JP2856120B2 - Differential amplifier circuit - Google Patents

Differential amplifier circuit

Info

Publication number
JP2856120B2
JP2856120B2 JP24693095A JP24693095A JP2856120B2 JP 2856120 B2 JP2856120 B2 JP 2856120B2 JP 24693095 A JP24693095 A JP 24693095A JP 24693095 A JP24693095 A JP 24693095A JP 2856120 B2 JP2856120 B2 JP 2856120B2
Authority
JP
Japan
Prior art keywords
differential amplifier
transistor
emitter
transistors
bias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24693095A
Other languages
Japanese (ja)
Other versions
JPH0969738A (en
Inventor
洋 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP24693095A priority Critical patent/JP2856120B2/en
Publication of JPH0969738A publication Critical patent/JPH0969738A/en
Application granted granted Critical
Publication of JP2856120B2 publication Critical patent/JP2856120B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Amplifiers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は4相の位相信号を発
生するための対をなす差動増幅器で構成される差動増幅
回路に関し、特に各差動増幅器間での位相差を補正する
ことが可能な差動増幅回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a differential amplifier circuit comprising a pair of differential amplifiers for generating four-phase signals, and more particularly to correcting a phase difference between respective differential amplifiers. The present invention relates to a differential amplifier circuit capable of performing the following.

【0002】[0002]

【従来の技術】従来のこの種の差動増幅回路の一例を図
5に示す。第1差動増幅器1と第2差動増幅器2とを有
しており、各差動増幅器1,2は共通の入力バイアス回
路3に接続され、共通の入力信号端INと共通の基準信
号端RSに接続され、電源Eに接続される。この差動増
幅回路では、各差動増幅器1,2からは互いに180度
位相が異なる出力信号が出力される。すなわち、第1の
差動増幅器1は、エミッタ抵抗帰還型差動増幅器として
構成され、トランジスタQ11,Q12と、抵抗R1
1,R12と、定電流源I11,I12と、両エミッタ
間に接続される抵抗R13とで構成される。また、第2
の差動増幅器2は、エミッタ容量帰還型差動増幅器とし
て構成され、トランジスタQ21,Q22と、抵抗R2
1,R22と、定電流源I21,I22と、両エミッタ
間に接続される容量C21とで構成される。また、入力
バイアス回路3は、定電流源I31と抵抗R31,R3
2,R33で構成される。
2. Description of the Related Art FIG. 5 shows an example of a conventional differential amplifier circuit of this kind. It has a first differential amplifier 1 and a second differential amplifier 2. Each of the differential amplifiers 1 and 2 is connected to a common input bias circuit 3, and has a common input signal terminal IN and a common reference signal terminal. It is connected to RS and to power supply E. In this differential amplifier circuit, output signals having phases different from each other by 180 degrees are output from the differential amplifiers 1 and 2. That is, the first differential amplifier 1 is configured as an emitter resistance feedback differential amplifier, and includes the transistors Q11 and Q12 and the resistor R1.
1, R12, constant current sources I11 and I12, and a resistor R13 connected between both emitters. Also, the second
Is configured as an emitter capacitance feedback type differential amplifier, and includes transistors Q21 and Q22 and a resistor R2.
1, R22, constant current sources I21 and I22, and a capacitor C21 connected between both emitters. The input bias circuit 3 includes a constant current source I31 and resistors R31 and R3.
2, R33.

【0003】この差動増幅回路では、第1差動増幅器1
と第2差動増幅器2は、抵抗R13と容量C21以外は
全て同じであるので、それぞれの出力OUT11,12
とOUT21,22は抵抗R13と容量C21で生じる
位相差分の90度の位相差をもっている。即ち、第1差
動増幅器1の出力OUT11,12を180°,0°と
すると、第2差動増幅器2の出力OUT21,22は9
0°,270°となる。このとき、位相差が90度とな
る入力周波数は、抵抗R13と容量C21の時定数で決
定される。
In this differential amplifier circuit, the first differential amplifier 1
And the second differential amplifier 2 are all the same except for the resistance R13 and the capacitance C21, so that the respective outputs OUT11, OUT12
And OUT21 and OUT22 have a phase difference of 90 degrees of the phase difference generated by the resistor R13 and the capacitor C21. That is, when the outputs OUT11 and OUT12 of the first differential amplifier 1 are set to 180 ° and 0 °, the outputs OUT21 and OUT22 of the second differential amplifier 2 become 9 °.
0 ° and 270 °. At this time, the input frequency at which the phase difference becomes 90 degrees is determined by the time constant of the resistor R13 and the capacitor C21.

