JP2855182B2 - Liquefaction method of coal using impregnated iron catalyst. - Google Patents

Liquefaction method of coal using impregnated iron catalyst.

Info

Publication number
JP2855182B2
JP2855182B2 JP6227295A JP22729594A JP2855182B2 JP 2855182 B2 JP2855182 B2 JP 2855182B2 JP 6227295 A JP6227295 A JP 6227295A JP 22729594 A JP22729594 A JP 22729594A JP 2855182 B2 JP2855182 B2 JP 2855182B2
Authority
JP
Japan
Prior art keywords
coal
catalyst
iron
reaction
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6227295A
Other languages
Japanese (ja)
Other versions
JPH0867880A (en
Inventor
毅 小谷川
光義 山本
忠 吉田
正秀 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6227295A priority Critical patent/JP2855182B2/en
Publication of JPH0867880A publication Critical patent/JPH0867880A/en
Application granted granted Critical
Publication of JP2855182B2 publication Critical patent/JP2855182B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、石炭上に担持させた担
持鉄系触媒(含浸型鉄触媒)を用いた担持法による石炭
の液化方法に関するものである。さらに詳しくは、本発
明は、石炭自身に直接硫酸第2鉄を含浸させ、これを水
溶液中で尿素分解によるアンモニアによって中和させ微
粉型の硫酸型鉄触媒を生成させて石炭上に担持させた担
持鉄系触媒による石炭液化反応を使用して石炭液化の高
効率化を図ることを特徴とする石炭の液化方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for liquefying coal by a supported method using a supported iron-based catalyst (impregnated iron catalyst) supported on coal. More specifically, in the present invention, the coal itself was directly impregnated with ferric sulfate, neutralized with ammonia by urea decomposition in an aqueous solution to form a fine powder type sulfate-type iron catalyst, and supported on the coal. The present invention relates to a method for liquefying coal, characterized in that the efficiency of coal liquefaction is improved by using a coal liquefaction reaction using a supported iron-based catalyst.

【0002】[0002]

【従来の技術】一般に、石炭液化(coal liquefaction
)の方法は、直接液化法と間接液化法とに大別され、
前者の直接液化法は、石炭を微粉化し、石炭液化油など
の溶媒と混合してスラリー状とし、高圧の水素存在下に
加熱し、石炭を分解して液体燃料に変える方法であり、
また、後者の間接液化法は、石炭をまずガス化して水素
と一酸化炭素の混合物に変え、この混合ガスを触媒上に
通して液体燃料を生産する方法であり、これまでに、触
媒、溶剤、反応条件等の改良技術が種々開発されてい
る。
2. Description of the Related Art In general, coal liquefaction
) Are roughly classified into direct liquefaction and indirect liquefaction.
The former direct liquefaction method is a method in which coal is pulverized, mixed with a solvent such as coal liquefied oil to form a slurry, heated in the presence of high-pressure hydrogen, and decomposed to convert the coal into a liquid fuel.
In the latter method, coal is first gasified to convert it into a mixture of hydrogen and carbon monoxide, and this mixed gas is passed over a catalyst to produce a liquid fuel. Various techniques for improving the reaction conditions and the like have been developed.

【0003】ところで、石炭液化反応に用いられる鉄−
硫黄系触媒はその活性種に関する研究やそれを修飾して
高活性化するための研究等、研究例は数多い。しかし、
これらの研究結果をもってしても石炭液化反応を実用化
する途は非常に遠く、今後共、さらに活発な研究が望ま
れている。
[0003] By the way, iron-
There are many examples of research on sulfur-based catalysts, such as research on active species and research on modifying them to increase their activity. But,
Based on the results of these studies, the practical use of coal liquefaction is far from far, and further active research is expected in the future.

【0004】本発明者らは、石炭液化反応における最も
重要な研究課題は触媒開発にあると考え、従来から用い
られてきた鉄−硫黄系触媒の活性を系統的に調べてき
た。石炭液化反応の目的は、石炭の有する大きく、か
つ、複雑な分子構造に水素を添加して分解し、出来るだ
け少ない触媒量で効率的に分子量の小さな化合物を多く
製造することにある。
[0004] The present inventors have considered that the most important research subject in the coal liquefaction reaction lies in catalyst development, and have systematically examined the activity of conventionally used iron-sulfur catalysts. The purpose of the coal liquefaction reaction is to decompose the large and complicated molecular structure of coal by adding hydrogen thereto, and to efficiently produce many compounds having a small molecular weight with a catalyst amount as small as possible.

