JP2853685B2 - Flight path measurement device - Google Patents

Flight path measurement device

Info

Publication number
JP2853685B2
JP2853685B2 JP8338938A JP33893896A JP2853685B2 JP 2853685 B2 JP2853685 B2 JP 2853685B2 JP 8338938 A JP8338938 A JP 8338938A JP 33893896 A JP33893896 A JP 33893896A JP 2853685 B2 JP2853685 B2 JP 2853685B2
Authority
JP
Japan
Prior art keywords
flying object
antenna
distance
signal
receiving station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8338938A
Other languages
Japanese (ja)
Other versions
JPH10160814A (en
Inventor
村 英 一 松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP8338938A priority Critical patent/JP2853685B2/en
Publication of JPH10160814A publication Critical patent/JPH10160814A/en
Application granted granted Critical
Publication of JP2853685B2 publication Critical patent/JP2853685B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は飛行経路測定装置に
関し、特に1箇所の地上固定受信局で飛翔体位置の測定
を行う飛行経路測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flight path measurement apparatus, and more particularly to a flight path measurement apparatus that measures the position of a flying object at one fixed ground receiving station.

【0002】[0002]

【従来の技術】飛翔体の3次元位置を測定し、その飛行
経路を測定する飛行経路測定装置が、例えば、実開昭6
4−15185号に開示されている。この飛行経路測定
装置は、次のように構成される。すなわち、図6に示す
ように、飛翔体としてのヘリコプタ30には、テレビカ
メラ31,送信機32,空中線33が搭載されている。
地上2カ所に設置されている受信設備10と20にそれ
ぞれ設けられているパラボラ空中線11と21がヘリコ
プタ30を指向した時の水平振れ角度と仰角とは、それ
ぞれ水平角度測定装置12及び22と、垂直角度測定装
置13及び23で測定される。
2. Description of the Related Art A flight path measuring device which measures the three-dimensional position of a flying object and measures its flight path is disclosed in
No. 4,515,185. This flight path measurement device is configured as follows. That is, as shown in FIG. 6, a television camera 31, a transmitter 32, and an antenna 33 are mounted on a helicopter 30 as a flying object.
The horizontal deflection angles and elevation angles when the parabolic antennas 11 and 21 provided at the receiving facilities 10 and 20 installed at two places on the ground are directed to the helicopter 30 are respectively horizontal angle measuring devices 12 and 22, It is measured by the vertical angle measuring devices 13 and 23.

【0003】受信設備10で測定された水平振れ角度と
仰角は、データ送信装置14を介して受信設備20のデ
ータ受信装置25に送出される。受信設備20の距離検
出装置24は、これら2カ所の受信設備10及び20で
測定された2つの水平振れ角度と2つの仰角及びこれら
の受信設備10,20間の直線距離とから、各受信設備
10及び20からヘリコプタ30までの距離を計算す
る。距離検出装置24で計算された距離は、表示装置2
6に表示されるとともに、データ送信装置27を介して
受信設備10のデータ受信装置15に送信され、表示装
置16に表示される。
[0003] The horizontal shake angle and the elevation angle measured by the receiving equipment 10 are transmitted to the data receiving device 25 of the receiving equipment 20 via the data transmitting device 14. The distance detection device 24 of the receiving equipment 20 calculates each of the receiving equipment from the two horizontal shake angles measured at the two receiving equipments 10 and 20, the two elevation angles, and the linear distance between the receiving equipments 10 and 20. The distance from 10 and 20 to helicopter 30 is calculated. The distance calculated by the distance detection device 24 is the display device 2
6 and transmitted to the data receiving device 15 of the receiving facility 10 via the data transmitting device 27 and displayed on the display device 16.

【0004】[0004]

【発明が解決しようとする課題】上述のように、従来の
飛行経路測定装置は、2カ所以上の地上固定受信局で飛
翔体からの送信電波を受信することにより、飛翔体の位
置及び飛行経路を測定しているため、飛翔体が送信する
電波信号を受信する地上固定受信局を2カ所以上に設置
しなければならない。したがって、予め恒久的な地上固
定受信局が設置されていない地域で飛翔体の飛行経路を
測定する場合、飛行経路測定のために2カ所に地上固定
受信局を設けなければならないだけでなく、飛翔体の発
射位童から離れた位置にも地上固定受信局を設けなけれ
ばならない。また、飛翔体の飛行経路を算出するには2
カ所の受信局間の距離を知る必要があると言う点で不便
である。更に、この距離は離れていないと飛翔体の飛行
経路測定の精度が悪くなると言う欠点もあった。
As described above, the conventional flight path measuring device receives the transmission radio waves from the flying object at two or more fixed receiving stations on the ground, thereby obtaining the position of the flying object and the flight path. Therefore, fixed ground receiving stations for receiving radio signals transmitted by the flying object must be installed at two or more locations. Therefore, when measuring the flight path of a flying object in an area where a permanent ground fixed receiving station is not installed in advance, not only two ground fixed receiving stations must be provided for flight path measurement, but also A fixed ground receiving station must also be installed at a position distant from the body's launching child. To calculate the flight path of the flying object,
This is inconvenient in that it is necessary to know the distance between two receiving stations. Further, there is a drawback that the accuracy of the flight path measurement of the flying object is deteriorated if the distance is not large.