【0004】[0004]

【発明が解決しようとする課題】このような従来の差動
増幅回路では、抵抗R13と容量C21で決まる時定数
で両差動増幅器1,2の出力の位相差(90°)が決定
されるため、抵抗R13の抵抗値や容量C21の容量値
に製造上の誤差が生じたような場合には、その時定数が
変化され、90°以外の位相差となり、それぞれ90°
の位相が異なる4相の位相信号を出力することができな
くなるという問題がある。
In such a conventional differential amplifier circuit, the phase difference (90 °) between the outputs of the differential amplifiers 1 and 2 is determined by the time constant determined by the resistor R13 and the capacitor C21. Therefore, when a manufacturing error occurs in the resistance value of the resistor R13 or the capacitance value of the capacitor C21, the time constant is changed to a phase difference other than 90 °, and the phase difference becomes 90 °.
However, there is a problem that four phase signals having different phases cannot be output.

【0005】このため、従来では位相を補正するための
技術が提案されている。例えば、特開平3−26014
号公報や特開昭61−232709号公報では、差動増
幅器に設けられる容量C21の代わりに可変容量素子
(接合容量)を接続し、かつこの可変容量素子に加える
バイアスを調整してその容量を可変とすることで、その
時定数を変化させ、結果として位相調整を行う技術が記
載されている。したがって、この技術を図5の容量C2
1の代わりに用いれば、位相調整は可能である。
For this reason, a technique for correcting the phase has been conventionally proposed. For example, JP-A-3-26014
In Japanese Unexamined Patent Publication (Kokai) No. 61-232709, a variable capacitance element (junction capacitance) is connected in place of the capacitance C21 provided in the differential amplifier, and a bias applied to the variable capacitance element is adjusted to reduce the capacitance. A technique is described in which the time constant is changed by making it variable, and the phase is adjusted as a result. Therefore, this technique is applied to the capacitor C2 shown in FIG.
If used instead of 1, phase adjustment is possible.

【0006】これら公報に記載の技術では、可変容量素
子のバイアスは外部からの制御によって行っており、か
つこの制御をどのようにして行うのかについて触れられ
ていないため、結局は人手による制御を行うことにな
る。しかしながら、可変容量素子の容量感度は、通常バ
イアス電圧に対して敏感であり、極めて僅かなバイアス
電圧の変化で容量値が大きく変化されてしまうため、人
手による調整は現実的には極めて難しく、公報記載の技
術をこの種の差動増幅回路に適用することは不可能に近
いものとなっている。本発明の目的は、位相調整を自動
的に行うことを可能とし、何らの調整作業を行うことな
く常に位相補正が確保される差動増幅回路を提供するこ
とにある。
In the techniques described in these publications, the bias of the variable capacitance element is controlled by an external control, and there is no mention of how to perform the control. Will be. However, the capacitance sensitivity of the variable capacitance element is usually sensitive to the bias voltage, and the capacitance value is greatly changed by a very slight change in the bias voltage. It is almost impossible to apply the described technique to this type of differential amplifier circuit. SUMMARY OF THE INVENTION An object of the present invention is to provide a differential amplifier circuit capable of automatically performing phase adjustment and always ensuring phase correction without performing any adjustment work.

【0007】[0007]

【課題を解決するための手段】本発明の差動増幅回路
は、エミッタ抵抗帰還型の第1の差動増幅器と、エミッ
タ容量帰還型の第2の差動増幅器とを有し、各差動増幅
器の入力バイアス回路と入力信号を共通として各差動増
幅器から所要の位相差の信号を出力するように構成さ
れ、かつ第2の差動増幅器の容量は互いに逆方向に接続
した一対の可変容量素子で構成され、第1の差動増幅器
のエミッタ抵抗と同じ特性の抵抗で分圧された電圧を前
記可変容量素子の接続端にバイアス電圧として供給する
ように構成した構成とされる。
SUMMARY OF THE INVENTION A differential amplifier circuit according to the present invention has a first differential amplifier of an emitter resistance feedback type and a second differential amplifier of an emitter capacitance feedback type. An input bias circuit of the amplifier and an input signal are commonly used to output a signal having a required phase difference from each differential amplifier, and the second differential amplifier has a pair of variable capacitors connected in opposite directions. And a voltage divided by a resistor having the same characteristic as the emitter resistance of the first differential amplifier is supplied to a connection terminal of the variable capacitance element as a bias voltage.