【0005】本発明者らは、そのために必要なことは触
媒を高分散し、触媒と石炭との接触効率を高めることに
あると考えて研究を遂行した結果、本発明を得るに至っ
た。
The inventors of the present invention have conducted studies on the premise that what is needed for this purpose is to highly disperse the catalyst and increase the contact efficiency between the catalyst and coal, and as a result, the present invention has been achieved.

【0006】鉄系触媒の持つ水素化活性は非常にマイル
ドであることが知られているにもかかわらず、安価で、
かつ、どこででも大量に入手できるという利点によっ
て、今日においても石炭液化触媒の研究は世界的にみて
鉄系触媒であることが多い。石炭液化に用いられる鉄系
触媒は赤泥、鉄鋼石、酸化鉄等でこれに助触媒として硫
黄を加えて用いるのが常である。これに対して酸化鉄と
硫黄とを別々に用いる代わりに石炭灰中の硫化鉄、並び
に、天然硫化鉄や合成硫化鉄を触媒として用いることも
ある。これらのことは、石炭液化反応に有効な触媒種は
硫化鉄系化合物であることを示唆している。
Although the hydrogenation activity of iron-based catalysts is known to be very mild, it is inexpensive,
Also, due to the advantage of being available in large quantities anywhere, even today, research on coal liquefaction catalysts is often an iron-based catalyst worldwide. The iron-based catalyst used for coal liquefaction is red mud, iron ore, iron oxide, or the like, and is usually used by adding sulfur as a co-catalyst. On the other hand, instead of using iron oxide and sulfur separately, iron sulfide in coal ash and natural iron sulfide or synthetic iron sulfide may be used as a catalyst. These facts suggest that the catalyst species effective for the coal liquefaction reaction is an iron sulfide compound.

【0007】[0007]

【発明が解決しようとする課題】これに対して、本発明
者らは、硫酸型鉄系触媒がこれらの硫化鉄系触媒に勝る
高活性を示すことを明らかにしてきた〔参考文献:小谷
川 毅,「鉄系触媒による石炭液化反応」燃料協会誌,
70巻,5号,431頁(1991)、T. Kotanigawa,
S. Yokoyama, M. Yamamoto and Y. Maekawa, 「Cataly
tic activities of sulfate and sulfide in S-promote
d iron oxide catalyst 」, Fuel, vol.68(5),6
18(1989)〕。すなわち、硫酸第2鉄水溶液に過
剰の尿素を加え、所定の温度で加熱する事によって、加
水分解した尿素から生成するアンモニアによって硫酸第
2鉄が中和され、硫酸型微粉鉄系触媒を調製できる。
On the other hand, the present inventors have clarified that a sulfate type iron-based catalyst exhibits higher activity than these iron sulfide-based catalysts [Reference: Otanigawa] Tsuyoshi, "Coal liquefaction reaction with iron-based catalyst", Journal of Fuel Association,
70, No. 5, p. 431 (1991), T. Kotanigawa,
S. Yokoyama, M. Yamamoto and Y. Maekawa, "Cataly
tic activities of sulfate and sulfide in S-promote
d iron oxide catalyst ”, Fuel, vol. 68 (5), 6
18 (1989)]. That is, by adding excess urea to the aqueous ferric sulfate solution and heating it at a predetermined temperature, ferric sulfate is neutralized by ammonia generated from the hydrolyzed urea, and a sulfuric acid type fine iron catalyst can be prepared. .

【0008】本発明は、このような状況の中にあって、
上記硫酸型微粉鉄系触媒を用いた石炭液化反応に関する
一連の研究の成果として、完成されるに至ったものであ
り、石炭自身に直接硫酸第2鉄を含浸させ、これを水溶
液中で尿素分解によるアンモニアによって中和させ微粉
型の硫酸型鉄触媒を生成させて石炭液化の高効率化を図
るものである。
[0008] In this situation, the present invention
As a result of a series of studies on the coal liquefaction reaction using the above-mentioned sulfuric acid type fine iron-based catalyst, it was completed. The coal itself was directly impregnated with ferric sulfate, and this was decomposed with urea in an aqueous solution. And neutralize with ammonia to generate a fine powder type sulfuric acid type iron catalyst to improve the efficiency of coal liquefaction.

