 B2 JP2857220 B2 JP 2857220B2 JP 2106792 A JP2106792 A JP 2106792A JP 10679290 A JP10679290 A JP 10679290A JP 2857220 B2 JP2857220 B2 JP 2857220B2
Authority
JP
Japan
Prior art keywords
roller
rotating body
intermediate rotating
axis
raceway
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2106792A
Other languages
Japanese (ja)
Other versions
JPH044312A (en
Inventor
信夫 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TEI ECHI KEE KK
Original Assignee
TEI ECHI KEE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TEI ECHI KEE KK filed Critical TEI ECHI KEE KK
Priority to JP2106792A priority Critical patent/JP2857220B2/en
Publication of JPH044312A publication Critical patent/JPH044312A/en
Application granted granted Critical
Publication of JP2857220B2 publication Critical patent/JP2857220B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/06Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface
    • F16D41/061Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by movement having an axial component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • F16C19/383Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • F16C19/385Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、一方向のみに回転するころがりころ軸受に
関する。
Description: TECHNICAL FIELD The present invention relates to a rolling roller bearing which rotates in only one direction.

従来の技術 ころがり軸受としては一般に円筒ころ軸受、円錐ころ
軸受及び自動調心ころ軸受がある。
2. Description of the Related Art Rolling bearings generally include cylindrical roller bearings, tapered roller bearings and self-aligning roller bearings.

円錐ころ軸受では、ころは内輪及び外輪に線状に接触
し、ラジアル荷重は全てその接触部に作用する垂直荷重
となる、 一方、円錐ころ軸受及び自動調心ころ軸受では、ラジ
アル荷重は傾斜面に直角に作用する垂直荷重と傾斜面方
向に平行な荷重とになるが、内外輪間の軸方向のずれを
防止するためスラスト荷重が加えられるので、この分力
が内外輪ところとの間に作用する接触面圧として加わ
る。更に内外輪ところとの接触面に作用する垂直荷重に
より小端側から大端側の方向へころを軌道から押し出す
力が働くため、大端側にころの飛び出しを防止する案内
鍔を設ける必要が生ずる。ところが円錐ころの大端面と
案内鍔との間ではすべり接触になるため、このすべり摩
擦によるPV値が円錐ころ軸受の荷重負荷能力にとって大
きな制限となる。
In tapered roller bearings, the rollers linearly contact the inner and outer rings, and all radial loads are vertical loads acting on the contact parts.On the other hand, in tapered roller bearings and spherical roller bearings, the radial loads are inclined. The vertical load and the load parallel to the direction of the inclined plane are applied at right angles to each other.However, a thrust load is applied to prevent axial displacement between the inner and outer rings. It acts as an acting contact surface pressure. In addition, a vertical load acting on the contact surface between the inner and outer rings causes a force to push the rollers out of the track from the small end to the large end, so it is necessary to provide a guide flange on the large end to prevent the rollers from jumping out. Occurs. However, since sliding contact occurs between the large end surface of the tapered roller and the guide flange, the PV value due to the sliding friction is a great limitation on the load-loading capacity of the tapered roller bearing.

発明が解決しようとする課題 ころがりころ軸受は正転、逆転の両方向に回転しこの
ような用途に用いられることが多いが、軸受が組み込ま
れる機械によっては一方向にのみ回転する場合も少なく
ない。
Problems to be Solved by the Invention Rolling roller bearings rotate in both forward and reverse directions and are often used for such applications. However, depending on the machine in which the bearing is incorporated, there are many cases where the bearing rotates only in one direction.

本発明はこのような用途に用いられるころがりころ軸
受であって、従来の円筒/円錐ころ軸受より負荷能力が
大きく、且つ円錐ころ軸受のようにころの大端部で大き
なすべり摩擦を伴わずころがり性能が向上され、更に高
効率で高回転にも適し焼付等の発生しないころがりころ
軸受を提供することを課題とする。
The present invention relates to a rolling roller bearing used in such an application, which has a larger load capacity than a conventional cylindrical / tapered roller bearing, and which does not cause a large sliding friction at a large end portion of the roller as in a tapered roller bearing. It is an object of the present invention to provide a rolling bearing having improved performance, high efficiency, suitable for high rotation, and free from seizure.

課題を解決するための手段 本発明は上記課題を解決するために、内輪と外輪と中
間回転体とを備えた構成体と、付勢手段とを有し、前記
内輪は、一軸線まわりの単葉回転双曲面をなす内側軌道
面を備え、前記外輪は前記一軸線まわりの単葉回転双曲
線をなし外側軌道面を備え、前記内側軌道面と前記外側
軌道面とは、相対向し、一端側から他端側に向かって半
径が大きくなる軌道を形成し、前記中間回転体は、ころ
がり面が円筒形状又は円錐形状であり、前記軌道におい
て該中間回転体の中心軸を前記軸線を含む断面から一定
角度傾斜して前記軌道の円周方向に複数個配設され、該
中間回転体の表面は前記内側軌道面と前記外側軌道面と
に線状に接触し、前記内輪又は外輪は、前記中間回転体
を前記内側軌道面に沿って前記一軸線方向において前記
軌道半径の小さい方向へ転がすような一定方向にのみ回
転し、前記内輪又は外輪が、前記一定方向に回転すると
きの前記中間回転体の前記軸線方向の動きを停止させる
環状部を備えていて、前記構成体を前記一軸線方向に相
対向して配設し、前記付勢手段は、前記一軸線方向に相
対向して配設される前記内輪間又は外輪間に設けられ、
該相対向する内輪同士又は外輪同士を前記軌道の間隔を
狭くする方向に付勢し、前記一軸線方向に相対向する内
輪同士又は外輪同士であって前記付勢手段によって付勢
されないものは、前記軸線方向には動かないように固定
されている、ことを特徴とする。
Means for Solving the Problems In order to solve the above problems, the present invention has a structure including an inner ring, an outer ring, and an intermediate rotating body, and a biasing means, and the inner ring is a single leaf around one axis. An inner raceway surface forming a hyperboloid of revolution; the outer race having an outer raceway surface forming a single-plane hyperboloid of rotation about the one axis; the inner raceway surface and the outer raceway surface being opposed to each other, and from one end to the other. A track whose radius increases toward the end side is formed, and the intermediate rotating body has a cylindrical surface or a conical rolling surface, and the central axis of the intermediate rotating body in the track is at a predetermined angle from a cross section including the axis. A plurality of the intermediate races are arranged in the circumferential direction of the raceway so as to be inclined, and the surface of the intermediate rotation body linearly contacts the inner raceway surface and the outer raceway surface, and the inner ring or the outer race is the intermediate rotation body. Along the inner raceway in the uniaxial direction An annular portion that rotates only in a certain direction such that it rolls in a direction in which the track radius is smaller, and stops the axial movement of the intermediate rotating body when the inner ring or the outer ring rotates in the certain direction. The structure is disposed so as to face the one axial direction, and the biasing means is provided between the inner ring or the outer ring which is provided so as to face the one axial direction,
The inner ring or the outer ring opposing each other is urged in a direction to reduce the interval of the track, and the inner ring or the outer ring opposing each other in the uniaxial direction, which are not urged by the urging means, It is fixed so as not to move in the axial direction.