【0008】[0008]

【発明の実施の形態】次に、本発明の実施形態を図面を
参照して説明する。図1は本発明の第1の実施形態の回
路図である。第1差動増幅器1と、第2差動増幅器2
と、共通の入力バイアス回路3と、第2差動増幅器2に
設けられる後述する接合容量のバイアス調整を行う接合
容量バイアス回路4とで構成されて電源Eに接続され、
4相の位相差信号を出力する差動増幅回路として構成さ
れている。前記第1差動増幅器1の構成は図5に示した
従来構成と同じであり、トランジスタQ11,Q12
と、抵抗R11,R12と、定電流源I11,I12
と、エミッタ間に接続した抵抗R13とで構成される。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram of a first embodiment of the present invention. A first differential amplifier 1 and a second differential amplifier 2
And a common input bias circuit 3 and a junction capacitance bias circuit 4 provided in the second differential amplifier 2 for adjusting a junction capacitance, which will be described later, and connected to the power supply E.
It is configured as a differential amplifier circuit that outputs four-phase difference signals. The configuration of the first differential amplifier 1 is the same as the conventional configuration shown in FIG.
, Resistors R11 and R12, and constant current sources I11 and I12
And a resistor R13 connected between the emitters.

【0009】また、第2差動増幅器2も従来と同様の構
成であり、トランジスタQ21,Q22と、抵抗R2
1,R22と、定電流源I21,I22を備えている
が、エミッタ間に接続される容量として可変容量素子、
ここでは接合容量Cxを用いている。この接合容量Cx
は、一対のトランジスタQ23,24のベースを共通と
し、各コレクタをトランジスタQ21,22の各エミッ
タに接続し、エミッタはオープンにした構成とされてい
る。そして、前記共通接続したベースには前記接合容量
バイアス回路4からバイアスが供給されるようになって
いる。
The second differential amplifier 2 has the same configuration as the conventional one, and includes transistors Q21 and Q22 and a resistor R2.
1 and R22, and constant current sources I21 and I22.
Here, the junction capacitance Cx is used. This junction capacitance Cx
Is configured such that the bases of a pair of transistors Q23 and Q24 are common, the respective collectors are connected to the respective emitters of the transistors Q21 and Q22, and the emitters are open. A bias is supplied from the junction capacitance bias circuit 4 to the commonly connected bases.

【0010】入力バイアス回路3は、従来構成と同様に
定電流源I31と抵抗R31,R32,R33とで構成
される。また、接合容量バイアス回路4は、トランジス
タQ41,Q42と、定電流源I41と、抵抗R42と
で構成される。特に、トランジスタQ41はコレクタを
電源Eに接続し、エミッタを前記第2差動増幅器2の接
合容量Cxを構成するトランジスタ対Q23,Q24の
共通接続ベースに接続される。また、ベースは抵抗R4
1を介して各差動増幅器1,2の共通の入力信号端IN
に接続され、また同時にトランジスタQ42のコレクタ
が接続される。このトランジスタQ42はベースが接地
され、エミッタがオープンとされている。ここで、前記
抵抗R41は、第1差動増幅器1のトランジスタQ1
1,Q12のエミッタ間に接続された抵抗R13と同一
規格のものが用いられる。即ち、本実施形態の差動増幅
回路が集積回路として形成される場合には、各抵抗とし
て同一半導体基板上に同一プロセスで形成される抵抗が
利用される。
The input bias circuit 3 comprises a constant current source I31 and resistors R31, R32, and R33 as in the conventional configuration. The junction capacitance bias circuit 4 includes transistors Q41 and Q42, a constant current source I41, and a resistor R42. In particular, the transistor Q41 has a collector connected to the power supply E and an emitter connected to a common connection base of the transistor pair Q23 and Q24 forming the junction capacitance Cx of the second differential amplifier 2. The base is a resistor R4
1, a common input signal terminal IN of each of the differential amplifiers 1 and 2
And the collector of the transistor Q42 is connected at the same time. The transistor Q42 has a base grounded and an emitter open. Here, the resistor R41 is connected to the transistor Q1 of the first differential amplifier 1.
A resistor having the same standard as the resistor R13 connected between the emitters of the transistors Q1 and Q12 is used. That is, when the differential amplifier circuit of the present embodiment is formed as an integrated circuit, resistors formed by the same process on the same semiconductor substrate are used as the resistors.