【0005】そこで、本発明の目的は、飛翔体から送信
される電波信号を受信できる地上固定受信局を1カ所の
みに簡易的に設置するだけで飛翔体の飛行経路を測定で
きる飛行経路測定装置を提供することにある。
Accordingly, an object of the present invention is to provide a flight path measuring apparatus capable of measuring a flight path of a flying object simply by simply installing a fixed ground receiving station capable of receiving a radio signal transmitted from the flying object at only one place. Is to provide.

【0006】[0006]

【課題を解決するための手段】上述課題を解決するた
め、本発明による飛行経路測定装置は、飛翔体は、送信
信号の中に時間情報を重畳させて送出し、地上固定受信
局は、前記飛翔体のアジマス及びエレベーション角度方
向を測定し、地上固定受信局が受信した受信信号から前
記時間情報を抽出し、抽出された時間情報に基づいて前
記飛翔体から前記地上固定受信局までの距離を求め、求
められた距離と、前記飛翔体の予め求められた距離初期
値とに基づいて前記飛翔体から前記地上固定受信局まで
の距離を測定する。
In order to solve the above-mentioned problems, in the flight path measuring device according to the present invention, a flying object transmits time information superimposed on a transmission signal, and the fixed ground receiving station transmits the time information. Measure the azimuth and elevation angle direction of the flying object, extract the time information from the reception signal received by the ground fixed receiving station, and distance from the flying object to the ground fixed receiving station based on the extracted time information Is calculated, and a distance from the flying object to the ground fixed receiving station is measured based on the obtained distance and the distance initial value of the flying object determined in advance.

【0007】本発明の他の態様による飛行経路測定装置
は、飛翔体が離陸する以前の初期状態において飛翔体と
地上固定受信局までの距離初期値を測定しておき、地上
固定受信局では前記飛翔体から送信される送信信号の中
に重畳された時間情報と、この時間情報と同期する前記
地上固定受信局のもつ時間情報の差を離陸前の時間差初
期値とし、前記飛翔体が離陸した後、前記飛翔体からの
送信信号に重畳された時間情報と、前記地上固定受信局
のもつ時間情報の差、及び離陸前の時間差初期値との時
間変化を検出し、これら情報に基づいて前記飛翔体と地
上固定局間の距離変化を算出し、前記飛翔体が離陸する
以前の距離初期値を加算して現在の飛翔体と地上固定受
信局間の距離を算出する。
A flight path measuring apparatus according to another aspect of the present invention measures an initial distance between the flying object and a fixed ground receiving station in an initial state before the flying object takes off, and the fixed ground receiving station measures the distance. The time information superimposed on the transmission signal transmitted from the flying object and the difference between the time information of the ground fixed receiving station synchronized with this time information as the initial time difference before takeoff, the flying object has taken off Thereafter, the time information superimposed on the transmission signal from the flying object, the difference between the time information of the ground fixed receiving station, and the time change between the time difference initial value before takeoff is detected, based on these information, A distance change between the flying object and the ground fixed station is calculated, and an initial distance value before the flying object takes off is added to calculate a current distance between the flying object and the ground fixed receiving station.

【0008】ここで、前記地上固定受信局は、当該受信
局から見た離陸後の飛翔体のアジマス及びエレベーショ
ン角度方向を継続的に知る手段を有し、前記地上固定受
信局を中心とした球座標系により飛翔体の飛行経路を測
定する。また、前記地上固定受信局から見た前記飛翔体
のアジマス及びエレベーション角度を継続定期に知る手
段は、モノパルス方式の追尾装置、コニカルスキャン方
式の追尾装置またはフェーズドアレイレーダによる捜索
追尾方式のいずれかである。
[0008] Here, the ground fixed receiving station has means for continuously knowing the azimuth and elevation angle direction of the flying object after takeoff as seen from the receiving station, and the ground fixed receiving station is centered on the ground fixed receiving station. The flight path of the flying object is measured by the spherical coordinate system. The means for continuously and periodically knowing the azimuth and elevation angle of the flying object viewed from the ground fixed receiving station may be any of a monopulse type tracking device, a conical scan type tracking device, or a search and tracking method using a phased array radar. It is.