作用 内側軌道面と外側軌道面とは共に単葉回転双曲面であ
るから、これらで形成される軌道は、その半径が一端側
から他端側に向かって大きくなる。そしてこの中で中間
回転体が軸線断面に対して傾斜して設けられるので、軸
受として用いられるときに内輪又は外輪が回転される
と、中間回転体は両軌道面に案内されて線接触を保ちつ
つその上を転がると共に、軸線方向にも進行しようとす
る。しかし内側軌道面と外側軌道面とでは軸線方向にお
いて中間回転体が進行しようとする方向が互いに反対方
向であるから、結果として内輪と外輪とは中間回転体を
介して互いに軸線方向において引き離される力を受け
る。
Action Since both the inner raceway surface and the outer raceway surface are single-leaf hyperboloids, the trajectory formed by them increases in radius from one end to the other end. And, in this, the intermediate rotating body is provided inclined with respect to the axial section, so that when the inner ring or the outer ring is rotated when used as a bearing, the intermediate rotating body is guided by both raceway surfaces to maintain line contact. While rolling over it, he tries to move in the axial direction. However, in the inner raceway surface and the outer raceway surface, the directions in which the intermediate rotating body tends to advance in the axial direction are opposite to each other, and as a result, the inner ring and the outer ring are separated from each other in the axial direction via the intermediate rotating body. Receive.

この場合内輪又は外輪は、中間回転体を内側軌道面上
で軌道半径の小さい方向へ進行させるような一定方向側
にのみ回転するから、前記引き離し力は内輪を軌道半径
の大きい方向へ動かし外輪を軌道半径の小さい方向へ動
かすような力となり、内外輪間には、常に軌道間隔を広
げようとする作用が生ずることになる。
In this case, since the inner ring or the outer ring rotates only in a fixed direction such that the intermediate rotating body advances on the inner raceway surface in the direction with the smaller track radius, the separating force moves the inner ring in the direction with the larger track radius to move the outer ring. The force acts to move the track in the direction of a smaller radius of the track, and an effect of always increasing the track interval is generated between the inner and outer wheels.

一方、内外輪と中間回転体とを含む構成体は軸線方向
に相対向して配設され、軸線方向に相対向する内輪同士
又は外輪同士の一組を軸線方向に固定し他の一組を付勢
手段により軌道間隔を狭くする方向に付勢するので、上
記引き離し力により半径方向に相対向する内輪と外輪と
が離れてしまうことがなく、内外輪は引き離し力を受け
つつ反対方向から付勢力を受けて中間回転体から浮上し
つつ回転する。
On the other hand, the components including the inner and outer races and the intermediate rotating body are disposed to face each other in the axial direction, and one set of inner races or outer races facing each other in the axial direction is fixed in the axial direction and the other set is formed. Since the biasing means urges the raceway in the direction of narrowing the track interval, the inner and outer wheels facing each other in the radial direction do not separate from each other due to the separating force, and the inner and outer wheels are pressed from the opposite direction while receiving the separating force. Under the influence, it rotates while floating from the intermediate rotating body.

このように内外輪が引き離し力を受ける反作用とし
て、中間回転体は内外輪から軸線方向に互いに反対方向
の力を受けることになる。そしてこの力に差があれば、
中間回転体は軸線方向に動くことになる。又中間回転体
が円錐形状である場合には、中間回転体は小端側から大
端側に押し出される力も受け、引き離し力とのバランス
により軸線方向の何れかの方向に動くことになる。内輪
又は外輪に設けられる環状部は、中間回転体はこのよう
な動きを所定位置で停止させ中間回転体の軌道からの抜
け出しを防止する作用をする。
As a reaction in which the inner and outer rings receive the separating force, the intermediate rotating body receives forces in the axial direction opposite to each other from the inner and outer rings. And if there is a difference in this force,
The intermediate rotator will move in the axial direction. When the intermediate rotator has a conical shape, the intermediate rotator also receives a force pushed from the small end to the large end, and moves in one of the axial directions depending on the balance with the separating force. The annular portion provided on the inner ring or the outer ring functions to stop the intermediate rotator from moving at a predetermined position and prevent the intermediate rotator from slipping off the track.

次ぎに中間回転体と内側及び外側軌道面との接触線上
で生ずる前記引き離し力は、それぞれの接触の状態によ
りその大きさが異なる。即ち中間回転体は、内側軌道面
とは凸部同士で接触するが外側軌道面とは凸部と凹部と
で接触することになるため、ラジアル荷重が加わったと
きに発生する接触面圧は、内側軌道面側が大きくなり従
って引き離し力は内側軌道面側が大きくなる。この結
果、中間回転体が円筒形状である場合には、この引き離
し力の差により中間回転体が軸線方向に進み環状部に当
たって停止し、この力の差が中間回転体と環状部との間
に接触面圧として作用することになる。しかしこの力の
差はそれ程大きくならないので、接触部の摩擦が問題に
なることはない。
Next, the magnitude of the separating force generated on the contact line between the intermediate rotating body and the inner and outer raceway surfaces differs depending on the state of each contact. That is, the intermediate rotating body contacts the inner raceway surface with the convex portions, but the outer raceway surface comes into contact with the convex portion and the concave portion, so that the contact surface pressure generated when a radial load is applied is: The inner raceway side becomes larger, and the separating force becomes larger on the inner raceway side. As a result, when the intermediate rotating body has a cylindrical shape, the difference in the separating force causes the intermediate rotating body to advance in the axial direction and hit the annular portion and stop, and this difference in force is generated between the intermediate rotating body and the annular portion. It will act as contact surface pressure. However, this difference in force is not so great that friction at the contact does not matter.