【0011】この回路構成によれば、第1差動増幅器1
と第2差動増幅器2の各出力OUT11,12とOUT
21,22は抵抗R13と接合容量Cxで生じる位相差
分の位相差が生じていることはこれまでと同じある。そ
して、これら抵抗R13と接合容量Cxの時定数によっ
て生じる位相差が90°の場合には、第1差動増幅器1
の出力OUT11,12を180°,0°とすると、第
2差動増幅器2の出力OUT21,22は90°,27
0°となる。そして、抵抗R13の抵抗値に製造上の誤
差が生じたときには、その時定数が変化され、90°以
外の位相差となり、それぞれ90°の位相が異なる4相
の位相信号を出力することができなくなるおそれがあ
る。
According to this circuit configuration, the first differential amplifier 1
And each output OUT11,12 of the second differential amplifier 2 and OUT
21 and 22 are the same as before in that a phase difference of the phase difference generated by the resistor R13 and the junction capacitance Cx occurs. When the phase difference caused by the time constant of the resistor R13 and the junction capacitance Cx is 90 °, the first differential amplifier 1
Are set to 180 ° and 0 °, the outputs OUT21 and OUT22 of the second differential amplifier 2 are 90 ° and 27 °, respectively.
0 °. When a manufacturing error occurs in the resistance value of the resistor R13, the time constant is changed, resulting in a phase difference other than 90 °, and it becomes impossible to output four phase signals having phases different from each other by 90 °. There is a risk.

【0012】しかながら、ここでは抵抗R13の抵抗値
に誤差が生じると、接合容量バイアス回路4の同じ規格
の抵抗R41の抵抗値にも殆ど同じ誤差が生じることに
なる。ここで、接合容量バイアス回路4では、図2に示
すように、トランジスタQ41の直流増幅率をhFEと
すると、トランジスタQ41のベース電位VBは、
(1)式で、エミッタ電圧VAは(2)式でそれぞれ表
される。 VB=Vcc−R31(I1+I2/hFE)−(R33+R41)I2/hFE (1) Q41のベース・エミッタ間の電圧をVBEとする。 VA=Vcc−R31(I1+I2/hFE)−(R33+R41)I2/hFE−VBE (2) このエミッタ電圧VAが接合容量CXのバイアス電圧と
なる。
However, when an error occurs in the resistance value of the resistor R13, almost the same error occurs in the resistance value of the resistor R41 of the same standard of the junction capacitance bias circuit 4. Here, in the junction capacitance bias circuit 4, as shown in FIG. 2, assuming that the DC amplification factor of the transistor Q41 is hFE, the base potential VB of the transistor Q41 is
In equation (1), the emitter voltage VA is represented by equation (2). VB = Vcc-R31 (I1 + I2 / hFE)-(R33 + R41) I2 / hFE (1) The voltage between the base and the emitter of Q41 is VBE. VA = Vcc-R31 (I1 + I2 / hFE)-(R33 + R41) I2 / hFE-VBE (2) This emitter voltage VA becomes the bias voltage of the junction capacitance CX.

【0013】したがって、今、抵抗R13の抵抗値が大
きい方に誤差が生じた場合には、抵抗R41の抵抗値も
同様に大きくなるため、(1),(2)式から、エミッ
タ電圧VAは低下され、接合容量Cxのバイアス電圧が
低下される。接合容量を構成するトランジスタQ23,
Q24はコレクタ電位が固定であるため、バイアス電圧
が低下されると、接合容量の逆バイアスは増加される。
Therefore, if an error occurs in the direction where the resistance value of the resistor R13 is larger, the resistance value of the resistor R41 also becomes larger. Therefore, according to the equations (1) and (2), the emitter voltage VA becomes And the bias voltage of the junction capacitance Cx is reduced. A transistor Q23 forming a junction capacitance,
Since the collector potential of Q24 is fixed, when the bias voltage is lowered, the reverse bias of the junction capacitance is increased.