【0009】[0009]

【課題を解決するための手段】すなわち、本発明は、尿
素分解法を用いて石炭上に担持させた担持鉄系触媒によ
る石炭液化反応を使用することを特徴とする石炭の液化
方法を提供するものである。
That is, the present invention provides a coal liquefaction method characterized by using a coal liquefaction reaction using a supported iron catalyst supported on coal using a urea decomposition method. Things.

【0010】また、本発明は、担持鉄系触媒が、硫酸型
鉄触媒である上記石炭の液化方法を提供するものであ
る。
[0010] The present invention also provides a method for liquefying the above-mentioned coal, wherein the supported iron-based catalyst is a sulfuric acid type iron catalyst.

【0011】さらに、本発明は、担持鉄系触媒が、石炭
に硫酸第2鉄を含浸させ、これを水溶液中で尿素分解に
よるアンモニアによって中和させ硫酸型鉄触媒を生成さ
せて石炭上に担持させた担持鉄系触媒である上記の石炭
の液化方法を提供するものである。
Further, the present invention relates to a supported iron-based catalyst comprising impregnating coal with ferric sulfate, neutralizing the impregnated ammonia with urea decomposition ammonia in an aqueous solution to form a sulfated iron catalyst, and supporting the catalyst on coal. It is another object of the present invention to provide a method for liquefying the above-mentioned coal which is a supported iron-based catalyst.

【0012】続いて本発明についてさらに詳細に説明す
る。本発明において、原料となる石炭は、通常のもので
あれば如何なるものであってもよく、油頁岩、油砂又は
その類似物を含めて、その種類を問わず使用することが
可能である。原料の石炭は、適宜の粒度に微粉砕して使
用されるが、その場合、100メッシュ以下に微粉砕し
たものが好適なものとして使用される。また、石炭上に
担持させる触媒としては、硫酸第2鉄が使用される。
Next, the present invention will be described in more detail. In the present invention, the coal used as a raw material may be any ordinary coal, and any type of coal including oil shale, oil sand or the like can be used. The raw material coal is finely pulverized to an appropriate particle size, and in this case, finely pulverized to 100 mesh or less is preferably used. Ferric sulfate is used as a catalyst to be supported on coal.

【0013】次に、上記石炭に、触媒を担持させ液化反
応を行うには、例えば、100メッシュ以下に微粉砕し
た石炭を、所定量の硫酸第2鉄と尿素とを溶解させた水
溶液に加え、全体を十分に攪拌し、石炭上に当該硫酸第
2鉄を含浸させた後、この混合物を反応室内において反
応温度96℃〜98℃で加熱することにより、水溶液中
で尿素を分解し、アンモニアを発生させて上記硫酸第2
鉄を中和して硫酸型鉄触媒を生成させ、当該石炭上に担
持させた硫酸型触媒(含浸型鉄触媒)を使用して、石炭
の液化反応を通常の方法、条件に準じて実施する。この
場合、反応装置としては、オートクレーブが好適なもの
として使用される。
Next, in order to carry out a liquefaction reaction by supporting a catalyst on the above-mentioned coal, for example, coal pulverized to 100 mesh or less is added to an aqueous solution in which a predetermined amount of ferric sulfate and urea are dissolved. After thoroughly stirring the mixture and impregnating the coal with the ferric sulfate, the mixture is heated at a reaction temperature of 96 ° C. to 98 ° C. in a reaction chamber to decompose urea in an aqueous solution, thereby reducing ammonia. And the second sulfuric acid
A sulfuric acid-type iron catalyst is generated by neutralizing iron, and a sulfuric acid-type catalyst (impregnated-type iron catalyst) supported on the coal is used to carry out a coal liquefaction reaction according to a normal method and conditions. . In this case, an autoclave is preferably used as the reactor.