一方、中間回転体が円錐形状である場合には、前述の
如く中間回転体は接触部の圧力による押し出し力を受け
るが、引き離し力により接触圧力自体が軽減されること
及び引き離し力の差が押し出し力の反対方向に作用する
ので、中間回転体と環状部との間に大きな接触面圧が発
生するということはない。
On the other hand, when the intermediate rotating body has a conical shape, the intermediate rotating body receives the pushing force due to the pressure of the contact portion as described above, but the contact pressure itself is reduced by the separating force and the difference in the separating force is increased. Since it acts in the opposite direction to the force, no large contact surface pressure is generated between the intermediate rotating body and the annular portion.

実 施 例 第1図は本発明のころがりころ軸受の一例を示す断面
図、第2図はその一部分の斜視図で第3図はその中間回
転体部分の斜視図である。
FIG. 1 is a sectional view showing an example of a rolling roller bearing according to the present invention, FIG. 2 is a perspective view of a part thereof, and FIG. 3 is a perspective view of an intermediate rotating body part thereof.

まずこれらの図により本ころがりころ軸受の構造を説
明する。
First, the structure of the present rolling roller bearing will be described with reference to these drawings.

それぞれ内輪1、1′、外輪2、2′中間回転体とし
てのコロ3、3′等を含む構成体20、20′は、少なくと
も1組相対向して設けられ本軸受を構成する。構成体2
0、20′は同一構造のものであるから、片側の構成体20
について説明する。
At least one set of components 20, 20 'including the inner rings 1, 1' and the outer rings 2, 2 'including rollers 3, 3' as intermediate rotating members is provided so as to face each other to constitute the present bearing. Construct 2
Since 0 and 20 'have the same structure, the structure 20 on one side
Will be described.

内輪1は、例えばキー5により軸4上に取り付けら
れ、これに対向して設けられる外輪2との間で、内輪軌
道面1a及び外輪軌道面2aにより軌道8を形成している。
The inner race 1 is mounted on the shaft 4 by, for example, a key 5 and forms a raceway 8 with an inner raceway surface 1a and an outer raceway surface 2a between the inner race 1 and an outer race 2 provided opposite thereto.

中間回転体の一例であるコロ3は、円筒形状であり、
第3図に示す如く一軸線である内輪1の中心軸6を含む
断面に対して角度β、例えば15゜程度傾斜して軌道8内
に多数配設される。
The roller 3 as an example of the intermediate rotating body has a cylindrical shape,
As shown in FIG. 3, a large number are arranged in the track 8 at an angle β, for example, about 15 °, with respect to a cross section including the central axis 6 of the inner ring 1 which is one axis.

付勢手段としての予圧ばね7は、本実施例では相対向
して配設されている内輪1、1′間に設けられ、内輪
1、1′間に予圧力を与えている。この予圧力の方向は
軌道8の間隔を狭くする方向即ち内輪1、1′間を離す
方向である。
In this embodiment, a preload spring 7 as an urging means is provided between the inner rings 1, 1 'which are disposed opposite to each other, and applies a preload between the inner rings 1, 1'. The direction of the preload is a direction in which the interval between the tracks 8 is narrowed, that is, a direction in which the distance between the inner rings 1 and 1 'is increased.

又内輪1には、コロ3の軸方向の動きを停止させる環
状部として鍔9が設けられている。これは、内輪1が回
転しコロ3が自転して中心軸6方向にも進行するとき
に、その進行を停止させるためである。なお鍔9を外輪
2側に設けることも可能である。
Further, the inner ring 1 is provided with a collar 9 as an annular portion for stopping the movement of the roller 3 in the axial direction. This is to stop the advance when the inner ring 1 rotates and the roller 3 rotates and advances in the direction of the central axis 6. In addition, it is also possible to provide the collar 9 on the outer ring 2 side.

第3図において、コロ3は内輪1上に中心軸6を含む
断面から角度βだけ傾斜して配列され、各コロ間はリテ
イナー10によりそれぞれの位置を保持され、互いに接触
しないようにされている。このようにすると、互いに同
方向に自転する隣接したコロ同士が互いに反対方向の接
線速度をもって衝突することがなく、コロ3の自転、公
転が滑らかになる。
In FIG. 3, the rollers 3 are arranged on the inner ring 1 at an angle β from the cross section including the central axis 6, and the positions between the rollers are held by retainers 10 so as not to contact each other. . In this way, the adjacent rollers that rotate in the same direction do not collide with each other at tangential velocities in opposite directions, and the rotation and revolution of the roller 3 become smooth.

本実施例のころがりころ軸受では、軸4が常に一定方
向である第2図において右側から見て時計方向(矢印A
方向)に回転される。そして軸4が内輪1を同方向(A
方向)に回転させると、コロ3は内輪軌道面1aに線状に
接触しつつこれに案内されて、右側から見て反時計方向
(B方向)に回転しつつその上を下って行くと同時に、
図において左方向へ進む。
In the rolling roller bearing according to the present embodiment, the shaft 4 is always in a fixed direction.
Direction). The shaft 4 moves the inner ring 1 in the same direction (A
Direction, the roller 3 is guided in contact with the inner ring raceway surface 1a while linearly contacting the inner ring raceway surface 1a. ,
Go left in the figure.