【0014】一方、接合容量Cxは図3に示すように、
逆バイアス電圧に対して負性特性であるので、逆バイア
ス電圧が増加されると容量値は低下される。したがっ
て、第1差動増幅器1の抵抗R13の抵抗値の低下に伴
って、第2差動増幅器2の接合容量Cxも低下されるた
め、接合容量Cxの逆バイアス電圧に対する容量変化特
性を適切に設定しておけば、抵抗R13と接合容量Cx
とで構成される時定数は一定に保たれることになる。す
なわち、抵抗の誤差にもかかわらず位相差を常に一定に
保つことができ、位相の自動補正が実現されることにな
る。
On the other hand, the junction capacitance Cx is, as shown in FIG.
Since the characteristics are negative with respect to the reverse bias voltage, the capacitance value decreases as the reverse bias voltage increases. Accordingly, as the resistance value of the resistor R13 of the first differential amplifier 1 decreases, the junction capacitance Cx of the second differential amplifier 2 also decreases, so that the capacitance change characteristics of the junction capacitance Cx with respect to the reverse bias voltage can be appropriately adjusted. If set, the resistance R13 and the junction capacitance Cx
Will be kept constant. That is, the phase difference can always be kept constant irrespective of the error of the resistance, and the automatic correction of the phase is realized.

【0015】図4は本発明の第2の実施形態の回路図で
ある。ここでは第1の実施形態の回路に、乗算型位相比
較器5と、接合容量バイアス補償回路6を付加したもの
である。乗算型位相比較器5は、トランジスタ対からな
る差動増幅器で構成される既に知られた回路であり、こ
こでは第1及び第2の各差動増幅器1,2からの各対応
する出力、すなわち90°の位相差となる各出力をそれ
ぞれ比較し、その位相差が90°からずれた位相誤差を
誤差電圧VCとして検出する。また、接合容量バイアス
補償回路6は、演算増幅器OPと抵抗R61,R62と
で構成され、前記接合容量バイアス回路4からのバイア
ス電圧VAと、乗算型位相比較器5からの誤差電圧VC
とを入力し、これによりバイアス電圧VAから誤差電圧
VCを加減算した補償バイアス電圧VA’を出力する。
そして、この補償バイアス電圧VA’を接合容量Cxに
逆バイアス電圧として供給している。
FIG. 4 is a circuit diagram of a second embodiment of the present invention. Here, a multiplication type phase comparator 5 and a junction capacitance bias compensation circuit 6 are added to the circuit of the first embodiment. The multiplication type phase comparator 5 is a known circuit composed of a differential amplifier composed of a pair of transistors. Here, each corresponding output from the first and second differential amplifiers 1 and 2, namely, Each output having a phase difference of 90 ° is compared, and a phase error in which the phase difference deviates from 90 ° is detected as an error voltage VC. The junction capacitance bias compensating circuit 6 includes an operational amplifier OP and resistors R61 and R62. The bias voltage VA from the junction capacitance bias circuit 4 and the error voltage VC from the multiplication type phase comparator 5 are used.
To output a compensation bias voltage VA ′ obtained by adding and subtracting the error voltage VC from the bias voltage VA.
Then, the compensation bias voltage VA 'is supplied to the junction capacitance Cx as a reverse bias voltage.

【0016】したがって、この実施形態では、抵抗の誤
差に伴って発生されるバイアス電圧VAに対し、実際に
位相誤差に伴って生じる誤差電圧VCで補償を行ってバ
イアス電圧VA’を得ているため、位相誤差の補正を自
動的に、しかも高精度で行うことが可能となる。
Accordingly, in this embodiment, the bias voltage VA 'generated by the error of the resistance is compensated by the error voltage VC actually generated by the phase error to obtain the bias voltage VA'. The phase error can be corrected automatically and with high accuracy.

【0017】[0017]

【発明の効果】以上説明したように本発明は、対をなす
差動増幅器間の位相を調整するために一方の差動増幅器
に設けられた可変容量素子に対して、他方の差動増幅器
のエミッタ抵抗と同じ特性の抵抗で分圧された電圧を可
変容量素子のバイアス電圧として出力する接合容量バイ
アス回路を設けているので、エミッタ抵抗の抵抗値が変
動された場合には、これと同時に分圧用の抵抗の抵抗値
も変動されてバイアス電圧を自動的に補正することがで
き、位相誤差を自動的に補償することができる効果があ
る。
As described above, according to the present invention, the variable capacitance element provided in one differential amplifier for adjusting the phase between the differential amplifiers forming a pair is connected to the variable capacitance element provided in the other differential amplifier. A junction capacitance bias circuit that outputs the voltage divided by a resistor having the same characteristics as the emitter resistance as the bias voltage of the variable capacitance element is provided. The resistance value of the pressure resistor is also varied, so that the bias voltage can be automatically corrected, and the phase error can be automatically compensated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態の回路図である。FIG. 1 is a circuit diagram of a first embodiment of the present invention.