【0009】本発明の更に他の態様による飛行経路測定
装置は、飛翔体には、送信信号の中に時間情報を重畳す
る時間情報重畳手段と、前記重畳された送信信号を電波
信号として送出する第1の空中線手段とを備え、地上固
定受信局には、前記飛翔体の空中線手段から送信される
電波信号を受信する第2の空中線手段と、前記第2の空
中線手段をアジマス及びエレベーション方向に駆動する
とともに、その指向するアジマス及びエレベーションの
角度情報を出力する空中線駆動手段と、前記第2の空中
線手段が捕らえた前記飛翔体からの時間情報が重畳され
た信号を受信する受信手段と、前記受信手段で受信した
受信信号を加減算してΣ信号とアジマス方向及びエレベ
ション方向のΔ信号を出力する前置比較手段と、前記前
置比較手段の出力から前記第2の空中線のΣビームの中
心に対する前記電波信号の到来方向の角度誤差を求めて
誤差角信号を出力する角度誤差演算手段と、前記飛翔体
の送信する時間情報を重畳した電波信号から飛翔体の距
離初期値との距離差を求めて前記飛翔体から前記地上固
定受信局までの距離を出力する距離演算器と、飛翔体が
離陸する以前の初期状態において前記飛翔体と前記地上
固定受信局間の距離初期値を測定する距離初期値測定手
段とを備えて構成される。
A flight path measuring apparatus according to still another aspect of the present invention provides a flight object with time information superimposing means for superimposing time information on a transmission signal, and transmitting the superimposed transmission signal as a radio signal. A fixed antenna receiving means for receiving a radio signal transmitted from the antenna means of the flying object; and a second antenna means for connecting the second antenna means to the azimuth and elevation directions. Antenna driving means for outputting angle information of the azimuth and elevation to which the antenna is directed, and receiving means for receiving a signal on which time information from the flying object captured by the second antenna means is superimposed. A pre-comparison means for adding and subtracting a reception signal received by the reception means to output a Σ signal and a Δ signal in the azimuth direction and the elevation direction; Angle error calculating means for obtaining an angle error of the arrival direction of the radio signal with respect to the center of the Σ beam of the second antenna and outputting an error angle signal; and a radio signal on which time information transmitted by the flying object is superimposed. A distance calculator for calculating a distance difference between the flying object and the distance initial value and outputting a distance from the flying object to the ground fixed receiving station; and a flying object and the ground fixed in an initial state before the flying object takes off. Distance initial value measuring means for measuring an initial distance value between the receiving stations.

【0010】ここで、前記第2の空中線手段は、モノパ
ルス空中線とすることができる。また、前記第2の空中
線手段は、コニカルスキャン空中線であり、前記角度誤
差演算手段は、前記飛翔体からの電波信号をコニカルス
キャン空中線のビーム回転機からの回転駆動信号と位相
検波することによりアジマス方向及びエレベーション方
向の誤差角信号を出力する。更に、前記空中線手段は、
電気的にビームの指向方向を制御できるフェーズドアレ
イ空中線であり、電気的に各空中線素子の位相を変化さ
せてビーム指向方向を制御するビーム制御器を有し、前
記フェーズドアレイ空中線は飛翔体の存在する角度を中
心とした任意のアジマス及びエレベーション範囲をビー
ム走査し、角度位置指令器が飛翔体からの電波信号の強
度のもっとも強い点に基づいて前記飛翔体のアジマス方
向及びエレベーション方向の角度信号を出力する。
Here, the second antenna means may be a monopulse antenna. Further, the second antenna means is a conical scan antenna, and the angle error calculating means performs azimuth detection by phase-detecting a radio signal from the flying object with a rotation drive signal from a beam rotator of the conical scan antenna. An error angle signal in the direction and the elevation direction is output. Further, the antenna means includes:
A phased array antenna that can electrically control the beam directing direction, and has a beam controller that electrically controls the beam directing direction by changing the phase of each antenna element, wherein the phased array antenna has a flying object. Beam scanning an arbitrary azimuth and elevation range centered on the angle to be performed, and the angle position commander determines the angle in the azimuth direction and elevation direction of the flying object based on the point where the strength of the radio signal from the flying object is strongest. Output a signal.

【0011】以上において、前記第2の空中線手段で受
信した電波信号が十分な受信強度を持っているか判定す
る受信信号強度判定手段を有し、十分な受信強度を持っ
ているときに前記飛行経路を測定する。
In the above, there is provided a received signal strength determining means for determining whether a radio signal received by the second antenna means has a sufficient receiving strength. Is measured.

【0012】[0012]

【発明の実施の形態】次に本発明の実施の形態について
図面を参照して詳細に税明する。図1は本発明による飛
行経路測定装置の一実施形態を示す構成図で、測角手段
を持つ空中線としてモノパルス空中線を用いた例であ
る。また、図2は本実施形態における飛翔体までの距離
を演算する原理図を示し、図3は飛翔体と地上固定受信
局の位置関係を示す図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of a flight path measuring apparatus according to the present invention, in which a monopulse antenna is used as an antenna having angle measuring means. FIG. 2 is a diagram illustrating the principle of calculating the distance to the flying object according to the present embodiment, and FIG. 3 is a diagram illustrating the positional relationship between the flying object and the ground fixed receiving station.