一方、コロ3が図示のB方向に回転すれば、コロ3は
外側軌道面2aに対しても同様に線接触を保ちつつ回転す
ると共に図において右方向に進行しようとする。
On the other hand, if the roller 3 rotates in the B direction shown in the drawing, the roller 3 also rotates while maintaining line contact with the outer raceway surface 2a, and tries to move rightward in the figure.

第4図はこのようなコロ3の動きにより内外輪が受け
る力の関係を説明するための図である。
FIG. 4 is a diagram for explaining the relationship between the forces received by the inner and outer wheels due to the movement of the rollers 3.

コロ3と内外側軌道面1a、2aとは線接触をするが(実
際には一定の幅を持つ線状即ち面状に接触することな
る)、説明を簡単にするためにその一部である接触点
A、Bを考える。コロ3は中心軸6断面に対して角度β
傾けて配設されているため、その回転しようとする方向
Sは、中心軸6に直角の軌道断面の方向Tに対して角度
βの方向であるから、コロ3が回転されると内外輪はそ
れぞれ図示の如く、コロ3の公転方向の分力Ti、To及び
コロ3の軸方向の分力Ri、Roを受けることになる。
The roller 3 and the inner and outer raceway surfaces 1a and 2a make line contact (actually, they come into linear or planar contact with a fixed width), but they are part of it for simplicity of explanation. Consider contact points A and B. The roller 3 has an angle β with respect to the central axis 6 section.
As the roller 3 is rotated, the inner and outer races rotate when the roller 3 is rotated because the direction S of the rotation is inclined β with respect to the direction T of the track cross section perpendicular to the center axis 6. As shown in the drawing, the components 3 and To of the roller 3 in the revolving direction and the components Ri and Ro of the roller 3 in the axial direction are received.

この分力Ri、Roの発生により、内輪1及び外輪2は、
コロ3を介して中心軸6方向において互いに反対方向に
引き離される力を受け、本実施例では外輪2が固定され
ているため、内輪1が第1図及び第2図において右方向
即ち軌道9の間隔を広げる方向へ動くことになる。
Due to the generation of the component forces Ri and Ro, the inner ring 1 and the outer ring 2
In this embodiment, since the outer ring 2 is fixed by receiving forces that are pulled away from each other in the direction of the central axis 6 via the roller 3, the inner ring 1 is moved rightward in FIG. It will move in the direction to increase the interval.

内外輪に働くこのような力は、予圧ばね7の付勢力と
釣り合ってコロ3に対して内外輪を浮上させる効果を発
生させ、ころがり接触面圧を減少させると共に、過負荷
におけるスメアリングや噛り、焼入等の事故の発生を防
止する。
Such a force acting on the inner and outer rings balances the urging force of the preload spring 7 to generate an effect of lifting the inner and outer rings against the roller 3, thereby reducing the rolling contact surface pressure, smearing and meshing during overload. And prevent accidents such as quenching.

コロ3の内外輪に対する接触に関しては、第5図に示
す如く、コロ3と外輪2との接触がコロ3凸部と外輪軌
道面2aの凹部との接触になるのに対して、コロ3と内輪
軌道面1aとは凸部同士の接触になるので、内輪1側の最
大接触面圧Piが外輪2側の最大接触面圧Poより大きくな
る。従って、コロ3と内外輪との接触部においては、外
輪2側よりも内輪1側において局部的変形が大きくな
る。その結果、内外輪側に同じ垂直力Nが作用してコロ
3が回転するときに、コロ3が内輪1を動かす力Riは外
輪2を動かす力Roより大きくなる。
As for the contact of the roller 3 with the inner and outer rings, as shown in FIG. 5, the contact between the roller 3 and the outer ring 2 is the contact between the convex portion of the roller 3 and the concave portion of the outer ring raceway surface 2a. Since the convex portions come into contact with the inner ring raceway surface 1a, the maximum contact surface pressure Pi on the inner ring 1 side becomes larger than the maximum contact surface pressure Po on the outer ring 2 side. Therefore, at the contact portion between the roller 3 and the inner and outer rings, local deformation is larger on the inner ring 1 side than on the outer ring 2 side. As a result, when the same vertical force N acts on the inner and outer wheels, and the rollers 3 rotate, the force Ri for moving the inner wheels 1 by the rollers 3 becomes greater than the force Ro for moving the outer wheels 2.

このような分力Ri、Roの反作用として、コロ3は内外
輪からRi、Roと大きさが同じで反対方向の力−Ri、−Ro
を受けることになり、その結果コロ3は内輪軌道面1a側
で案内されて中心軸6方向において第1図及び第2図上
で左方向に進む。このようなコロ3の動きを停止させる
ために、前述した如く鍔9が設けられている。
As a reaction of such component forces Ri and Ro, the roller 3 has the same magnitude as Ri and Ro from the inner and outer rings, and the forces −Ri and −Ro in the opposite directions.
As a result, the roller 3 is guided on the inner ring raceway surface 1a side and advances leftward in the direction of the central axis 6 in FIGS. In order to stop such movement of the roller 3, the collar 9 is provided as described above.

この場合、鍔9とコロ3の端面との間はコロ3の自
転、公転の際にすべり接触をするが、この間の圧接力は
(Ri−Ro)であるため余り大きな値にならず、軸受にと
ってこのすべり摩擦が問題になることはない。
In this case, the sliding contact between the flange 9 and the end face of the roller 3 occurs at the time of rotation and revolution of the roller 3, but the pressure contact force during this period is (Ri-Ro) and does not become a very large value. This sliding friction is not a problem for us.

この結果本軸受においては、従来の円錐コロ軸受に見
られるような、高速回転における案内鍔のPV値オーバー
による焼付、潤滑不良に伴う各種事故の発生等の問題点
が解決される。更にすべり摩擦損失が小さいこと及び高
速回転が可能になることから、軸受の機械的損失が小さ
く軸受効率も大幅に向上する。
As a result, in the present bearing, problems such as seizure due to excess PV value of the guide flange at high speed rotation and occurrence of various accidents due to poor lubrication, which are seen in the conventional conical roller bearing, are solved. Furthermore, since the sliding friction loss is small and high-speed rotation is possible, the mechanical loss of the bearing is small and the bearing efficiency is greatly improved.