【図2】バイアス電圧の発生動作を説明するための回路
図である。
FIG. 2 is a circuit diagram for explaining an operation of generating a bias voltage.

【図3】接合容量の逆バイアス特性を示す図である。FIG. 3 is a diagram showing a reverse bias characteristic of a junction capacitance.

【図4】本発明の第2の実施形態の回路図である。FIG. 4 is a circuit diagram according to a second embodiment of the present invention.

【図5】従来の差動増幅回路の回路図である。FIG. 5 is a circuit diagram of a conventional differential amplifier circuit.

【符号の説明】[Explanation of symbols]

1 第1差動増幅器 1 第2差動増幅器 3 入力バイアス回路 4 接合容量バイアス回路 5 乗算型位相比較器 6 接合容量バイアス補償回路 Cx 接合容量 Reference Signs List 1 first differential amplifier 1 second differential amplifier 3 input bias circuit 4 junction capacitance bias circuit 5 multiplication type phase comparator 6 junction capacitance bias compensation circuit Cx junction capacitance

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一対のトランジスタで構成され各トラン
ジスタのエミッタ間にエミッタ抵抗を接続したエミッタ
抵抗帰還型の第1の差動増幅器と、一対のトランジスタ
で構成され各トランジスタのエミッタ間に容量を接続し
エミッタ容量帰還型の第2の差動増幅器とを有し、
各差動増幅器の入力バイアス回路と入力信号を共通と
して各差動増幅器から所要の位相差の信号を出力する差
動増幅回路において、前記第2の差動増幅器の容量は互
いに逆方向に接続した一対の可変容量素子で構成され、
前記第1の差動増幅器のエミッタ抵抗と同じ特性の抵抗
で分圧された電圧を前記可変容量素子の接続端にバイア
ス電圧として供給するように構成したことを特徴とする
差動増幅回路。
A first transistor comprising a pair of transistors;
An emitter resistance feedback type first differential amplifier having an emitter resistance connected between the emitters of the transistors , and a pair of transistors
And connect a capacitor between the emitters of each transistor.
And a second differential amplifier of the emitter capacitive feedback was, before
In a differential amplifier circuit that outputs a signal having a required phase difference from each differential amplifier while sharing an input signal with an input bias circuit of each differential amplifier, the capacitances of the second differential amplifiers are connected in opposite directions. Composed of a pair of variable capacitance elements,
A differential amplifier circuit, wherein a voltage divided by a resistor having the same characteristic as the emitter resistance of the first differential amplifier is supplied as a bias voltage to a connection terminal of the variable capacitance element.
【請求項2】 前記可変容量素子は、エミッタをオープ
ンとした容量用の2つのトランジスタのベース−コレク
タ間で構成され、これら容量用のトランジスタのコレ
クタは前記第2の差動増幅器を構成する前記一対のトラ
ンジスタの各エミッタに接続され、前記容量用のトラン
ジスタの各ベースは互いに接続されて前記バイアス電圧
が供給される請求項1に記載の差動増幅回路。
Wherein said variable capacitance element, the base of the two transistors of the capacitor which is open emitter - is composed of the collector, the Kore <br/> Kuta said second differential transistors for these capacities It is connected to the emitters of said pair of transistors constituting the dynamic amplifier, Trang for the capacity
2. The differential amplifier circuit according to claim 1 , wherein the bases of the transistors are connected to each other and supplied with the bias voltage.
【請求項3】 前記第1の差動増幅器のエミッタ抵抗と
抵抗値の誤差が等しい抵抗と、この抵抗に対してベース
−エミッタを直列に接続したバイアス用のトランジスタ
とを入力信号端と接地との間に接続し、前記バイアス用
トランジスタのエミッタ電圧をバイアス電圧として前
記可変容量素子に供給する請求項1または2に記載の差
動増幅回路。
3. A error equal resistance of the emitter resistor and the resistance value of said first differential amplifier, the base relative to the resistance - emitter the input signal terminal and a transistor for bias connected in series with the ground Connect between and for the bias
The differential amplifier circuit according to claim 1 or 2 to be supplied to the variable capacitance element emitter voltage as the bias voltage of the transistor.
【請求項4】 前記第1の差動増幅器と第2の差動増幅
をそれぞれ第1のトランジスタと第2のトランジスタ
で構成し、各々第1のトランジスタのベースを入力信号
端子と接続し、各々第2のトランジスタのベースを入力
バイアス回路と接続し、前記第1の差動増幅器の第1及
び第2のトランジスタのエミッタを前記エミッタ抵抗
で接続し、前記第2の差動増幅器の第1及び第2のトラ
ンジスタのエミッタを前記可変容量素子で接続し、前
記第1及び第2の差動増幅器の各第1及び第2のトラン
ジスタのコレクタから出力を取り出すことを特徴とする
請求項1ないし3のいずれかに記載の差動増幅回路。
4. A first transistor and a second transistor, wherein the first differential amplifier and the second differential amplifier are respectively a first transistor and a second transistor.
In constructed, each base of the first transistor is connected to the input signal terminal, the base of each second transistor is connected to the input bias circuit, first及 of the first differential amplifier
And each emitter of the second transistor is connected to the emitter resistor.
And the respective emitters of the first and second transistors of the second differential amplifier are connected by the variable capacitance element.
The first and second transformers of the first and second differential amplifiers, respectively.
Extracting output from the collector of the transistor
The differential amplifier circuit according to claim 1 .
【請求項5】 前記第1及び第2の各差動増幅器の出力
間の位相誤差を検出する位相比較器と、この位相比較器
から出力される誤差電圧により前記バイアス電圧を補償
する補償回路とを備える請求項4に記載の差動増幅回
路。
5. A phase comparator for detecting a phase error between outputs of said first and second differential amplifiers, and a compensation circuit for compensating said bias voltage by an error voltage output from said phase comparator. The differential amplifier circuit according to claim 4, comprising:
JP24693095A 1995-08-31 1995-08-31 Differential amplifier circuit Expired - Fee Related JP2856120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24693095A JP2856120B2 (en) 1995-08-31 1995-08-31 Differential amplifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24693095A JP2856120B2 (en) 1995-08-31 1995-08-31 Differential amplifier circuit