【0014】上記反応系において使用される溶媒として
は、例えば、テトラリン、石炭液化油等の循環溶剤等が
使用され、また、反応系に、水素ガスを充填し、圧力条
件を100〜300気圧とすることができる。さらに、
助触媒として、元素硫黄、硫化水素、二硫化炭素等各種
硫黄化合物等を添加することも適宜可能である。反応時
間は、反応温度に到達後、0〜60分程度が好適なもの
として例示されるが、反応時間は、昇温速度、反応温度
等との関連で適宜設定すればよく、これに限定されるも
のではない。
As the solvent used in the reaction system, for example, a circulating solvent such as tetralin or coal liquefied oil is used. The reaction system is filled with hydrogen gas, and the pressure condition is set to 100 to 300 atm. can do. further,
As a cocatalyst, various sulfur compounds such as elemental sulfur, hydrogen sulfide, and carbon disulfide can be appropriately added. The reaction time is preferably about 0 to 60 minutes after reaching the reaction temperature, but the reaction time may be appropriately set in relation to the rate of temperature rise, the reaction temperature, and the like, and is not limited thereto. Not something.

【0015】本発明の担持鉄触媒による石炭液化反応を
使用することにより、例えば、後述の実施例に示される
ように、太平洋炭においては、従来、太平洋炭では困難
とされていた90wt%を容易に上回る高い石炭転化率
を達成することが可能であり、従来法に比較して、極め
て高い石炭転化率を達成することが可能である。
By using the coal liquefaction reaction using the supported iron catalyst of the present invention, for example, as shown in the examples described below, 90 wt% of Pacific coal, which has conventionally been difficult with Pacific coal, can be easily obtained. Thus, it is possible to achieve a very high coal conversion, which is higher than that of the conventional method.

【0016】また、従来、石炭液化反応には助触媒とし
て硫黄を添加することが不可欠とされていたが、本発明
によれば、当該助触媒を添加することなしに、従来法を
上回る高い石炭転化率を達成することができ、さらに、
反応温度425℃程度においても従来法と同等の石炭転
化率を得ることができ、触媒の高活性化とそれに伴う触
媒添加量の低減化が可能であり、石炭液化反応を高効率
で実施することが可能である。
Also, conventionally, it has been indispensable to add sulfur as a co-catalyst in the coal liquefaction reaction. However, according to the present invention, without adding the co-catalyst, a higher coal than the conventional method is required. Conversion can be achieved,
Even at a reaction temperature of about 425 ° C, it is possible to obtain a coal conversion rate equivalent to that of the conventional method, and it is possible to activate the catalyst and reduce the amount of catalyst to be added, and to carry out the coal liquefaction reaction with high efficiency. Is possible.

【0017】尚、本発明による石炭液化反応による反応
生成物は、オイル成分、アスファルテン成分であり、そ
の特徴としては、軽質化された成分があげられる。
The reaction products of the coal liquefaction according to the present invention are an oil component and an asphaltene component, and the feature thereof is a lightened component.

【0018】以下、実施例をもって本発明を詳細に説明
する。 1.実験装置と実験方法 実験装置には内容積70mlのステンレス製オートクレ
ーブを用い、これに所定量の石炭、溶媒、触媒、ガスを
充填し室温から反応温度の400℃、425℃および4
50℃まで毎分2.5℃の昇温速度で昇温する。反応温
度に到達したら直ちにオートクレーブを電気炉から取り
出して扇風機で急冷して反応を停止させる。
Hereinafter, the present invention will be described in detail with reference to examples. 1. Experimental Apparatus and Experimental Method A stainless steel autoclave having an inner volume of 70 ml was used as an experimental apparatus, and a predetermined amount of coal, a solvent, a catalyst, and a gas were charged into the autoclave.
The temperature is raised to 50 ° C. at a rate of 2.5 ° C./min. As soon as the reaction temperature is reached, the autoclave is removed from the electric furnace and quenched with a fan to stop the reaction.

【0019】通常のオートクレーブ実験では温度が反応
温度に達したらその温度を一定時間保持して反応時間と
するが、反応温度が低くても反応時間が十分に長ければ
活性は上昇する。従って、本実施例では触媒活性を明確
に区別するためにわざと反応時間をとらなかった。
In a normal autoclave experiment, when the temperature reaches the reaction temperature, the temperature is maintained for a certain period of time to obtain the reaction time. However, even if the reaction temperature is low, the activity increases if the reaction time is sufficiently long. Therefore, in this example, no reaction time was intentionally taken in order to clearly distinguish the catalytic activities.