第6図は他の実施例を示す。 FIG. 6 shows another embodiment.

本実施例のころがりこの軸受では内輪1が軸方向に動
かないように軸4に固定され、外輪2が軸方向に可動に
なっていて、外輪2、2′の間に予圧ばね7が設けられ
ている。
In the rolling bearing of this embodiment, the inner ring 1 is fixed to the shaft 4 so as not to move in the axial direction, the outer ring 2 is movable in the axial direction, and a preload spring 7 is provided between the outer rings 2, 2 '. ing.

従って本軸受では、軸4が一方向側に回転されると、
コロ3、3′が回転し外輪2、2′を軌道間隔を広げる
方向である互いに接近する方向に進めて、内外輪1、
1′及び2、2′がコロ3、3′から浮上しその間の接
触面圧が軽減されることになる。その他本軸受の機構及
び機能は第1図に示すものと基本的に同じであるので、
詳細説明を省略する。
Therefore, in this bearing, when the shaft 4 is rotated in one direction,
The rollers 3, 3 'rotate to advance the outer races 2, 2' in a direction approaching each other, which is a direction for increasing the track interval, and the inner and outer races 1, 2 '
1 'and 2, 2' float from the rollers 3, 3 ', and the contact surface pressure therebetween is reduced. In addition, since the mechanism and functions of this bearing are basically the same as those shown in FIG.
Detailed description is omitted.

次にコロ3と内輪1及び外輪2とが線接触するために
必要となる内外輪軌道面1a、2aの形状について説明す
る。
Next, the shape of the inner and outer raceway surfaces 1a and 2a required for the roller 3 to make line contact with the inner race 1 and the outer race 2 will be described.

第7図乃至第9図は、これらの形状を求めるための説
明図であり、コロ3が円筒コロである場合を示す。
7 to 9 are explanatory diagrams for obtaining these shapes, and show a case where the roller 3 is a cylindrical roller.

先ず第7図は、X−Y−Z座標において、コロ3を、
その中心軸3aがY軸上原点Oから距離Fの位置でY軸を
通りX−Z平面に平行でX−Y平面に対して角度βだけ
傾斜させて置いた状態を示す斜視図である。この場合、
X軸は内外輪1、2の共通の中心軸6を示す。そして、
コロ3の断面3bはコロ3をX軸上任意の距離xの位置で
Y−Z平面に平行な面で切った断面を示し、点Uc、U′
cはそれぞれ、その面のコロ3の中心PcからX軸及びX
−Z平面に下ろした垂線のX軸及びX−Y平面への交点
である。この場合、原点OとU′cとを通る線3a′はコ
ロの中心軸3aをX−Z平面へ投影した線になり、X線と
は角度βをなす。本図から明らかなように ▲▼=x tanβ ▲▼=F であるから、X軸であり中心軸6からコロ3の中心Pcま
での距離を▲▼=ycとすると、 yc2=F2+(x tanβ) 従って yc2/F2−x2/(F/tanβ)=1 …(1) 式(1)は双曲線を示す式であるから、コロ3の軸
心、従って内外輪1、2で形成する軸道の中心線は中心
軸6に対して双曲線である。
First, FIG. 7 shows the roller 3 in the XYZ coordinates,
FIG. 9 is a perspective view showing a state where the center axis 3a is located at a distance F from the origin O on the Y axis, passes through the Y axis, is parallel to the XZ plane, and is inclined at an angle β with respect to the XY plane. in this case,
The X axis indicates a common central axis 6 of the inner and outer rings 1 and 2. And
The cross section 3b of the roller 3 is a cross section obtained by cutting the roller 3 at a position at an arbitrary distance x on the X axis and a plane parallel to the YZ plane, and points Uc and U '
c is the X-axis and X-axis, respectively, from the center Pc of the roller 3 on that surface.
-The intersection of the perpendicular drawn down on the Z plane with the X axis and the XY plane. In this case, a line 3a 'passing through the origin O and U'c is a line obtained by projecting the central axis 3a of the roller onto the XZ plane, and forms an angle β with the X-ray. As is clear from this figure, ▲ ▼ = x tanβ ▲ ▼ = F. Therefore, assuming that the distance from the center axis 6 to the center Pc of the roller 3 on the X axis is ▲ ▼ = yc, yc 2 = F 2 + (X tanβ) 2 Therefore, yc 2 / F 2 −x 2 / (F / tan β) 2 = 1 (1) Since the equation (1) is an equation showing a hyperbola, the axis of the roller 3, that is, the inner and outer rings 1 The center line of the axial path formed by 2 and 2 is hyperbolic with respect to the center axis 6.

第8図は、上記にように配置したコロ3に対して内外
輪1、2が接触する状態を説明するための図である。
FIG. 8 is a view for explaining a state in which the inner and outer races 1 and 2 come into contact with the rollers 3 arranged as described above.

前記のコロ3の中心点Pcを通り、コロ3の軸心3aに直
角な面とX軸との交点をQとする。このQ点を中心とし
てコロ3に内接及び外接する球Si及びSoを考えると(第
8図では外接する球Soを図示)、コロ3と球Si及びSoと
の接点Pi、Poは垂線▲▼上にあることになり、Pc
点からそれぞれコロ3の半径rだけ離れた位置になる。
従って、▲▼=Rとすれば、球Si、Soの半径はそ
れぞれR−r、R+rとなる。
Let Q be the intersection of the X axis with a plane passing through the center point Pc of the roller 3 and perpendicular to the axis 3a of the roller 3. Considering the spheres Si and So inscribing and circumscribing the roller 3 around the point Q (the sphere So circumscribing in FIG. 8), the contact points Pi and Po between the roller 3 and the spheres Si and So are perpendicular to ▼ It will be on top, Pc
The positions are separated from the point by the radius r of the roller 3.
Therefore, if ▼ = R, the radii of the spheres Si and So are R−r and R + r, respectively.