【0013】飛翔体200は、通常の送信手段201を
有し、送信信号の上に時間情報重畳器202により時間
情報を重畳して空中線203から送信する。この時間情
報信号は、例えば、図2(A)に示すような予め定めら
れた一定間隔のパルス信号S2である。
The flying object 200 has ordinary transmitting means 201, and superimposes time information on a transmission signal by a time information superimposing device 202 and transmits the superimposed information from an antenna 203. This time information signal is, for example, a pulse signal S2 at a predetermined constant interval as shown in FIG.

【0014】一方、地上固定受信局100は、空中線駆
動器102で駆動されたモノパルス空中線101を有
し、飛翔体200から送信された時間情報が重畳された
送信信号を受信し、前置比較器5において飛翔体200
からの受信信号を加減算してΣ信号と、アジマス方向A
zとエレベーション方向ElのΔ信号を得て出力する。
Σ信号を受信した受信機104は、飛翔体200からの
送信信号を増幅し、角度誤差演算器107、受信強度判
定器108及び距離演算器109に出力する。
On the other hand, the ground fixed receiving station 100 has a monopulse antenna 101 driven by an antenna driver 102, receives a transmission signal on which time information transmitted from the flying object 200 is superimposed, and receives a pre-comparator. Flying object 200 in 5
Σ signal and azimuth direction A
The signal of z and the elevation direction El are obtained and output.
The receiver 104 that has received the Σ signal amplifies the transmission signal from the flying object 200 and outputs the amplified signal to the angle error calculator 107, the reception intensity determiner 108, and the distance calculator 109.

【0015】受信強度判定器108は、飛翔体200か
らの受信した受信信号の強度が予め定めた強度以上であ
るか否かを判定し、予め定めた強度以上であれば、角度
誤差演算器107及び距離演算器109の出力を有効と
する信号を出力する。
The reception intensity judgment unit 108 judges whether or not the intensity of the reception signal received from the flying object 200 is equal to or higher than a predetermined intensity. If the intensity is equal to or higher than the predetermined intensity, the angle error calculator 107 And a signal for making the output of the distance calculator 109 valid.

【0016】前置比較器102から出力されたアジマス
方向とエレベーション方向のΔ信号は、各々の受信機1
05、受信機106で受信増幅され、角度誤差演算器1
07に送られる。角度誤差演算器107では、アジマス
及びエレベーション方向の△信号をΣ信号で正規化し、
モノパルス空中線101のΣビームに対するアジマス及
びエレべーション方向の誤差角を空中線駆動器102に
出力する。空中線駆動器102は、アジマス及びエレベ
ーション方向の誤差角よりモノパルス空中線101のΣ
ビームが飛翔体200の空中線203に常時向くように
駆動し、同時にモノパルス空中線200の指向するアジ
マス及びエレベーション方向の角度φ及びθを常時地上
固定受信局100の外部に出力する。
The Δ signals in the azimuth direction and the elevation direction output from the pre-comparator 102 are
05: Received and amplified by the receiver 106, the angle error calculator 1
07. The angle error calculator 107 normalizes the △ signal in the azimuth and elevation directions with the Σ signal,
The azimuth of the monopulse antenna 101 and the error angle of the elevation direction with respect to the Σ beam are output to the antenna driver 102. The antenna driver 102 determines the angle of the monopulse antenna 101 from the error angle in the azimuth and elevation directions.
The beam is driven so as to always face the antenna 203 of the flying object 200, and at the same time, the azimuth and elevation angles φ and θ of the monopulse antenna 200 are always output to the outside of the ground fixed receiving station 100.

【0017】距離初期値測定器110は、レーザ測距装
置などと同様の測距機能を有し、地上固定受信局100
から飛翔体200までの距離初期値を測定し、距離演算
器109に出力する。距離演算器109は、飛翔体20
0からの送信信号をΣ信号受信機104から受け、この
中から時間情報を復調する。
The distance initial value measuring device 110 has a distance measuring function similar to that of a laser distance measuring device or the like.
The initial value of the distance from to the flying object 200 is measured and output to the distance calculator 109. The distance calculator 109 is used for the flying object 20.
A transmission signal from 0 is received from the signal receiver 104, and time information is demodulated from the signal.

【0018】距離演算器109は、離陸前の飛翔体20
0の送信する時間情報に同期した図2(A)に示すよう
な予め定められた一定間隔の参照パルス信号S1をも
ち、信号S1とS2間のパルスの時間差tを初期状態と
して記録する。飛翔体200が離陸し、飛翔体200と
地上固定受信局100間の距離が増すと、図2(B)に
示すように、参照パルス信号S1と飛翔体送信パルスS
2間の時間差はTに伸び、距離演算器109は、時間差
Tを用いて、(T−t)×光速十(距離初期値)のよう
な演算を行い飛行中の飛翔体の距離Rを地上固定受信局
100の外部に出力する。
The distance calculator 109 is provided for the flying object 20 before takeoff.
As shown in FIG. 2A, a reference pulse signal S1 at a predetermined constant interval synchronized with time information to be transmitted as 0 is provided, and a time difference t between pulses between the signals S1 and S2 is recorded as an initial state. When the flying object 200 takes off and the distance between the flying object 200 and the ground fixed receiving station 100 increases, as shown in FIG. 2B, the reference pulse signal S1 and the flying object transmission pulse S
The time difference between the two is extended to T, and the distance calculator 109 performs a calculation such as (T−t) × light speed tens (distance initial value) using the time difference T to calculate the distance R of the flying object in flight to the ground. The signal is output outside the fixed receiving station 100.