【0020】2.反応条件 石炭は真空乾燥した太平洋炭(炭素;76.6、水素;
6.2、窒素;1.2、硫黄;0.1、酸素;15.
9、重量%)を100メッシュ以下に粉砕し各実験に3
g用いた。太平洋炭を用いたのは硫黄含有率が極端に少
ない石炭であるため助触媒といわれている硫黄の添加効
果を明確に把握できるからである。溶媒は試薬のテトラ
リンとし、各実験に10g用いた。水素ガスは初圧10
MPaでオートクレーブに充填した。触媒含浸量は0.
1%−20%の間で変化させ、触媒担持量は石炭中の灰
分増加量から求めた。また、比較のため参考文献の方法
に準じて調製した硫酸型鉄触媒を各実験に0.5g加
え、担持法との比較を行った。
2. Reaction conditions Coal was vacuum-dried Pacific coal (carbon; 76.6, hydrogen;
6.2, nitrogen; 1.2, sulfur; 0.1, oxygen;
9, weight%) to 100 mesh or less and 3
g used. Pacific coal was used because it has a very low sulfur content so that the effect of adding sulfur, which is called a promoter, can be clearly understood. The solvent was reagent reagent tetralin, and 10 g was used in each experiment. Hydrogen gas has an initial pressure of 10
The autoclave was filled with MPa. The catalyst impregnation amount is 0.
The value was varied between 1% and 20%, and the amount of catalyst carried was determined from the increase in ash content in the coal. For comparison, 0.5 g of a sulfate-type iron catalyst prepared according to the method of the reference was added to each experiment, and the results were compared with the supported method.

【0021】3.分析方法 反応終了後、オートクレーブの内容物をソックスレー抽
出器を用いてベンゼンで抽出し、そのベンゼン不溶分を
基準にして石炭の転化率(重量%)を求めた。
3. Analytical Method After completion of the reaction, the contents of the autoclave were extracted with benzene using a Soxhlet extractor, and the conversion of coal (% by weight) was determined based on the benzene-insoluble matter.

【0022】[0022]

【実施例】次に、実施例により本発明をさらに具体的に
説明するが、本発明は当該実施例により何ら限定される
ものではない。 実施例1 (触媒含浸量と実際の担持量)100メッシュ以下に微
粉砕した太平洋炭30g(d.a.f.ベース)を採
り、これを硫酸第2鉄とその2.5倍量の尿素とを溶解
させた水溶液に加え、十分に攪拌する。この混合物を水
浴上に置き、96−98℃で約2時間加熱すると、加え
た尿素が分解し、アンモニアを発生して硫酸第2鉄を中
和する。分解反応が完結すると直ちに濾過、水洗を行っ
てから、120℃で真空加熱して、触媒担持太平洋炭を
調製する。触媒含浸量(0,0.1,1,5,10,2
0wt%)に準じてTU−0,TU−0.1,TU−
1,TU−5,TU−10,およびTU−20とした。
本実施例は、それぞれの試料の灰分量の増加から求めた
実際の担持量である。
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the examples. Example 1 (Catalyst impregnation amount and actual supported amount) 30 g (daf base) of Pacific coal finely pulverized to 100 mesh or less was taken, and this was ferric sulfate and urea in an amount 2.5 times that of ferric sulfate. Is added to the aqueous solution in which is dissolved, and the mixture is sufficiently stirred. When the mixture is placed on a water bath and heated at 96-98 ° C for about 2 hours, the added urea decomposes and evolves ammonia to neutralize ferric sulfate. Immediately after the completion of the decomposition reaction, filtration and washing with water are performed, followed by vacuum heating at 120 ° C. to prepare a catalyst-supported Pacific coal. Catalyst impregnation amount (0, 0.1, 1, 5, 10, 2
TU-0, TU-0.1, TU-
1, TU-5, TU-10, and TU-20.
In the present example, the actual amount of loading was determined from the increase in the ash content of each sample.

【0023】[0023]

【表1】 ──────────────────────── No. 実際の触媒担持量(wt%) ──────────────────────── TU−0 0 TU−0.1 0.2 TU−1 0.6 TU−5 1.8 TU−10 5.9 TU−20 13.2 ────────────────────────[Table 1] ──────────────────────── No. Actual catalyst loading (wt%) ──────────────────────── TU-00 TU-0.1 0.2 TU-10 6 TU-5 1.8 TU-10 5.9 TU-20 13.2