点Pi及びPoを通りY−Z面に平行な面とX軸との交点
をそれぞれUi及びUoとすると(第9図参照)、▲
▼及び▲▼はそれぞれ点Pi及び点PoからX軸
までの距離を示し、原点Oから距離▲▼及び▲
▼はそれぞれ点Pi及び点PoのX軸上の座標を示すこ
とになる。従って、▲▼=xi、▲▼=xo、
▲▼=yi、▲▼=yoとするとxiとyi及
びxoとyoの関係が式F(xi、yi)及びF(xo、yo)がそ
れぞれ内外輪の軌道面1a、2aの曲面形状を表す式とな
る。
Let Ui and Uo be the intersections between the plane passing through points Pi and Po and the plane parallel to the YZ plane and the X axis, respectively (see FIG. 9).
▼ and ▲ ▼ indicate the distance from the point Pi and the point Po to the X-axis, respectively, and the distance ▲ ▼ and ▲ from the origin O
▼ indicates the coordinates of the points Pi and Po on the X-axis, respectively. Therefore, ▲ ▼ = xi, ▲ ▼ = xo,
If ▲ ▼ = yi and ▲ ▼ = yo, the relationship between xi and yi and xo and yo is expressed by the formulas F (xi, yi) and F (xo, yo) representing the curved surface shapes of the raceway surfaces 1a and 2a of the inner and outer rings, respectively. It becomes an expression.

第9図はこの関係を求めるための関連部分の拡大図で
ある。
FIG. 9 is an enlarged view of a related portion for obtaining this relationship.

Rを示す▲▼は、軸3aに直角であり且つ点U′
cは点PcからX−Z面への垂線が同面と交わる点である
から、▲▼は軸3a′と直角をなす。従って ▲▼=(x/cosβ)/cosβ=x/cos2β R2=F2+{(x/cos2β)sinβ} =F2+x2tan2β/cos2β 次に∠QPcUc=φとすると、ΔQPcUcは直角三角形であ
るから、 となる。一方、▲▼=▲▼=rで且つ
ΔQPiUi及びΔQPoUoは共にΔQPcUcと相似形であるか
ら、 となる。そしてこれらの式から、関係式F(xi、yi)、
F(xo、yo)は、 となる。これらの式は、内外輪軌道面1a、2aの曲面形状
を表す式であるが、二次曲面以上の特性を示すことはで
きない。ここで(xi−x)と(yi−y)及び(xo−x)
と(yo−yc)のそれぞれの比率を求めると、式(2)乃
至(5)から、 となり、xとycとの関係は(1)式から双曲線であり、
且つ上式でtan2βは定数であるから、xiとyiとの関係及
びxoとyoとの関係は双曲線であり、従って内外輪軌道面
1a、2aは共通の中心軸6を中心とした単葉回転双曲面で
ある。
▼ indicating R is perpendicular to axis 3a and point U ′
Since c is the point at which the perpendicular from the point Pc to the XZ plane intersects the same plane, ▲ is perpendicular to the axis 3a '. Therefore, ▲ ▼ = (x / cosβ) / cosβ = x / cos 2 β R 2 = F 2 + {(x / cos 2 β) sin β} 2 = F 2 + x 2 tan 2 β / cos 2 β Then ∠QPcUc = Φ, ΔQPcUc is a right triangle, so Becomes On the other hand, since ▲ ▼ = ▲ ▼ = r and ΔQPiUi and ΔQPoUo are both similar to ΔQPcUc, Becomes Then, from these equations, the relational expression F (xi, yi),
F (xo, yo) is Becomes These formulas represent the curved surface shapes of the inner and outer raceway surfaces 1a and 2a, but cannot exhibit characteristics higher than quadratic curved surfaces. Where (xi-x), (yi-y) and (xo-x)
When the respective ratios of (yo-yc) and (yo-yc) are obtained, from equations (2) to (5), And the relationship between x and yc is hyperbolic from equation (1),
And, since tan 2 β is a constant in the above equation, the relationship between xi and yi and the relationship between xo and yo are hyperbolic, and therefore the inner and outer raceway surfaces
1a and 2a are single-leaf hyperboloids around a common central axis 6.

例えば内外輪軌道をそれぞれ双曲線の式 yi2/ai2−xi2/bi2=1 yo2/ao2−xo2/bo2=1 とおいて、F=9、r=1.5、β=15゜として実際に計
算すると、ai、bi、ao、boの値は、それぞれ約7.5、30.
7、10.5、36.2となり、内外輪軌道面は単葉回転双曲線
として与えられる。
For example, the inner and outer raceways are respectively hyperbolic formulas yi 2 / ai 2 −xi 2 / bi 2 = 1 yo 2 / ao 2 −xo 2 / bo 2 = 1, F = 9, r = 1.5, β = 15 ° When actually calculated as, the values of ai, bi, ao, bo are about 7.5 and 30, respectively.
7, 10.5, and 36.2, and the inner and outer raceway surfaces are given as a single leaf rotational hyperbola.

次ぎに中間回転体が円錐形状の場合について説明す
る。
Next, a case where the intermediate rotating body has a conical shape will be described.

第10図は第1図に対応する図であり、第10図のころが
りころ軸受は第1図のものに較べてコロ3、3′が円筒
形状ではなく円錐形状になっている点が異なるのみであ
る。
FIG. 10 is a view corresponding to FIG. 1, and the rolling roller bearing of FIG. 10 is different from that of FIG. 1 only in that the rollers 3, 3 ′ are not cylindrical but conical. It is.

円錐形状コロを用いると、転がり性能は更に向上され
る 一方、円錐ころ軸受では一般にころの大端側のすべり
摩擦が問題になるが、本発明のころがりころ軸受ではこ
の点が改良されている。
When the conical rollers are used, the rolling performance is further improved. On the other hand, in the case of the tapered roller bearing, sliding friction on the large end side of the roller generally becomes a problem. However, in the rolling roller bearing of the present invention, this point is improved.

第11図はこの点を説明するための図である。 FIG. 11 is a diagram for explaining this point.