【0019】図3から明らかなように、地上固定受信局
100から出力されるアジマス及びエレベーション方向
の角度φ及びθと、飛翔体200と地上固定受信局10
0間の距離Rから飛行中の飛翔体200の位置が計測で
きる。
As is apparent from FIG. 3, the azimuth and elevation angles φ and θ outputted from the fixed ground receiving station 100, the flying object 200 and the fixed ground receiving station 10 are shown.
From the distance R between 0, the position of the flying object 200 in flight can be measured.

【0020】次に本発明の第2及び第3の実施の形態に
ついて図4及び図5を参照して説明する。
Next, second and third embodiments of the present invention will be described with reference to FIGS.

【0021】図4は測角可能な空中線として、図1に示
すモノパルス方式の代わりにコニカルスキャン方式を採
用した例である。地上固定受信局100は、コニカルス
キャン空中線121を有し、飛翔体200からの時間情
報が重畳された送信信号は、受信機124で増幅され、
角度誤差演算器125、受信強度判定器126及び距離
演算器127に出力される。角度誤差演算器125は、
受信機124からの信号をビデオ検波し、コニカルスキ
ャン空中線121のビームを回転させているビーム回転
機123からの回転駆動信号と位相検波を行い、アジマ
ス及びエレベーション方向の誤差角を空中線駆動器12
2に出力する。他の動作は、距離初期値測定器110で
得られた距離初期値を参照した、図1に示す実施形態と
同様である。
FIG. 4 shows an example in which a conical scan method is employed as an antenna capable of angle measurement instead of the monopulse method shown in FIG. The fixed ground receiving station 100 has a conical scan antenna 121, and a transmission signal on which time information from the flying object 200 is superimposed is amplified by a receiver 124,
The signals are output to the angle error calculator 125, the reception intensity determiner 126, and the distance calculator 127. The angle error calculator 125 is
The signal from the receiver 124 is video-detected, the rotation drive signal from the beam rotator 123 rotating the beam of the conical scan antenna 121 and the phase detection are performed, and the azimuth and the error angle in the elevation direction are detected by the antenna driver 12.
Output to 2. Other operations are the same as those of the embodiment shown in FIG. 1 with reference to the distance initial value obtained by the distance initial value measuring device 110.

【0022】図5は、測角可能な空中線としてモノパル
ス方式の代わりにフェースドアレイ方式を採用した他の
実施形態を示す構成図である。地上固定受信局100内
に設けられた指向性の強いフェーズドアレイ131は、
図1と同様な飛翔体200の存在する領域を高速でビー
ム走査する。飛翔体200から時間情報が重畳された送
信信号は、フェーズドアレイ131で受波され受信機1
33で増幅されて角度位置指令器134、受信強度判定
器135及び距離演算器136に出力される。角度位置
指令器134は、フェーズドアレイ空中線131が飛翔
体の存在する領域を高速でビーム走査した信号の中から
最も強い受信強度が得られた位置を保持し、この位置を
ビーム制御器132に出力する。ビーム制御器132
は、角度位置指令器134から指令を受けた位置を中心
にした新たな領域をビーム走査するとともに角度位置指
令器134から受信したアジマス及びエレペーション方
向の角度φ及びθを常時地上固定受信局100の外部に
出力する。
FIG. 5 is a block diagram showing another embodiment employing a faced array system instead of a monopulse system as an antenna capable of angle measurement. The phased array 131 having strong directivity provided in the ground fixed receiving station 100 includes:
Beam scanning is performed at a high speed on the area where the flying object 200 is present as in FIG. The transmission signal on which time information is superimposed from the flying object 200 is received by the phased array 131 and is received by the receiver 1
The signal is amplified by 33 and output to the angular position command device 134, the reception intensity determination device 135 and the distance calculator 136. The angle position commander 134 holds the position where the strongest reception intensity is obtained from the signals obtained by high-speed beam scanning of the region where the phased array antenna 131 has the flying object, and outputs this position to the beam controller 132. I do. Beam controller 132
Performs beam scanning on a new area centered on the position instructed by the angle position command device 134, and constantly detects the azimuth and the angle φ and θ in the erection direction received from the angle position command device 134 at the fixed ground receiving station 100. Output to the outside of.