【0024】実施例2 (触媒担持法と混合法との活性比較)本発明者らは硫酸
第2鉄を尿素で分解して生成する硫酸型鉄触媒の活性や
そのメカニズムについて研究してきた。本発明は触媒活
性を向上させて石炭液化反応の効率を高めることに加え
て、触媒使用量を減少させてプロセス効率の向上を目指
している。この考え方を実現するには石炭と触媒との接
触効率を高めることが重要であると考え、本発明を得る
に至った。以下の表2に、従来法である混合法と本発明
による担持法との触媒活性を比較して示す。反応温度は
450℃で、これまでの石炭液化では助触媒として硫黄
の添加が不可欠であったが、この場合、硫黄は添加して
いない。
Example 2 (Comparison of activity between catalyst-supporting method and mixing method) The present inventors have studied the activity and mechanism of a sulfate-type iron catalyst formed by decomposing ferric sulfate with urea. The present invention aims to improve the efficiency of the process by reducing the amount of catalyst used, in addition to increasing the efficiency of the coal liquefaction reaction by improving the catalyst activity. In order to realize this idea, it was considered important to increase the contact efficiency between coal and the catalyst, and thus came to the present invention. Table 2 below shows a comparison of the catalytic activity between the conventional mixing method and the supporting method according to the present invention. The reaction temperature is 450 ° C., and addition of sulfur as a co-catalyst has been indispensable in conventional coal liquefaction, but in this case, no sulfur was added.

【0025】このように混合法では触媒添加の効果が顕
著に見られなかったが、担持法では触媒担持量の増加に
つれて石炭担持量は次第に上昇し、太平洋炭では困難と
されていた転化率、90%を容易に上回ることができ
た。
As described above, the effect of catalyst addition was not remarkably observed in the mixing method. However, in the loading method, the amount of coal supported gradually increased with an increase in the amount of supported catalyst, and the conversion, It could easily exceed 90%.

【0026】[0026]

【表2】 ─────────────────────────── 触媒量 石 炭 転 化 率 (wt%) (wt%) 混 合 法 担 持 法 ─────────────────────────── 0 82.0 76.4 1.8 83.1 78.8 5.9 84.2 92.1 13.2 85.0 96.5 ───────────────────────────[Table 2] 量 Catalyst amount Coal conversion (wt%) (wt%) Holding method 0 82.0 76.4 1.8 83.1 78.8 5.9 84. 2 92.1 13.2 85.0 96.5}

【0027】実施例3 (反応温度の影響)この実施例では反応温度の影響を示
した。この場合も硫黄は添加していない。
Example 3 (Effect of reaction temperature) In this example, the influence of reaction temperature was shown. Again, no sulfur was added.

【0028】[0028]

【表3】 ───────────────────────────── 触媒担持量 反 応 温 度 (℃) (wt%) 400 425 450 ───────────────────────────── 0 50.9 69.1 76.4 0.8 48.8 72.1 79.2 1.8 51.8 81.8 78.8 5.9 52.5 81.7 92.1 13.2 54.8 84.0 96.5 ─────────────────────────────[Table 3] 量 Catalyst load Reaction temperature (℃) (wt%) 400 425 450 0 0 50.9 69.1 76.4 0.8 48.8 72.1 79. 2 1.8 51.8 81.8 78.8 5.9 52.5 81.7 92.1 13.2 54.8 84.0 96.5} ────────────────

【0029】これらの結果から反応温度は450℃が望
ましいが、425℃でもこれまでと同じ石炭反応率が得
られることが知れる。このことは本発明の方法によって
石炭自身の活性化も促進していることが知れる。
From these results, it is known that the reaction temperature is desirably 450 ° C., but it is known that the same coal reaction rate can be obtained even at 425 ° C. It is known that this also promotes the activation of coal itself by the method of the present invention.

【0030】実施例4 (硫黄添加の影響)これまでの実施例では硫黄を加えな
い実施例を示したが硫黄を加えた場合の効果を調べた。
加えた硫黄は触媒量に対して5wt%の元素硫黄で、反
応温度450℃で、その時の石炭転化率を示した。
Example 4 (Effect of Addition of Sulfur) In the examples up to this point, examples in which sulfur was not added were shown, but the effect when sulfur was added was examined.
The added sulfur was 5 wt% elemental sulfur based on the amount of the catalyst, and showed a coal conversion rate at a reaction temperature of 450 ° C.