前述の如くコロ3、3′は内外輪から軸方向分力−R
i、−Roを受け、且つRi>Roであるから、図示の如くコ
ロ3は軸心方向小端側へ動かそうとする分力(Ri′−R
o′)を受ける。又コロ3が円錐形状であることから、
図示の如く接触面に働く垂直力Nによりコロ3は小端側
から大端側へ押し出される軸方向分力uを受ける。
As described above, the rollers 3, 3 'are axially component-R from the inner and outer rings.
i, −Ro, and Ri> Ro, so that the roller 3 moves to the axially small end side (Ri′−R) as shown in the figure.
o '). Since the roller 3 has a conical shape,
As shown in the drawing, the roller 3 receives an axial component force u which is pushed from the small end side to the large end side by the normal force N acting on the contact surface.

このようにコロ3に作用する分力(Ri′−Ro′)とu
との大小によりコロ3は何れかの方向に動くことにな
り、その動く方向にその動きを停止するための環状部が
内輪1又は外輪2に設けられることになる。第10図の実
施例の軸受では(Ri′−Ro′)>uと仮定してコロ3の
小端側の内輪1上に鍔9を設けている。
Thus, the component force (Ri'-Ro ') acting on the roller 3 and u
The roller 3 moves in either direction depending on the magnitude of the above, and an annular portion for stopping the movement in the moving direction is provided on the inner ring 1 or the outer ring 2. In the bearing of the embodiment shown in FIG. 10, the collar 9 is provided on the inner ring 1 on the small end side of the roller 3 on the assumption that (Ri'-Ro ')> u.

このように本発明の円錐ころを用いた軸受によれば、
従来の円錐ころ軸受においてコロ3の大端側に作用して
いた引き抜き力uが大幅に低減され、コロ3の大端側又
は小端側には補助的な鍔を設けるだけでよく、すべり摩
擦によるPV値が荷重負荷能力の制限にはならないことに
なる。
Thus, according to the bearing using the tapered rollers of the present invention,
The pulling force u acting on the large end side of the roller 3 in the conventional tapered roller bearing is greatly reduced, and it is only necessary to provide an auxiliary flange on the large end side or the small end side of the roller 3, and the sliding friction is reduced. Will not limit the load carrying capacity.

円錐ころの場合の内外輪の軌道面の形状は、円錐ころ
の母線が傾斜した直線であるから、円筒ころの場合と同
様に単葉回転双曲面であり、これを円錐母線の傾斜分だ
け傾斜させた形状になる。
In the case of tapered rollers, the shape of the raceway surfaces of the inner and outer races is a straight line with a slanted generatrix of the tapered rollers. Shape.

なお第10図の軸受は第1図の軸受に対応する構造とし
ているが、これを第6図の軸受に対応する構造にしても
よい。
Although the bearing in FIG. 10 has a structure corresponding to the bearing in FIG. 1, it may have a structure corresponding to the bearing in FIG.

又以上の実施例では軸4が回転する場合について説明
したが、軸4及び内輪1が回転せずボス側(図示せず)
及び外輪2が回転する軸受としても使用できることは勿
論である。
In the above embodiment, the case where the shaft 4 rotates is described. However, the shaft 4 and the inner ring 1 do not rotate and the boss side (not shown) is used.
Of course, it can also be used as a bearing on which the outer ring 2 rotates.

更に以上では中間回転体を円筒形状又は円錐形状とし
たが、これを鼓形又は太鼓形にすることも可能である。
Further, in the above description, the intermediate rotating body has a cylindrical shape or a conical shape. However, the intermediate rotating body may be shaped like a drum or a drum.

コロの表面を楕円の一部分が外側の軸を中心として回
転した鼓形にする場合には、内輪を円筒形状とし外輪を
回転楕円面と回転双曲面とを合成した曲面で形成する。
又コロの表面を楕円の一部分がその中心軸を中心として
回転した太鼓形にする場合には、内輪を回転楕円面と回
転双曲面との合成曲面とし外輪を円筒形状にする。
When the surface of the roller is formed into a drum shape in which a part of an ellipse is rotated around an outer axis, the inner ring is formed in a cylindrical shape, and the outer ring is formed by a curved surface obtained by combining a spheroidal surface and a hyperboloid of revolution.
When the surface of the roller is formed into a drum shape in which a part of an ellipse is rotated about its central axis, the inner ring is a composite curved surface of a spheroid and a hyperboloid, and the outer ring is a cylindrical shape.

効果 以上の如く本発明によれば、軌道内で中間回転体を傾
斜させて配置し、内外輪を引き離しこれを中間回転体か
ら浮上させると共に中間回転体の軸線方向の動きを均一
化させることにより、軸受負荷能力及びころがり性能を
向上し大きなすべり摩擦を伴わず焼付、潤滑不良に伴う
各種事故の発生を防止することができると共に、高速回
転を容易にし軸受効率を向上させることができる。
Effects As described above, according to the present invention, by disposing the intermediate rotating body at an inclination in the track, separating the inner and outer races, floating the inner and outer rings from the intermediate rotating body, and making the axial movement of the intermediate rotating body uniform. In addition, it is possible to improve bearing load capacity and rolling performance, prevent the occurrence of various accidents due to seizure and poor lubrication without large sliding friction, and facilitate high-speed rotation and improve bearing efficiency.

【図面の簡単な説明】[Brief description of the drawings]

第1図は実施例のころがりころ軸受の断面図、第2図は
その主要部の斜視図、第3図はころの配列を示す斜視
図、第4図及び第5図は力の関係の説明図、第6図は他
の実施例を示す断面図、第7図乃至第9図は軌道形状を
求めるための説明図、第10図は更に他の実施例を示す断
面図、第11図はころに作用する力の説明図である。 1、1′……内輪 1a、1a′……内輪軌道面(内側軌道面) 2、2′……外輪 2a、2a′……外輪軌道面(外側軌道面) 3、3′……コロ(中間回転体) 6……中心軸(1軸線) 7……予圧ばね(付勢手段) 8、8′……軌道(環状部) 9、9′……鍔(環状部) 20、20′……構成体
FIG. 1 is a cross-sectional view of a rolling roller bearing according to an embodiment, FIG. 2 is a perspective view of a main part thereof, FIG. 3 is a perspective view showing an arrangement of rollers, and FIGS. Fig. 6, Fig. 6 is a cross-sectional view showing another embodiment, Figs. 7 to 9 are explanatory views for obtaining a track shape, Fig. 10 is a cross-sectional view showing still another embodiment, Fig. 11 is It is explanatory drawing of the force which acts on a roller. 1, 1 '... inner ring 1a, 1a' ... inner ring raceway surface (inner raceway surface) 2, 2 '... outer ring 2a, 2a' ... outer ring raceway surface (outer raceway surface) 3, 3 '... roller ( Intermediate rotating body) 6 Central axis (1 axis) 7 Preload spring (biasing means) 8, 8 'Track (annular section) 9, 9' ... Flange (annular section) 20, 20 ' … Constitution