【0023】[0023]

【発明の効果】以上説明したように、本発明の飛行経路
測定装置は、飛翔体から送信される電波信号を受信でき
る地上固定受信局を飛翔体の発射地点付近の1カ所のみ
に設置すれば、飛翔体の飛行経路を測定できる。
As described above, the flight path measuring apparatus of the present invention requires only a fixed ground receiving station capable of receiving a radio signal transmitted from a flying object at only one location near the launch point of the flying object. The flight path of the flying object can be measured.

【図面の簡単な税明】[Easy tax statement on drawings]

【図1】本発明による飛行経路測定装置の一実施の形態
を示す飛行経路測定装置で、空中線にモノパルス方式を
使用した場合の構成図である。
FIG. 1 is a configuration diagram of a flight path measurement device showing an embodiment of a flight path measurement device according to the present invention, in which a monopulse system is used for an antenna.

【図2】図1に示す実施形態の動作を説明するための原
理図である。
FIG. 2 is a principle diagram for explaining the operation of the embodiment shown in FIG. 1;

【図3】発明の飛行経路測定装置における飛翔体と地上
固定受信局の位置関係を示す図である。
FIG. 3 is a diagram showing a positional relationship between a flying object and a ground fixed receiving station in the flight path measuring device of the present invention.

【図4】本発明による飛行経路測定装置の他の実施形態
を示す飛行経路測定装置で、空中線にコニカルスキャン
方式を使用した場合の構成図である。
FIG. 4 is a configuration diagram of a flight path measurement device according to another embodiment of the present invention, in which a conical scan method is used for an antenna.

【図5】本発明による飛行経路測定装置の更に他の実施
形態を示す飛行経路測定装置で、空中線にフェーズドア
レイ方式を使用した場合の構成図である。
FIG. 5 is a configuration diagram of a flight path measuring apparatus showing still another embodiment of the flight path measuring apparatus according to the present invention, in a case where a phased array system is used for an antenna.

【図6】従来の飛行経路測定装置の構成図である。FIG. 6 is a configuration diagram of a conventional flight path measurement device.

【符号の説明】[Explanation of symbols]

100 地上固定装置 101 モノパルス空中親 103 前置比較器 104〜106,124,133 受信機 107,125 角度誤差演算器 108,126,135 受信強度判定器 109,127,136 距離演算器 102,122 空中線駆勤器 110,128,137 距離初期値測定器 121 コニカルスキャン空中線 123 ビーム回転機 131 フェーズドアレイ空中親 134 角度位置指令器 200 飛翔体 201 送信装童 202 時間情報重畳器 203 空中線 REFERENCE SIGNS LIST 100 Ground fixed device 101 Monopulse aerial parent 103 Precomparator 104 to 106, 124, 133 Receiver 107, 125 Angle error calculator 108, 126, 135 Received intensity determiner 109, 127, 136 Distance calculator 102, 122 Antenna Commuter 110, 128, 137 Distance initial value measuring device 121 Conical scan antenna 123 Beam rotating machine 131 Phased array aerial parent 134 Angle position commander 200 Flying object 201 Transmitting child 202 Time information superimposing device 203 Antenna

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01S 1/68 G01S 3/42 G01S 5/00 - 5/14 G01S 7/00 - 7/42 G01S 11/00 G01S 13/00 - 13/95────────────────────────────────────────────────── ─── Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01S 1/68 G01S 3/42 G01S 5/00-5/14 G01S 7/00-7/42 G01S 11 / 00 G01S 13/00-13/95