【0031】[0031]

【表4】 ─────────────────────── 触媒担持量 硫 黄 添 加 (wt%) なし あり ─────────────────────── 0 76.4 − 0.6 79.2 − 1.8 78.8 83.3 5.9 92.1 92.0 13.2 96.5 96.5 ───────────────────────[Table 4] 触媒 Catalyst loading amount Sulfur yellow addition (wt%) No Yes ────────── 0 076.4-0.6 79.2-1.8 78.8 83.3 5.9 92.1 92.0 13.2 96.5 96 .5───────────────────────

【0032】これらの結果から明らかなように、硫黄の
添加は石炭反応率に全く影響していない。このことは石
炭に担持した本触媒は従来から述べられているパイライ
ト状硫化鉄ではなく、全く新規な触媒が生成している証
拠である。そして、その活性も従来のパイライト状触媒
よりはかなり高活性の触媒であることも明らかである。
As is apparent from these results, the addition of sulfur has no effect on the conversion of coal. This is evidence that the catalyst supported on coal is not a pyrite-like iron sulfide as described above, but a completely new catalyst. It is also clear that the activity of the catalyst is considerably higher than that of the conventional pyrite catalyst.

【0033】[0033]

【発明の効果】以上、実施例をもって本発明を詳細に説
明したが、一般に、石炭液化反応に用いられる触媒は反
応温度がかなり高いため、添加する触媒量がかなり多い
のが大きな欠点であり、この欠点を解決するには触媒の
高活性化と触媒添加量の低減が必要である。本発明は、
これらの従来法の欠点を解決するものであり、本発明に
よれば、この欠点の解決によって反応生成物価格を低下
させ液化プロセスの実用化に結びつけることができる。
従って、本発明の触媒担持法による石炭の液化方法を用
いるならば、反応後その処置に困る硫黄を添加すること
なく、触媒量を低減出来、加えて、石炭自身の活性化も
進行させているため、より効率的な液化反応を実現させ
ることができることが明らかとなった。
As described above, the present invention has been described in detail with reference to the examples. However, in general, since the catalyst used in the coal liquefaction reaction has a considerably high reaction temperature, a great disadvantage is that the amount of the catalyst to be added is considerably large. In order to solve this drawback, it is necessary to increase the activity of the catalyst and reduce the amount of catalyst added. The present invention
According to the present invention, it is possible to solve the drawbacks of these conventional methods, and by solving the drawbacks, it is possible to reduce the price of the reaction product and put the liquefaction process into practical use.
Therefore, if the coal liquefaction method using the catalyst loading method of the present invention is used, the amount of catalyst can be reduced without adding sulfur which is troublesome for the treatment after the reaction, and in addition, the activation of the coal itself is advanced. Therefore, it became clear that a more efficient liquefaction reaction can be realized.

フロントページの続き (72)発明者 吉田 忠 北海道札幌市豊平区月寒東2条17丁目2 番1号 通商産業省工業技術院北海道工 業技術研究所内 (72)発明者 佐々木 正秀 北海道札幌市豊平区月寒東2条17丁目2 番1号 通商産業省工業技術院北海道工 業技術研究所内 (56)参考文献 特開 昭57−133190(JP,A) 特開 平5−103988(JP,A) 燃料協会誌 第70巻 第5号(1991) 平成3年5月20日 社団法人燃料協会発 行 p.431−439 (58)調査した分野(Int.Cl.6,DB名) C10G 1/06 B01J 27/053 C10G 1/00Continuation of the front page (72) Inventor Tadashi Yoshida 2-1, 17-2, Tsukikanto, Toyohira-ku, Sapporo-city, Hokkaido Inside the Hokkaido Institute of Technology, Ministry of International Trade and Industry (72) Inventor Masahide Sasaki Toyohira-ku, Sapporo, Hokkaido Tsuruga Kanto 2-17-17-2 Inside the Hokkaido Institute of Technology, Ministry of International Trade and Industry (56) References JP-A-57-133190 (JP, A) JP-A-5-103988 (JP, A) Fuel Association Journal Vol. 70 No. 5 (1991) May 20, 1991 Published by The Fuel Association of Japan p. 431-439 (58) Field surveyed (Int.Cl. 6 , DB name) C10G 1/06 B01J 27/053 C10G 1/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 尿素分解法を用いて石炭上に担持させた
担持鉄系触媒による石炭液化反応を使用する石炭の液化
方法であって、担持鉄系触媒が、石炭を、所定量の硫酸
第2鉄と鉄に対して過剰の尿素とを溶解させた水溶液に
加え、反応温度96〜98℃で加熱することにより、石
炭に硫酸第2鉄を含浸させ、これを水溶液中で尿素分解
によるアンモニアによって中和させ硫酸型鉄触媒を生成
させて石炭上に担持させた担持鉄系触媒であることを特
徴とする石炭の液化方法。
A coal liquefaction method using a coal liquefaction reaction with a supported iron catalyst supported on coal using a urea decomposition method, wherein the supported iron catalyst converts coal into a predetermined amount of sulfuric acid. (2) To an aqueous solution in which iron and excess urea are dissolved with respect to iron, and by heating at a reaction temperature of 96 to 98 ° C. , the coal is impregnated with ferric sulfate. A coal liquefaction method characterized in that the catalyst is a supported iron-based catalyst which is neutralized to produce a sulfate-type iron catalyst and supported on coal.
JP6227295A 1994-08-29 1994-08-29 Liquefaction method of coal using impregnated iron catalyst. Expired - Lifetime JP2855182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6227295A JP2855182B2 (en) 1994-08-29 1994-08-29 Liquefaction method of coal using impregnated iron catalyst.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6227295A JP2855182B2 (en) 1994-08-29 1994-08-29 Liquefaction method of coal using impregnated iron catalyst.