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内輪と外輪と中間回転体とを備えた構成体
と、付勢手段とを有し、 前記内輪は、一軸線まわりの単葉回転双曲面をなす内側
軌道面を備え、 前記外輪は、前記一軸線まわりの単葉回転双曲線をなす
外側軌道面を備え、 前記内側軌道面と前記外側軌道面とは、相対向し、一端
側から他端側に向かって半径が大きくなる軌道を形成
し、 前記中間回転体は、ころがり面が円筒形状又は円錐形状
であり、前記軌道において該中間回転体の中心軸を前記
軸線を含む断面から一定角度傾斜して前記軌道の円周方
向に複数個配設され、該中間回転体の表面は前記内側軌
道面と前記外側軌道面とに線状に接触し、 前記内輪又は外輪は、前記中間回転体を前記内側軌道面
に沿って前記一軸線方向において前記軌道半径の小さい
方向へ転がすような一定方向にのみ回転し、 前記内輪又は外輪は、前記一定方向に回転するときの前
記中間回転体の前記軸線方向の動きを停停止させる環状
部を備えていて、 前記構成体を前記一軸線方向に相対向して配設し、 前記付勢手段は、前記一軸線方向に相対向して配設され
る前記内輪間又は外輪間に設けられ、該相対向する内輪
同士又は外輪同士を前記軌道の間隔を狭くする方向に付
勢し、 前記一軸線方向に相対向する内輪同士又は外輪同士であ
って前記付勢手段によって付勢されないものは、前記軸
線方向には動かないように固定されている、 ことを特徴とするころがりころ軸受。
An inner race having an inner raceway that forms a single-plane hyperboloid of revolution around a single axis; and a biasing means, the inner race having an inner raceway. Has an outer raceway surface that forms a single-plane rotational hyperbola around the one axis, and the inner raceway surface and the outer raceway surface are opposed to each other and form a trajectory whose radius increases from one end to the other end. The intermediate rotating body has a cylindrical surface or a conical rolling surface, and the center axis of the intermediate rotating body is inclined at a predetermined angle from a cross section including the axis in the track, and a plurality of the rotating shafts extend in a circumferential direction of the track. The surface of the intermediate rotating body is linearly contacted with the inner raceway surface and the outer raceway surface, and the inner ring or the outer ring moves the intermediate rotating body along the inner raceway surface in the uniaxial direction. Rolling in the direction where the orbital radius is smaller at The inner ring or the outer ring rotates only in a fixed direction, and the inner ring or the outer ring includes an annular portion that stops and stops the movement of the intermediate rotating body in the axial direction when rotating in the fixed direction. The urging means is provided between the inner races or the outer races arranged opposite to each other in the one axial direction, and the inner races or the outer races facing each other are arranged on the raceway. The inner ring or the outer rings which are opposed to each other in the one axial direction and are not biased by the biasing means are fixed so as not to move in the axial direction. Rolling roller bearings.
JP2106792A 1990-04-23 1990-04-23 Rolling roller bearing Expired - Lifetime JP2857220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2106792A JP2857220B2 (en) 1990-04-23 1990-04-23 Rolling roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2106792A JP2857220B2 (en) 1990-04-23 1990-04-23 Rolling roller bearing

Publications (2)

Publication Number Publication Date
JPH044312A JPH044312A (en) 1992-01-08
JP2857220B2 true JP2857220B2 (en) 1999-02-17

Family

ID=14442746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2106792A Expired - Lifetime JP2857220B2 (en) 1990-04-23 1990-04-23 Rolling roller bearing

Country Status (1)

Country Link
JP (1) JP2857220B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4147860B2 (en) * 2002-08-05 2008-09-10 日本精工株式会社 Roller screw device
CN102537025B (en) * 2010-12-30 2016-04-13 洪涛 Space wedging type stepless positioning hinge
WO2016072963A1 (en) 2014-11-03 2016-05-12 Koyo Bearings North America Llc Roller bearing assembly

Also Published As

Publication number Publication date
JPH044312A (en) 1992-01-08

Similar Documents

Publication Publication Date Title
US5035309A (en) Rolling-contact bearing type clutch
US4394091A (en) Air bearing and antifriction bearing assembly
GB1568579A (en) Taper roller bearings
JPS5926809B2 (en) roller bearing
KR960011632B1 (en) Roller bearing clutch
GB2057593A (en) Cylinder roller bearing
WO1993003287A1 (en) Ball-and-roller bearing
US4120542A (en) Cageless thrust bearing with unguided rollers
US3302986A (en) Double row anti-friction bearing
US3020106A (en) Bearings having balls with restrained spin axes
US4215906A (en) Zero slip four-point contact thrust bearing
JP2857220B2 (en) Rolling roller bearing
JP2021503587A (en) Rotating bearing
US4795279A (en) Rolling ball separator
JPS6133298Y2 (en)
US3805932A (en) Unidirectional bearing
US20210102576A1 (en) Self-aligning roller bearing
US5474388A (en) Multi-row spherical roller bearing having cages
US3969005A (en) Rolling contact devices
Harris et al. An analytical investigation of cylindrical roller bearings having annular rollers
CA2093648A1 (en) Antifriction roller bearing
EP1022476A1 (en) Rolling bearing
US6435325B1 (en) Segmented locking retainer for one-way clutch bearings
Ricci Ball bearings subjected to a variable eccentric thrust load
US3639018A (en) Tapered roller bearing assembly

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071127

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081127

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091127

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091127

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101127

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101127

Year of fee payment: 12