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】飛翔体は、送信信号の中に時間情報を重畳
させて送出し、地上固定受信局は、前記飛翔体のアジマ
ス及びエレベーション角度方向を測定し、地上固定受信
局が受信した受信信号から前記時間情報を抽出し、抽出
された時間情報に基づいて前記飛翔体から前記地上固定
受信局までの距離を求め、求められた距離と、前記飛翔
体の予め求められた距離初期値とに基づいて前記飛翔体
から前記地上固定受信局までの距離を測定することを特
徴とする飛行経路測定装置。
A flying object superimposes time information on a transmission signal and transmits the signal. A fixed ground receiving station measures the azimuth and elevation angle direction of the flying object and receives the signal by the fixed ground receiving station. The time information is extracted from the received signal, the distance from the flying object to the ground fixed receiving station is determined based on the extracted time information, and the obtained distance and a predetermined distance initial value of the flying object are obtained. A flight path measuring device for measuring a distance from the flying object to the ground fixed receiving station based on the following.
【請求項2】飛翔体が離陸する以前の初期状態において
飛翔体と地上固定受信局までの距離初期値を測定してお
き、地上固定受信局では前記飛翔体から送信される送信
信号の中に重畳された時間情報と、この時間情報と同期
する前記地上固定受信局のもつ時間情報の差を離陸前の
時間差初期値とし、前記飛翔体が離陸した後、前記飛翔
体からの送信信号に重畳された時間情報と、前記地上固
定受信局のもつ時間情報の差、及び離陸前の時間差初期
値との時間変化を検出し、これら情報に基づいて前記飛
翔体と地上固定局間の距離変化を算出し、前記飛翔体が
離陸する以前の距離初期値を加算して現在の飛翔体と地
上固定受信局間の距離を算出することを特徴とする飛行
経路測定装置。
In an initial state before the flying object takes off, an initial value of the distance between the flying object and the fixed receiving station on the ground is measured, and the fixed receiving station on the ground detects the initial value of the transmission signal transmitted from the flying object. The difference between the superimposed time information and the time information of the ground fixed receiving station synchronized with the time information is used as a time difference initial value before takeoff, and after the flying object has taken off, is superimposed on a transmission signal from the flying object. Time information, the difference between the time information of the ground fixed receiving station, and the time change between the time difference initial value before takeoff, and based on these information, the distance change between the flying object and the ground fixed station are detected. A flight path measuring apparatus, wherein the distance between the current flying object and the fixed receiving station on the ground is calculated by adding the calculated initial value of the distance before the flying object takes off.
【請求項3】前記地上固定受信局は、当該受信局から見
た離陸後の飛翔体のアジマス及びエレベーション角度方
向を継続的に知る手段を有し、前記地上固定受信局を中
心とした球座標系により飛翔体の飛行経路を測定する請
求項1または2に記載の飛行経路測定装置。
3. The terrestrial fixed receiving station has means for continuously knowing the azimuth and elevation angle direction of the flying object after takeoff as viewed from the receiving station, and a sphere centered on the terrestrial fixed receiving station. 3. The flight path measurement device according to claim 1, wherein the flight path of the flying object is measured using a coordinate system.
【請求項4】前記地上固定受信局から見た前記飛翔体の
アジマス及びエレベーション角度を継続定期に知る手段
は、モノパルス方式の追尾装置、コニカルスキャン方式
の追尾装置またはフェーズドアレイレーダによる捜索追
尾方式のいずれかである請求項1乃至3に記載の飛行経
路測定装置。
4. A means for continuously and periodically knowing the azimuth and elevation angle of the flying object viewed from the ground fixed receiving station includes a monopulse type tracking device, a conical scan type tracking device, or a search and tracking method using a phased array radar. The flight path measurement device according to claim 1, wherein:
【請求項5】飛翔体には、送信信号の中に時間情報を重
畳する時間情報重畳手段と、前記重畳された送信信号を
電波信号として送出する第1の空中線手段とを備え、 地上固定受信局には、前記飛翔体の空中線手段から送信
される電波信号を受信する第2の空中線手段と、前記第
2の空中線手段をアジマス及びエレベーション方向に駆
動するとともに、その指向するアジマス及びエレベーシ
ョンの角度情報を出力する空中線駆動手段と、前記第2
の空中線手段が捕らえた前記飛翔体からの時間情報が重
畳された信号を受信する受信手段と、前記受信手段で受
信した受信信号を加減算してΣ信号とアジマス方向及び
エレベション方向のΔ信号を出力する前置比較手段と、
前記前置比較手段の出力から前記第2の空中線のΣビー
ムの中心に対する前記電波信号の到来方向の角度誤差を
求めて誤差角信号を出力する角度誤差演算手段と、前記
飛翔体の送信する時間情報を重畳した電波信号から飛翔
体の距離初期値との距離差を求めて前記飛翔体から前記
地上固定受信局までの距離を出力する距離演算器と、飛
翔体が離陸する以前の初期状態において前記飛翔体と前
記地上固定受信局間の距離初期値を測定する距離初期値
測定手段とを備えて成ることを特徴とする飛行経路測定
装置。
5. The flying object includes time information superimposing means for superimposing time information on a transmission signal, and first antenna means for transmitting the superimposed transmission signal as a radio signal. The station includes a second antenna means for receiving a radio signal transmitted from the antenna means of the flying object, and driving the second antenna means in the azimuth and elevation directions and directing the azimuth and elevation directions thereof. Antenna driving means for outputting angle information of
Receiving means for receiving a signal on which time information from the flying object captured by the antenna means is superimposed, and adding and subtracting the received signal received by the receiving means to output a Σ signal and a Δ signal in the azimuth direction and the elevation direction. Pre-comparison means,
Angle error calculation means for obtaining an angle error of the direction of arrival of the radio signal with respect to the center of the 中 beam of the second antenna from the output of the pre-comparison means and outputting an error angle signal; and a transmission time of the flying object A distance calculator that calculates the distance difference from the initial distance of the flying object from the radio signal on which the information is superimposed and outputs the distance from the flying object to the ground fixed receiving station, and in an initial state before the flying object takes off A flight path measuring device comprising: a distance initial value measuring means for measuring an initial distance value between the flying object and the fixed ground receiving station.
【請求項6】前記第2の空中線手段は、モノパルス空中
線である請求項5に記載の飛行経路測定装置。
6. The flight path measuring device according to claim 5, wherein said second antenna means is a monopulse antenna.
【請求項7】前記第2の空中線手段は、コニカルスキャ
ン空中線であり、前記角度誤差演算手段は、前記飛翔体
からの電波信号をコニカルスキャン空中線のビーム回転
機からの回転駆動信号と位相検波することによりアジマ
ス方向及びエレベーション方向の誤差角信号を出力する
請求項5に記載の飛行経路測定装置。
7. The second antenna means is a conical scan antenna, and the angle error calculating means phase-detects a radio signal from the flying object with a rotation drive signal from a beam rotating machine of the conical scan antenna. 6. The flight path measurement device according to claim 5, wherein an error angle signal in the azimuth direction and the elevation direction is output.
【請求項8】前記空中線手段は、電気的にビームの指向
方向を制御できるフェーズドアレイ空中線であり、電気
的に各空中線素子の位相を変化させてビーム指向方向を
制御するビーム制御器を有し、前記フェーズドアレイ空
中線は飛翔体の存在する角度を中心とした任意のアジマ
ス及びエレベーション範囲をビーム走査し、角度位置指
令器が飛翔体からの電波信号の強度のもっとも強い点に
基づいて前記飛翔体のアジマス方向及びエレベーション
方向の角度信号を出力する請求項1に記載の飛行経路測
定装置。
8. The antenna means is a phased array antenna capable of electrically controlling a beam pointing direction, and has a beam controller for electrically changing a phase of each antenna element to control a beam pointing direction. The phased array antenna scans an arbitrary azimuth and elevation range centered on the angle at which the flying object exists, and the angle position commander performs the flight based on the point where the strength of the radio signal from the flying object is highest. The flight path measurement device according to claim 1, wherein angle signals in the azimuth direction and the elevation direction of the body are output.
【請求項9】前記第2の空中線手段で受信した電波信号
が十分な受信強度を持っているか判定する受信信号強度
判定手段を有し、十分な受信強度を持っているときに前
記飛行経路を測定する請求項1に記載の飛行経路測定装
置。
9. A receiving signal strength judging means for judging whether a radio signal received by said second antenna means has a sufficient receiving strength, and when said radio signal has a sufficient receiving strength, said flying path is determined. The flight path measurement device according to claim 1 for measuring.
JP8338938A 1996-12-03 1996-12-03 Flight path measurement device Expired - Lifetime JP2853685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8338938A JP2853685B2 (en) 1996-12-03 1996-12-03 Flight path measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8338938A JP2853685B2 (en) 1996-12-03 1996-12-03 Flight path measurement device