Publications (2)

Publication Number Publication Date
JPH0867880A JPH0867880A (en) 1996-03-12
JP2855182B2 true JP2855182B2 (en) 1999-02-10

Family

ID=16858580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6227295A Expired - Lifetime JP2855182B2 (en) 1994-08-29 1994-08-29 Liquefaction method of coal using impregnated iron catalyst.

Country Status (1)

Country Link
JP (1) JP2855182B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4149280B2 (en) * 2003-02-03 2008-09-10 三井造船株式会社 Method for producing coal liquefied highly active catalyst

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1164382A (en) * 1980-12-29 1984-03-27 Richard P. Rhodes Process for pyrolysis of carbonous materials
JPH05103988A (en) * 1991-10-11 1993-04-27 Asahi Chem Ind Co Ltd Production of coal liquefaction catalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
燃料協会誌 第70巻 第5号(1991)平成3年5月20日 社団法人燃料協会発行 p.431−439

Also Published As

Publication number Publication date
JPH0867880A (en) 1996-03-12

Similar Documents

Publication Publication Date Title
US8323458B2 (en) Electro-magnetic treatment of a modified biomass
US3502564A (en) Hydroprocessing of coal
Ohtsuka et al. Iron-catalyzed gasification of brown coal at low temperatures
US4486293A (en) Catalytic coal hydroliquefaction process
JPS63260984A (en) Hydroconversion of heavy oil and residual oil
Wei et al. Effects of iron catalyst precursors, sulfur, hydrogen pressure and solvent type on the hydrocracking of di (1-naphthyl) methane
CN109734752A (en) A method of fulvic acid in lignite is extracted using catalytic oxidation
Suzuki Development of highly dispersed coal liquefaction catalysts
Kamiya et al. Catalytic effects of iron compounds and the role of sulfur in coal liquefaction and hydrogenolysis of SRC
US4176041A (en) Method for reforming low grade coals
Artok et al. Swelling pretreatment of coals for improved catalytic temperature-staged liquefaction
JP2855182B2 (en) Liquefaction method of coal using impregnated iron catalyst.
Yokoyama et al. Catalytic activity of various iron sulphides in coal liquefaction
Tang et al. Activity and selectivity of slurry-phase iron-based catalysts for model systems
JP3484041B2 (en) Coal liquefaction method
Artok et al. Temperature-staged liquefaction of coals impregnated with ferrous sulfate
Demirel et al. Liquefaction of Wyodak coal with molybdenum-based catalysts from phosphomolybdic acid
Chow Catalytic hydrogen transfer due to FeSO4 and Co&z. sbnd; Mo in coal liquefaction
US2204619A (en) Production of shaped catalysts
US4401549A (en) Liquefaction of calcium-containing coals
Suzuki et al. Highly active coal liquefaction catalyst: soluble ruthenium complexes as catalyst precursors
CN106732672B (en) Coal-loaded molybdenum-based catalyst for coal-oil suspension bed hydrogenation co-refining
Demirel et al. Hydroconversion of resids with dispersed molybdenum catalysts derived from phosphomolybdates
Garg et al. Selectivity improvement in the SRC process
JPS59155495A (en) Coal liquefaction

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term