Publications (2)

Publication Number Publication Date
JPH0969738A JPH0969738A (en) 1997-03-11
JP2856120B2 true JP2856120B2 (en) 1999-02-10

Family

ID=17155872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24693095A Expired - Fee Related JP2856120B2 (en) 1995-08-31 1995-08-31 Differential amplifier circuit

Country Status (1)

Country Link
JP (1) JP2856120B2 (en)

Also Published As

Publication number Publication date
JPH0969738A (en) 1997-03-11

Similar Documents

Publication Publication Date Title
US5042307A (en) Amplifying compensation circuit for semiconductor
US5399988A (en) FT doubler amplifier
US5192884A (en) Active filter having reduced capacitor area but maintaining filter characteristics
US4833423A (en) Apparatus and method for a wide-band direct-coupled transistor amplifier
US5726564A (en) Temperature-compensating method for a resistance bridge circuit, resistance bridge circuit with temperature-compensating circuit, and acceleration sensor using the same
JP2004514230A (en) Method of adjusting BGR circuit and BGR circuit
JP2774881B2 (en) Gamma correction circuit
US5420542A (en) Varactor compensation in amplifier circuits
US4779057A (en) Cascode amplifier with nonlinearity correction and improve transient response
JPH11504774A (en) Offset compensated linear RF detector
JP2856120B2 (en) Differential amplifier circuit
US6854076B2 (en) Method and apparatus for calibration of an electronic device
US5134318A (en) Adjustable analog filter circuit with temperature compensation
JP3016317B2 (en) Variable gain amplifier
JP2694767B2 (en) Integrator
JP2558253B2 (en) Temperature compensated current switch circuit
JP2783301B2 (en) Active filter circuit
JP3321897B2 (en) Amplifier circuit
JP2808195B2 (en) Time constant automatic adjustment circuit
KR100216034B1 (en) Inductance changing detecting apparatus
JPH05275942A (en) Differential amplifier circuit
JPS6133707Y2 (en)
JP2607970B2 (en) Offset cancellation circuit
JP4163769B2 (en) Temperature compensation circuit for sensors
JPS62111508A (en) Operational amplifier

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20071127

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20081127

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20081127

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20091127

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091127

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20101127

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20101127

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101127

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20111127

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111127

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20121127

LAPS Cancellation because of no payment of annual fees