Publications (2)

Publication Number Publication Date
JPH10160814A JPH10160814A (en) 1998-06-19
JP2853685B2 true JP2853685B2 (en) 1999-02-03

Family

ID=18322748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8338938A Expired - Lifetime JP2853685B2 (en) 1996-12-03 1996-12-03 Flight path measurement device

Country Status (1)

Country Link
JP (1) JP2853685B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101052529B1 (en) 2009-04-28 2011-07-29 삼성중공업 주식회사 Position measuring method and position measuring device using the signal emitted from the transmitter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100633160B1 (en) * 2004-12-17 2006-10-11 삼성전자주식회사 Robot system capable of recognizing position and direction using beacon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101052529B1 (en) 2009-04-28 2011-07-29 삼성중공업 주식회사 Position measuring method and position measuring device using the signal emitted from the transmitter

Also Published As

Publication number Publication date
JPH10160814A (en) 1998-06-19

Similar Documents

Publication Publication Date Title
US5068654A (en) Collision avoidance system
AU618402B2 (en) Surveillance sensor
EP1045256A1 (en) Passive ssr
US5097269A (en) Multistatic radar systems
US4939522A (en) Method and system for monitoring vehicle location
US5065162A (en) Communication system for helicopter
JP2765563B2 (en) Airport plane aircraft identification method
JP3526403B2 (en) Landing guidance system
JPH0836040A (en) Radiowave source position locating device
CN111430912B (en) Control system and method for phased array antenna
JP3305989B2 (en) Target locating device and landing guidance device
JP2853685B2 (en) Flight path measurement device
JPH09297175A (en) Tracking radar equipment
JP3212932B2 (en) Multiple radar batch screen display control device
CN201133935Y (en) Unmanned helicopter radar system
JPH05142341A (en) Passive ssr device
JP2012220318A (en) Antenna direction adjusting system
JP2596164B2 (en) Precision approaching radar
JP3042469B2 (en) Aircraft monitoring system
JP3751574B2 (en) Target position detection method and target position detection system
JP3995320B2 (en) Satellite radio wave monitoring device
JP3296896B2 (en) Moving object position measurement device
KR102657033B1 (en) Unmanned aerial vehicle specific wifi wireless communication device and its control method
JPS63278179A (en) Earth observing device
KR102657031B1 (en) Unmanned aerial vehicle specific wifi wireless communication device and its control method